JPH0380869B2 - - Google Patents

Info

Publication number
JPH0380869B2
JPH0380869B2 JP58162797A JP16279783A JPH0380869B2 JP H0380869 B2 JPH0380869 B2 JP H0380869B2 JP 58162797 A JP58162797 A JP 58162797A JP 16279783 A JP16279783 A JP 16279783A JP H0380869 B2 JPH0380869 B2 JP H0380869B2
Authority
JP
Japan
Prior art keywords
parts
paper
deposited
polymer dispersion
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58162797A
Other languages
Japanese (ja)
Other versions
JPS6056063A (en
Inventor
Toshinobu Ogura
Haruyoshi Funae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP16279783A priority Critical patent/JPS6056063A/en
Publication of JPS6056063A publication Critical patent/JPS6056063A/en
Publication of JPH0380869B2 publication Critical patent/JPH0380869B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属蒸着シートに関し、更に詳しくは
光沢性、耐透湿性、さらにはビンラベル等のラベ
ル用紙として用いられた時のアルカリ液洗ビン性
の優れた金属蒸着シートに関するものである。従
来、包装材料、装飾材料あるいはラベル用紙とし
て金属箔貼合紙、特にアルミ箔貼合紙が多く使わ
れている。しかしながら、貼合紙では金属蒸着紙
に比較すると、印刷作業性等不利であつたり、さ
らにビンラベルにおいては、洗ビン機でビンの洗
浄と同時にラベルが短時間に溶解、剥離される必
要があるが貼合紙の場合、洗浄液として用いられ
る濃度3〜7%程度のカセイソーダ液に浸漬され
ると水素ガスが大量に発生するため、作業環境が
著しく悪化し、かつ防災上の危険性も大きかつ
た。一方、紙等の繊維質材料の表面に金属蒸着を
行なつた蒸着シートはこれまで製造はされている
が、繊維質材料のごとき基体に直接金属蒸着を行
なうと平滑性がないため、蒸着面が金属光沢を示
さず、灰色の蒸着面しか得られないことが知られ
ている。 このため、基体表面にサイジング剤あるいはサ
イジング剤を含んだコーテイング剤や接着剤を塗
布して表面の凹凸を埋め、その上に樹脂をコーテ
イングして平滑面を形成させ、真空蒸着を行なう
方法、あるいは水性樹脂分散液を紙に複数回塗布
したのち乾燥し金属の真空蒸着を行なう方法が実
施されているが、これらの方法では表面の金属光
沢性が未だ不十分である上に、生産性の低いこと
や、技術的な困難さから製造コストが高く、従つ
て市場が限定され、あまり普及していなかつた。 従つて、一般に基体表面に溶剤型樹脂液を塗布
し、平滑化した後、金属蒸着を施す方法が行なわ
れているが、この場合溶剤による大気汚染、塗工
業条件の悪化、さらには樹脂液自体が高価格とな
るため、得られた製品は必然的に高価格とならざ
る得なかつた。 本発明の目的は、水性重合体分散液を基体に塗
布乾燥した後、金属の真空蒸着を行なう従来の金
属蒸着シートの欠点を改良し、金属蒸着性、耐透
湿性、表面の金属光沢性、さらにはビンラベル等
のラベル紙として用いられた時のアルカリ液洗ビ
ン性の優れた金属蒸着シートを提供することにあ
る。 本発明のこの目的は、基体の片面または両面に
合成樹脂よりなる下塗り層と金属蒸着層とを順次
積層し、所望により前記金属蒸着層を保護する上
