JPH0381041A - Method for forging aluminum alloy - Google Patents

Method for forging aluminum alloy

Info

Publication number
JPH0381041A
JPH0381041A JP21823289A JP21823289A JPH0381041A JP H0381041 A JPH0381041 A JP H0381041A JP 21823289 A JP21823289 A JP 21823289A JP 21823289 A JP21823289 A JP 21823289A JP H0381041 A JPH0381041 A JP H0381041A
Authority
JP
Japan
Prior art keywords
forging
aluminum alloy
temp
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21823289A
Other languages
Japanese (ja)
Inventor
Tetsuya Hayashi
哲也 林
Yoshinobu Takeda
義信 武田
Yusuke Kotani
雄介 小谷
Toshihiko Kaji
鍛治 俊彦
Yoshiaki Ito
嘉朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21823289A priority Critical patent/JPH0381041A/en
Publication of JPH0381041A publication Critical patent/JPH0381041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable forging of an Al alloy without using high purity inert gas, etc., by executing a first step forging at a lower temp. than the rapid oxidized temp. of the Al alloy and executing the forging on and after a second step at the above rapid oxidized temp. or higher. CONSTITUTION:By executing the forging at a lower temp. then the rapid oxi dized temp., the Al alloy does not suffer so much oxidation even under the atmosphere with in some degree higher oxygen partial pressure and ateam partial pressure, thereby attaining high density in forging. The successive forging on and after the second step is executed on this at the rapid oxidized temp. or higher. As the first step forging is already executed and the density of Al alloy is already increased, the Al alloy does not suffer vigorous oxidation even if forging on and after the second step is carried out at rapid oxidized temp. or higher. In such a way, the forging is erecuted under inexpensive gase ous atmosphere such as the air. By this method, mass-productive Al alloy formed products can be formed thereby the forming over the wide range of car parts, home electric parts, OA devices etc., can be executed by forging.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、アルミニウム合金を鍛造する方法に関する
ものであり、特に多段鍛造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forging an aluminum alloy, and particularly to a multi-stage forging method.

[従来の技術] アルミニウム合金粉末やアルミニウム合金の成形体等を
鍛造する従来の方法は、アルミニウム合金が十分に軟化
する温度である400〜550℃にアルミニウム合金を
加熱して行なっており、この際アルミニウム合金が酸化
するのを防ぐため、不活性ガス雰囲気などの非酸化性の
雰囲気中で、かつ露点が−20〜−40℃である低い湿
度雰囲気中で行なっている。
[Prior Art] Conventional methods for forging aluminum alloy powder, aluminum alloy compacts, etc. are carried out by heating the aluminum alloy to a temperature of 400 to 550°C, which is the temperature at which the aluminum alloy is sufficiently softened. In order to prevent the aluminum alloy from oxidizing, the process is carried out in a non-oxidizing atmosphere such as an inert gas atmosphere, and in a low humidity atmosphere with a dew point of -20 to -40°C.

[発明が解決しようとする課題] 従来の方法においては、アルミニウム合金に形状付与が
可能となるよう十分に軟化するため上記のような温度範
囲で鍛造を行なっているが、このような温度範囲では下
記の化学反応式に示すようにアルミニウムが酸素または
水と著しく反応する。
[Problem to be solved by the invention] In the conventional method, forging is carried out in the above temperature range in order to sufficiently soften the aluminum alloy so that it can be shaped. Aluminum reacts significantly with oxygen or water as shown in the chemical reaction formula below.

2AIll+3/2 02→A麩ZOa2Al−3H2
0→Ai202 +3H2↑このようにアルミニウム合
金の表面が酸化されると、表面にアルミナ膜が厚く生成
し、鍛造時における表面の結合が十分になされず、鍛造
により得られる材料の強度、靭性および延性等の特性が
劣る。このため、従来の方法では、このような酸化反応
を抑制するため、非酸化性の雰囲気中でかつ低湿度の雰
囲気で鍛造を行なっている。
2AIll+3/2 02→AfuZOa2Al-3H2
0→Ai202 +3H2↑When the surface of the aluminum alloy is oxidized in this way, a thick alumina film is formed on the surface, and the surface bonding during forging is not achieved sufficiently, which reduces the strength, toughness, and ductility of the material obtained by forging. etc. characteristics are inferior. Therefore, in conventional methods, forging is performed in a non-oxidizing atmosphere with low humidity in order to suppress such oxidation reactions.