塗り層を更に積層してなる金属蒸着シートにおい
て、前記合成樹脂よりなる下塗り層を、(メタ)
アクリル酸エステル、共役ジエン、芳香族ビニル
化合物および酢酸ビニルからなる群から選ばれた
少なくとも1種の単量体(A)と、これと共重合可能
なビニル化合物を重合させて得られる、下記特性
()、()を有する水性重合体分散液を基体面
に塗布乾燥することにより形成させることにより
達成される。 () 前記水性重合体分散液の最低造膜温度が60
℃以下である。 () 前記重合体のテトラヒドロフランに対する
溶解部分の固有粘度が同溶媒中、温度25℃にお
いて0.15〜0.6dl/gである。 なお、上記(メタ)アクリルとは、アクリルお
よびメタクリルの両者を意味するものとする。本
明細書の以下の記述においても同様である。 本発明の態様によれば、水性重合体分散液の重
合体のテトラヒドロフランに対する溶解部分の固
有粘度は、同溶媒中、温度25℃において0.2〜0.5
dl/gである時に、得られた金属蒸着シートはさ
らに優れた金属光沢性とアルカリ液洗ビン性を示
す。 また、本発明の他の態様によれば(メタ)アク
リル酸エステル、共役ジエン、芳香族ビニル化合
物および酢酸ビニルからなる群から選ばれた少な
くとも1種の単量体(A)とこれと共重合可能なビニ
ル化合物を重合させて得られる水性重合体分散液
において、共重合可能なビニル化合物としてα,
β不飽和カルボン酸を用いた場合には、得られた
金属蒸着シートはさらに優れた金属高光沢性及び
アルカリ液洗ビン性を示す。 また本発明の金属蒸着シートの基体として紙上
に顔料およびバインダーを主体とする層を設けた
塗工紙を用いた場合において特に有用である。 本発明の金属蒸着シートの製造に用いられる水
性重合体分散液を得るための単量体(A)としては
(メタ)アクリル酸エステル(エステル部のアル
キル基の炭素数が1〜12のもの、例えば(メタ)
アクリル酸メチル、(メタ)アクリル酸エチル、
(メタ)アクリル酸プロピル、(メタ)アクリル酸
n−ブチル、(メタ)アクリル酸イソブチル、(メ
タ)アクリル酸アミン、(メタ)アクリル酸イソ
アミル、(メタ)アクリル酸ヘキシル、(メタ)ア
クリル酸2−エチルヘキシル、(メタ)アクリル
酸オクチル、(メタ)アクリル酸ラウリル)、共役
ジエン(例えばブタジエン、イソプレン)、芳香
族ビニル化合物(例えばスチレン、α−メチルス
チレン)および酢酸ビニルからなる群から選ばれ
た少くとも1種が用いられる。 単量体(A)と共重合可能なビニル化合物として、
α,β−不飽和カルボン酸(例えばメタクリル
酸、アクリル酸、マレイン酸、フマル酸、クロト
ン酸、イタコン酸)、(メタ)アクリロニトリル、
(メタ)アクリルアミド、N−メチロール(メタ)
アクリルアミド、(メタ)アクリル酸2−ヒドロ
キシエチル、(メタ)アクリル酸グリシジル、エ
チレングリコールジ(メタ)アクリレート、フタ
ル酸ジアリル、ジビニルベンゼンがあげられる。
この中でα,β−不飽和カルボン酸が好ましく、
中でもメタクリル酸、アクリル酸が特に好まし
い。 前記単量体混合物を用い水性重合体分散液を得
る場合には、例えば単量体混合物100重量部に対
し、水70〜300重量部、乳化剤0.05〜5.0重量部、
重合開始剤0.1〜3.0重量部、連鎖移動剤0〜10.0
重量部を使用し、場合によつてはキレート化剤、
PH調整剤を用いて常法に従い、40〜90℃で1〜10
時間反応させる。ここで乳化剤として陰イオン
性、非イオン性または陰イオン性−非イオン性の
組み合わせで適宜使用され陰イオン性乳化剤とし
て高級アルコール硫酸エステル、アルキルベンゼ
ンスルホン酸ナトリウム、こはく酸ジアルキルエ
ステルスルホン酸ナトリウムが例示され、非イオ
ン性乳化剤としてポリオキシエチレンアルキルエ
ーテル、ポリオキシエチレンアルキルフエノール
エーテルなどが挙げられる。 重合開始剤としては過硫酸塩、過酸化水素など
が例示され、場合によつては還元剤も組み合わせ
ることができる。 連鎖移動剤としては、ハロゲン化炭化水素(例
えば四塩化炭素、クロロホルム)、メルカプタン
類(例えばn−ドデシルメルカプタン、t−ドデ
シルメルカプタン、n−オクチルメルカプタン)、
キサントゲン類(例えばジメチルキサントゲンジ
サルフアイド、ジイソプロピルキサントゲンジサ
ルフアイド)が挙げられる。得られた水性重合体
分散液の粒子径は0.01μ〜1μ、好ましくは0.04μ〜
0.2μが特に好ましい。 本発明における水性重合体分散液の最低造膜温
度は60℃以下、好ましくは50℃以下である必要が
ある。 最低像膜温度(以下MFTという)とは水性重
合体分散液が連続皮膜に形成する最低の温度、言
い換えるとこの温度以上では皮膜ができるが、以
下では皮膜を形成しないと言う臨海温度のことを
言う。 本発明ではMFTは以下の方法で測定した。 日本理学工業社製、熱勾配試験装置を用い、熱
傾斜をつけた鋼板(長さ600mm×幅150mm)の上に
測定試料を塗布厚0.2mmで均一になるように塗布
し、乾燥空気中で乾燥し連続皮膜を形成した最低
の温度を測定し、MFTとした。このMFTが60℃
を越えると水性重合体分散液を塗布した後通常の
乾燥工程で効率よく乾燥しようと思うと、重合体
樹脂が充分に造膜せず、かつ基体表面に存在する
微細な凹凸を埋めることができないため平滑性が
なく、蒸着後の金属質の光沢が失われる。同時に
耐透湿性が劣るためタバコ製品などの包装材とし
て適さなくなる。 さらに本発明における水性重合体分散液は該重
合体のテトラヒドロフランに対する溶解部分の固
有粘度は同溶媒中、温度25℃において0.15〜0.6
dl/g、特に好ましくは0.2〜0.5dl/gである必
要がある。 重合体のテトラヒドロフラン(以下THFとい
う)に対する溶解部分の固有粘度とは水性重合体
分散液をPH7に調整した後、ガラス製シヤーレに
膜厚1mmになるように流し込み、45℃で温度
40RH%の恒温恒湿下に72時間放置する。さらに
皮膜を取り出し、同温度で真空乾燥する。得られ
た乾燥フイルムを切り抜き、0.5gを精秤、100g
のTHFに24時間浸漬振とうする。この後、濾紙
にて濾紙し、重合体の溶解部分を温度50℃の加温
下でTHFを揮散させ、重合体を取り出した後こ
の溶解部分の重合体を再度THFに溶解し、ウベ
ローベ粘度計により温度25℃で常法により固有粘
度を求める。 この固有粘度が0.6dl/gを越えると、金属蒸
着後において十分な金属光沢が得られないばかり
か、ビンラベル等に用いられ、アルカリ液(例え
ば濃度3〜7%程度のカセイソーダ溶液を50〜80
℃に加温したもの)によつて洗ビンされる際のラ
ベルの剥離性(以後アルカリ洗ビン性という)が
劣るようになる。 固有粘度が0.15dl/g未満では、水性重合体分
散液を基体面に塗布乾燥した後、真空蒸着する際
に、蒸着面が白化し艶消しの状態、さらには金属
蒸着シートが基体を紙とした包装材として用いら
れる場合、耐透湿性が劣るため、内容物を保護で
きないといつた不都合を生じる。 本発明の水性重合体分散液には添加剤として所
望により架橋剤を添加しても良い。これは特に上
塗り液あるいはインキに含有される特有の溶剤に
対する耐性を付与する場合において有効である。 架橋剤の例としてメラミン−ホルマリン系樹
脂、尿素系樹脂、グリオキザール系樹脂、ポリア
ミド系樹脂、エポキシ系化合物、無機金属錯体
系、アジリジン系化合物があげられる。 特に好ましい架橋剤としてエポキシ系化合物
(例えば、グリセロールポリグリシジルエーテ
ル)、無機金属錯体系(例えば、ジルコニウム炭
酸アンモン錯塩)、アジリジン系化合物(例れば、
ジエチレンウレア、4,4−ジアミノジフエニル
メタン)があげられ、これらの添加量として重合
体の固形分換算で0.1〜5重量%が好ましい。0.1
重量%未満では充分な架橋効果が発現できないた
め金属蒸着層上に上塗り層を形成させる場合にお
いて、溶剤系、特にアルコール系の溶剤を含有す
る樹脂液を上塗り液(以下プライマーという)と
して用いた場合、溶剤が下塗り層まで浸透し、樹
脂を膨潤させたり溶解させる結果、光沢を失なわ
せる。5重量%を越えると、添加される水性重合
体分散液が不安定となり、増粘もしくはゲル化を
起こし、基体への塗工が困難となる。 さらに他の添加剤としてレベリング剤(例えば
酸価100以上のスチレン−無水マレイン酸共重合