しかしながら、このような非酸化性でかつ低湿度の雰囲
気とするためには、高純度な不活性ガスが必要となり、
製造コストが高くなるという問題点を有する。
However, in order to create such a non-oxidizing and low-humidity atmosphere, a highly purified inert gas is required.
This has the problem of high manufacturing cost.

この発明の目的は、かかる従来の問題点を解消し、安価
に、かつ強度等の特性の優れたアルミニウム合金を鍛造
することのできる方法を提供することにある。
An object of the present invention is to provide a method that can eliminate such conventional problems and forge an aluminum alloy having excellent properties such as strength at a low cost.

[課題を解決するための手段] この発明の鍛造方法は、酸素含有雰囲気中でアルミニウ
ム合金が急速に酸化し始める温度である急速酸化温度よ
り低い温度で第1段の鍛造を施し、この後急速酸化温度
以上の温度で第2段以降の鍛造を施すことを特徴として
いる。
[Means for Solving the Problems] The forging method of the present invention performs the first stage of forging at a temperature lower than the rapid oxidation temperature, which is the temperature at which an aluminum alloy begins to rapidly oxidize in an oxygen-containing atmosphere, and then It is characterized by performing forging in the second and subsequent stages at a temperature higher than the oxidation temperature.

[作用] 第1図は、Al2O%5i−3%Cu−1%Mg合金の
大気中における加熱温度と酸化量との関係を示す図であ
る。第1図に示されるように、このアルミニウム合金は
400〜450℃を越えるあたりから急速に酸化反応が
活発化する。この明細書においては、このような酸素含
有雰囲気中でアルミニウム合金が急速に酸化し始める温
度を、急速酸化温度と言い表わしている。
[Function] FIG. 1 is a diagram showing the relationship between the heating temperature and the amount of oxidation of the Al2O%5i-3%Cu-1%Mg alloy in the atmosphere. As shown in FIG. 1, the oxidation reaction of this aluminum alloy rapidly becomes active when the temperature exceeds 400 to 450°C. In this specification, the temperature at which the aluminum alloy begins to rapidly oxidize in such an oxygen-containing atmosphere is referred to as the rapid oxidation temperature.

この発明の鍛造方法は、このような急速酸化温度に着目
することによりなされたものであり、第1段の鋳造を、
急速酸化温度より低い温度で行なうことを特徴としてい
る。急速酸化温度より低い温度で鍛造を行なえば、酸素
分圧や水蒸気分圧が成る程度高い雰囲気であっても、そ
れほど大きな酸化を受けることなく鍛造して高密度化を
図ることができる。またアルミニウム合金粉末の場合、
粉末自身の変形抵抗が大きいため、単体形状に成形固化
することができる。このようにして得られる第1の鍛造
後のアルミニウム合金の酸化量は、初期の酸化量とほと
んど変わらない程度である。
The forging method of this invention was made by focusing on such rapid oxidation temperature, and the first stage casting is
It is characterized by being carried out at a temperature lower than the rapid oxidation temperature. If forging is performed at a temperature lower than the rapid oxidation temperature, high density can be achieved by forging without significant oxidation even in an atmosphere with high oxygen partial pressure or water vapor partial pressure. Also, in the case of aluminum alloy powder,
Since the powder itself has high deformation resistance, it can be molded and solidified into a single shape. The amount of oxidation of the aluminum alloy after the first forging thus obtained is almost the same as the amount of oxidation at the initial stage.