樹脂、酸価150以上のロジン変性ポリエステル樹
脂)、増粘剤(例えばポリアクリル酸ソーダ、メ
チルセルロース)、消泡剤を添加し得る。 またコストダウンなどを目的として、本発明の
水性重合体分散液と相溶性のあるポリエチレン、
ポリエチレン/酢酸ビニル、ポピ塩化ビニル、ポ
リ塩化ビニリデン等の公知のエマルジヨンを本発
明の目的とする特性が阻害されない範囲で混合す
る事もできる。 本発明でいう基体とは、ごく一般的なアート紙
の如き塗工紙、不織布、トレーシングペーパー、
グラシン紙、コンデンサーペーパー等の薄紙およ
び一般に紙シート、更には合成紙などである。 一般に金属蒸着層表面には空気中の水分、酸素
等による酸化を防止するためプライマー層を設け
るのが好ましいが、金属蒸着表面に印刷を施す場
合にはプライマー層の設置は必須となる。 被覆層の形成のために水性重合体分散液を基体
に塗布する方法はロールコーター法、エアナイフ
法、ブレードコーター法、ゲートロールサイズプ
レス法、インクラインドサイズプレス法等が用い
られ、塗布量は0.5〜10g/m2、好ましくは2〜
5g/m2である。塗布後の乾燥温度は70℃〜180
℃、好ましくは100℃〜150℃である。 金属蒸着する金属としてはアルミニウム、亜
鉛、銀、金、鉛、銅があげられる。好ましくはア
ルミニウム、亜鉛が用いられる。 蒸着層の厚さは200〜1000Å、好ましくは300〜
700Åである。 以下に本発明の実施例を記述する。なお以下に
示した部または%は重量部または重量%を示す。 実施例 1 試料No.1の作製 還流冷却器、撹拌機、温度計及び単量体添加ポ
ンプを備えてなるフラスコ反応器に加熱器及び窒
素ガス導入装置を取りつけ、当該フラスコ反応器
に水100.0部、乳化剤としてドデシルベンゼンス
ルホン酸ナトリウム0.5部、アクリル酸2−エチ
ルヘキシル5.0部、スチレン4.5部、アクリル酸0.5
部、重合開始剤として過硫酸カリウム0.2部、連
鎖移動剤としてn−ドデシルメルカプタン0.02部
を加え、気相部を窒素ガスで15分間置換した後、
反応器の内温を60℃に昇温し、1時間反応させた
(以下この段階までの反応を第1段と言う)。この
後、別容器に水100.0部、乳化剤ドデシルベンゼ
ンスルホン酸ナトリウム0.5部、ポリオキシエチ
レンノニルフエニルエーテル(日本乳化剤(株)
Newcol509)0.3部を加えた後これらを溶解した
溶液にアクリル酸2−エチルヘキシル45.0部、メ
タクリル酸メチル22.0部、アクリル酸3.0部、ス
チレン20.0部、n−ドデシルメルカプタン0.2部
を添加し、撹拌機で激しく撹拌してモノマーを乳
化した後、モノマー相が分離しない程度に撹拌し
ながら乳化されたモノマーを2時間にわたつて連
続的に滴下した。 乳化されたモノマーの添加後、さらに水5.0部
に過硫酸カリウム0.05部を溶解した溶液を添加
し、70℃で2時間熟成した後、冷却した(以下こ
の段階の反応を第2段と言う)。 その後、アンモニア溶液にてPH7に調整した
後、120メツシユの金網にて濾過した。得られた
重合体分散液を試料No.1とした。 この重合体分散液のMFTは3℃、THFに対す
る溶解部分の固有粘度は0.23dl/gであつた。 以下同様の方法にて単量体の種類及び量、連鎖
移動剤の量を変えて試料No.2〜5を得た。 試料No.6の調製 還流冷却器、撹拌機、温度計及び単量体添加ポ
ンプを備えてなるフラスコ反応器に加熱器及び窒
素ガス導入装置を取りつけ、当該フラスコ反応器
に水80.0部、乳化剤としてスルホコハク酸モノエ
ステルジナトリウム(サイアナミツド社;A−
102)3.0部、ポリオキシエチレンノニルフエニル
エーテル(花王アトラス(株);エマルゲン985)0.5
部、過硫酸カリウム0.3部、炭酸水素ナトリウム
0.1部、酢酸ビニル5.0部、クロトン酸1.0部、アク
リル酸2−エチルヘキシル4.0部、連鎖移動剤n
−ドデシルメルカプタン0.03部を加え、気相部を
窒素ガスで15分間置換した後、65〜70℃で30分間
反応させた(第1段の反応)。 その後、容器に水70.0部、乳化剤スルホコハク
酸モノエステルジナトリウム(サイアナミツト
社;A−102)2.0部、ポリオキシエチレンノニル
フエニルエーテル(花王アトラス(株);エマルゲン
985)1.0部、アクリル酸2−エチルヘキシル32.0
部、酢酸ビニル54.0部、クロトン酸4.0部、n−
ドデシルメルカプタン0.04部を添加し、撹拌機で
乳化したのち、所要時間3時間にわたつて連続的
に滴下した。 添加終了時に、水5.0部に過硫酸カリウム0.05
部溶解した溶液を添加し、75℃で2時間熟成した
後冷却した(第2段の反応)。 その後、アンモニア溶液にPH7に調整した後
120メツシユの金網にて濾過した。得られた重合
体分散液を試料No.6とした。 この重合体分散液のMFTは0℃、THFに対す
る溶解部分の固有粘度は0.41dl/gであつた。 以下、同様の方法にて、連鎖移動剤の量を変え
て試料No.7及び8を得た。 試料No.9の調製 撹拌機、温度計、温度制御装置及び単量体添加
ポンプを備えてなる耐圧反応容器に、水150部、
乳化剤としてドデシルベンゼンスルホン酸ナトリ
ウム0.8部、ブタジエン5.0部、スチレン5.0部、メ
タクリル酸2.0部、重合開始剤として過硫酸ナト
リウム0.5部、還元剤として亜硫酸水素ナトリウ
ム0.15部、連鎖移動剤としてt−ドデシルメルカ
プタン0.2部を加え、60℃に昇温し、2時間反応
させた(第1段の反応)。 その後、撹拌機つき耐圧容器中でブタジエン
20.0部、スチレン65.0部、メタクリル酸3.0部、t
−ドデシルメルカプタン0.3部の混合物を作製し、
所要時間10時間で連続添加した。 添加終了時に、過硫酸ナトリウム0.1部を水
10.0部に溶解した溶液を添加し、65℃で3時間熟
成した後冷却した(第2段の反応)。 次いで、水酸化カリウム溶液でPH5に調整し、
減圧下に水蒸気を導入し未反応モノマーを除去し
た後、アンモニア溶液にてPH7に再調整し、120
メツシユ金網で濾過した。得られた重合体分散液
のMFTは32℃であり、THFに対する溶解部分の
固有粘度は0.31dl/gであつた。 以下、同様の方法にて単量体の種類及び量、連
鎖移動剤の量を変えて試料No.10〜12を得た。 次にPHを調整した水性重合体分散液の試料No.1
〜12を64g/m2なる片面塗工紙にエアーナイフコ
ーターにて3g/m2になるように塗工乾燥した。 その後、10-4mmHgに調整した真空蒸着装置内
においてアルミニウム層を約500Åの厚さになる
ように真空蒸着させ、表面の状態(アルミ蒸着
性)を観察した。しかる後、蒸着層保護の為、塩
酢ビ系プライマー(大日精化K.K製AC−2400)
を各々グラビアコーターにて塗設した。 得られた蒸着紙の光沢、アルカリ洗ビン性、透
湿度を測定した。この結果を表−1示した。 アルミ蒸着性:真空蒸着後の表面状態を視感で判
定した。 ◎:蒸着面の目視光沢が非常に優れる ○:蒸着面の目視光沢が優れる △:蒸着面がやや白化 ×:蒸着面が白化し艶消し状態 光沢:プライマー層を設けた蒸着紙の光沢値を日
理株式会社製のグロスメータ(タイプVG−
1D)を使用し、投光角および受光角、それぞ
れ45°で測定した。 アルカリ洗ビン性:蒸着を施した紙を澱粉糊でガ
ラス板に貼り、乾燥後、70℃、4%カセイソー
ダ水溶液中で回転(1rpm)させ蒸着紙が剥れ
落ちるまでの所要時間で判定した。◎:5分以
内、○:15分以内、×:15分以上 透湿度:JIS Z0208により測定した(雰囲気条件
温度40℃、湿度90%RH)。 比較例 塗工紙に塗工する重合体分散液の組成を変えた
以外は比較例試料No.1〜3では実施例試料No.1と
同様に、比較例試料No.4、5では実施例試料No.6
と同様に、比較例試料No.6、7では実施例試料No.
9と同様の操作で比較例試料を作製した。なお、
比較例試料はMFTまたは固有粘度のいずれかに
おいて、本発明の限定範囲に含まれないものであ
る。これら比較例試料は実施例試料と同一の条件
で金属蒸着を施こし、蒸着紙としての性能を測定
した。 この結果を表−2に示した。
The present invention relates to a metal vapor-deposited sheet, and more