この発明の鍛造方法に従えば、次に急速酸化温度以上の
温度で第2段以降の鍛造を施す。既に第1の鍛造が施さ
れておりアルミニウム金の密度が既に高められているた
め、この第2段以降の鍛造では、急速酸化温度以上の温
度であっても激しい酸化を受けることはない。
According to the forging method of the present invention, the second and subsequent stages of forging are then performed at a temperature higher than the rapid oxidation temperature. Since the first forging has already been performed and the density of the aluminum gold has already been increased, in the second and subsequent stages of forging, even if the temperature is higher than the rapid oxidation temperature, it will not undergo severe oxidation.

このように、この発明に従えば、大気など安価なガス雰
囲気中で鍛造することができる。また、第1段の鍛造に
より成形固化されているため、第2段以降の鍛造におけ
る取扱いや保管が容易になる。また、第1段の鍛造と第
2段以降の鍛造は連続化して行なうことができるので、
第1段の鍛造における加熱は、第2段の鍛造における加
熱のインダクションとして用いることができる。
In this manner, according to the present invention, forging can be performed in an inexpensive gas atmosphere such as the atmosphere. In addition, since it is shaped and solidified by the first stage of forging, handling and storage in the second and subsequent stages of forging are facilitated. In addition, since the first stage forging and the second stage forging can be performed continuously,
The heating in the first stage forging can be used as an induction for the heating in the second stage forging.

アルミニウム合金としてアルミニウム合金粉末を用いる
場合には、アトマイズ法によって製造されたアルミニウ
ム合金粉末が好ましい。このようなアトマイズ法による
合金粉末は、粉末表面に安定な酸化膜が存在している。
When using aluminum alloy powder as the aluminum alloy, aluminum alloy powder manufactured by an atomization method is preferable. The alloy powder produced by such an atomization method has a stable oxide film on the powder surface.

また、アルミニウム合金粉末を用いる場合には、平均粒
径300μm以下のアルミニウム合金粉末が好ましい。
Further, when using aluminum alloy powder, aluminum alloy powder with an average particle size of 300 μm or less is preferable.

平均粒径が300μmを越えると、鍛造によって粉末同
士が十分に接合しにくくなり、成形固化が困難になる。
If the average particle size exceeds 300 μm, it becomes difficult for the powders to join together sufficiently by forging, making it difficult to form and solidify.

この発明において、第1段の鍛造の温度は、急速酸化温
度より低い温度であればよいが、一般には200℃以上
450℃以下の温度が好ましい。
In the present invention, the temperature of the first stage forging may be lower than the rapid oxidation temperature, but is generally preferably 200° C. or higher and 450° C. or lower.

200℃より低い温度になると、アルミニウム合金の変
形に対する抵抗が大きくなり、十分に密度の高い成形体
とすることが困難になる。
When the temperature is lower than 200° C., the resistance of the aluminum alloy to deformation increases, making it difficult to form a compact with sufficiently high density.

また、第1段の鍛造において、酸化を受ける量を従来よ
りも少なくしたい場合には、酸素が20%以下でかつ露
点が10℃以下の雰囲気中で鍛造を行なうことが好まし
い。
Further, in the first stage forging, if it is desired to reduce the amount of oxidation than before, it is preferable to perform the forging in an atmosphere containing 20% or less oxygen and having a dew point of 10° C. or less.

第1段のm造においては密度比が90%以上となるよう
に鍛造を施すことが好ましい。
In the first stage m-forging, it is preferable to perform forging so that the density ratio is 90% or more.

第1段の鍛造後連続して第2段の鍛造を行なう場合には
、第2段の鍛造の温度に至るまでの昇温速度を10℃/
min以上とすることが好ましい。
When performing the second stage of forging continuously after the first stage of forging, the temperature increase rate up to the temperature of the second stage of forging should be set at 10℃/
It is preferable to set it to min or more.

第2段の鍛造前に、既に第1段の鍛造で加熱されており
、成形体の内部のガスは十分に脱ガスされているためこ
のように昇温速度を速めることができる。
Before the second stage forging, the molded body has already been heated in the first stage forging, and the gas inside the molded body has been sufficiently degassed, so that the temperature increase rate can be increased in this way.

一般に合金成分としてCuやMgを含んだものは酸化さ
れやすいが、この発明の鍛造法は、Cuを1〜5%、M
gを0〜2%含む合金に対して適用して、十分に酸化を
伸側することができる。
Generally, alloys containing Cu or Mg as alloy components are easily oxidized, but the forging method of this invention uses 1 to 5% Cu and Mg.
When applied to alloys containing 0 to 2% g, oxidation can be sufficiently inhibited.

この発明に従えば、第2段以降の鍛造においても酸素含
有雰囲気で、かつ比較的湿度の高い雰囲気で鍛造が行な
われてもよく、たとえば酸素5%以上、露点0℃以上の
雰囲気中で第2段以降の鍛造を行なうことができる。
According to the present invention, forging in the second and subsequent stages may be performed in an oxygen-containing atmosphere with relatively high humidity, for example, in an atmosphere with oxygen of 5% or more and a dew point of 0°C or more. Forging can be performed in the second and subsequent stages.

この発明の鍛造方法においては、当然のことながら第2
の鍛造以降に、第3段の鍛造、第4段の鍛造と鍛造を繰
返すことができる。
In the forging method of this invention, the second
After forging, the third stage forging, fourth stage forging, and forging can be repeated.

[実施例] 以下に示すA)〜F)のような合金組成の粉末に対し、
表2に示す組合わせで、表1に示す■〜■の鍛造方法で
鍛造し、成形固化した。
[Example] For powders having alloy compositions such as A) to F) shown below,
The combinations shown in Table 2 were forged using the forging methods (1) to (2) shown in Table 1, and molded and solidified.

A)  Al1−12%5i−5%Fe−3%Cu−1
%Mg−0,5%Mn B)  A125%5t−4%Cu−0,5%Mg−0
,5%Mn C)   Al1−40%5t D)   An−25%5i−4%Cu−0,5%Mg
−0,5%Mn +5%AuzChE)   Am−2
5%5i−4%Cu−0,5%Mg−0,5%M n 
+2%G「 F)   A1−5%Zn−1%Mg なお、D)およびE)におけるAfL2oつおよびGr
は、それぞれ合金に対する添加物としてのAQzOsお
よびグラファイトを示している。
A) Al1-12%5i-5%Fe-3%Cu-1
%Mg-0,5%Mn B) A125%5t-4%Cu-0,5%Mg-0
,5%Mn C) Al1-40%5t D) An-25%5i-4%Cu-0,5%Mg
-0.5%Mn +5%AuzChE) Am-2
5%5i-4%Cu-0,5%Mg-0,5%Mn
+2%G "F) A1-5%Zn-1%Mg In addition, AfL2o and Gr in D) and E)
show AQzOs and graphite as additives to the alloy, respectively.

(以下余白) 表1 得られた合金成形体について、含有する酸素量ならびに
引張強度および伸びを測定し、表2に併せて示した。
(The following is a blank space) Table 1 The amount of oxygen contained, tensile strength, and elongation of the obtained alloy compacts were measured and shown in Table 2.

(以下余白) 表2 この発明の方法に従い鍛造されたN051およびNo、
2は、急速酸化温度より高い500℃でかつ酸素を含有
し高い湿度の雰囲気下で鍛造されたNo、3に比べ、含
有酸素量が低く、また引張強度および伸びも優れた値を
示している。
(The following is a blank space) Table 2 N051 and No. forged according to the method of this invention,
Compared to No. 3, which was forged at 500°C, which is higher than the rapid oxidation temperature, and in an oxygen-containing, high-humidity atmosphere, No. 2 has a lower oxygen content and also exhibits superior tensile strength and elongation. .

また、この発明の方法に従うNo、4〜6と、比較のN
087および8とを比較すると、急速酸化温度より高い
500℃の温度で、かつ酸素を含有し高湿度の雰囲気中
で鍛造されたNo、7のものは酸素含有量が高く、また
引張強度および伸びも低い値を示している。これに対し
、この発明の方法に従い鍛造されたNo、4〜6は低い
酸素量および優れた引張強度および伸びを示している。
Also, Nos. 4 to 6 according to the method of this invention and Nos. of comparison
Comparing No. 087 and No. 8, No. 7, which was forged at a temperature of 500°C, which is higher than the rapid oxidation temperature, and in an oxygen-containing, high-humidity atmosphere, has a higher oxygen content and also has lower tensile strength and elongation. also shows a low value. In contrast, Nos. 4 to 6 forged according to the method of the present invention exhibit low oxygen content and excellent tensile strength and elongation.

また、従来の方法に従い酸素0%でかつ低湿度の雰囲気
中で鍛造されたN018のものも、低い酸素量および優
れた引張強度および伸びを示している。このようなこと
からこの発明の方法に従えば、No、8のような非酸化
性でかつ低湿度の雰囲気でなくとも、従来と同様な特性
をHする鍛造成形体を得ることができることがわかる。
N018 forged in a 0% oxygen and low humidity atmosphere according to conventional methods also shows low oxygen content and excellent tensile strength and elongation. From these facts, it can be seen that by following the method of the present invention, it is possible to obtain a forged compact having the same characteristics as the conventional one, even in a non-oxidizing and low-humidity atmosphere like No. 8. .

No、9〜12の実験から明らかなように、種々の合金
組成のものについてもこの発明の鍛造方法を適用するこ
とができる。
As is clear from the experiments Nos. 9 to 12, the forging method of the present invention can be applied to materials with various alloy compositions.

[発明の効果] 以上説明したように、この発明の鍛造方法によれば、従
来のように非酸化性でかつ低湿度の雰囲気中で鍛造を行
なう必要がなくなる。このため、高純度不活性ガスなど
の高価なガスを使用せずとも鍛造することができ、アル
ミニウム合金の鍛造における低コスト化を図ることがで
きる。
[Effects of the Invention] As explained above, according to the forging method of the present invention, there is no need to perform forging in a non-oxidizing and low-humidity atmosphere as in the conventional method. Therefore, forging can be performed without using expensive gas such as high-purity inert gas, and costs can be reduced in forging aluminum alloy.

したがって、この発明の鍛造方法により量産性のあるア
ルミニウム合金成形物を成形することができ、たとえば
、自動車用エンジン部品、コンプレッサ部品、家電部品
、OA機器、産業用機器、およびロボット部品など広い
分野における成形物の鍛造に用いることができる。
Therefore, the forging method of the present invention can form aluminum alloy molded products that can be mass-produced, and can be used in a wide range of fields such as automobile engine parts, compressor parts, home appliance parts, OA equipment, industrial equipment, and robot parts. It can be used for forging molded products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アルミニウム合金の加熱温度と酸化量との関
係を示す図である。
FIG. 1 is a diagram showing the relationship between the heating temperature and the amount of oxidation of an aluminum alloy.

Claims (8)

【特許請求の範囲】[Claims] (1)アルミニウム合金を鍛造するための方法であって
、 酸素含有雰囲気中で前記アルミニウム合金が急速に酸化
し始める温度である急速酸化温度より低い温度で第1段
の鍛造を施し、 前記急速酸化温度以上の温度で第2段以降の鍛造を施す
各ステップを備える、アルミニウム合金の鍛造方法。
(1) A method for forging an aluminum alloy, wherein the first stage of forging is performed at a temperature lower than a rapid oxidation temperature, which is a temperature at which the aluminum alloy starts to rapidly oxidize in an oxygen-containing atmosphere, and the rapid oxidation is performed in an oxygen-containing atmosphere. A method for forging an aluminum alloy, comprising steps of performing second and subsequent forging at a temperature higher than that temperature.
(2)前記アルミニウム合金がアトマイズ法によって製
造されたアルミニウム合金粉末である、請求項1に記載
のアルミニウム合金の鍛造方法。
(2) The method for forging an aluminum alloy according to claim 1, wherein the aluminum alloy is an aluminum alloy powder produced by an atomization method.
(3)前記アルミニウム合金が平均粒径300μm以下
のアルミニウム合金粉末である、請求項1に記載のアル
ミニウム合金の鍛造方法。
(3) The method for forging an aluminum alloy according to claim 1, wherein the aluminum alloy is an aluminum alloy powder having an average particle size of 300 μm or less.
(4)前記第1段の鍛造を200℃以上450℃以下の
温度で施す、請求項1に記載のアルミニウム合金の鍛造
方法。
(4) The method for forging an aluminum alloy according to claim 1, wherein the first stage forging is performed at a temperature of 200°C or more and 450°C or less.
(5)前記第1の鍛造を酸素20%以下の雰囲気中で施
す、請求項1に記載のアルミニウム合金の鍛造方法。
(5) The method for forging an aluminum alloy according to claim 1, wherein the first forging is performed in an atmosphere containing 20% or less oxygen.
(6)前記第1段の鍛造を露点10℃以下の雰囲気中で
施す、請求項1に記載のアルミニウム合金の鍛造方法。
(6) The method for forging an aluminum alloy according to claim 1, wherein the first stage forging is performed in an atmosphere with a dew point of 10° C. or lower.
(7)密度比が90%以上となるように前記第1段の鍛
造を施す、請求項1に記載のアルミニウム合金の鍛造方
法。
(7) The method for forging an aluminum alloy according to claim 1, wherein the first stage of forging is performed so that the density ratio is 90% or more.
(8)前記第1段の鍛造後前記第2段の鍛造の温度に至
るまでの昇温速度が10℃/min以上である、アルミ
ニウム合金の鍛造方法。
(8) A method for forging an aluminum alloy, wherein the temperature increase rate after the first stage forging reaches the temperature of the second stage forging is 10° C./min or more.
JP21823289A 1989-08-24 1989-08-24 Method for forging aluminum alloy Pending JPH0381041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21823289A JPH0381041A (en) 1989-08-24 1989-08-24 Method for forging aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21823289A JPH0381041A (en) 1989-08-24 1989-08-24 Method for forging aluminum alloy

Publications (1)

Publication Number Publication Date
JPH0381041A true JPH0381041A (en) 1991-04-05

Family

ID=16716679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21823289A Pending JPH0381041A (en) 1989-08-24 1989-08-24 Method for forging aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0381041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179909A (en) * 1993-12-24 1995-07-18 Sumitomo Electric Ind Ltd Method for forging powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179909A (en) * 1993-12-24 1995-07-18 Sumitomo Electric Ind Ltd Method for forging powder

Similar Documents

Publication Publication Date Title
JP5186739B2 (en) Conductive aluminum alloy wiring material and wiring material using the same
JPS6274043A (en) High strength aluminum alloy for pressure casting
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
JPH0381041A (en) Method for forging aluminum alloy
US3922180A (en) Method for oxidation-hardening metal alloy compositions, and compositions and structures therefrom
US5067979A (en) Sintered bodies and production process thereof
JP2699316B2 (en) Electrode material, method for manufacturing electrode material, and method for manufacturing electrode
JPS6148551A (en) Formed material having superior strength at high temperature made of aluminium alloy material solidified by rapid cooling
US4202688A (en) High conductivity high temperature copper alloy
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JPH07166273A (en) Powder metallurgical product of injection molded copper
JPH11277173A (en) Magnesium alloy-made forged thin box body and manufacture thereof
FR2468656A1 (en) METALLIC BODY WITH HIGH MECHANICAL RESISTANCE AND METHOD OF MANUFACTURING THE SAME
JPH0257121B2 (en)
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
KR19990080858A (en) Electrode Material, Manufacturing Method of Electrode Material and Manufacturing Method of Electrode
DE19526558A1 (en) Process for the production of an aluminum sinter
JPH11286732A (en) Manufacture of alumina-dispersed strengthened copper
JP3458146B2 (en) Aluminum-based particle-dispersed composite material and method for producing the same
JPH04224601A (en) Manufacture of titanium-based composite material
JP2679267B2 (en) Manufacturing method of brazing material
JP2748666B2 (en) Cu alloy powder and method for producing the same
JPH0328336A (en) Manufacture of aluminum alloy powder sintered parts
JPH0270004A (en) Method for degreasing injection molded body
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy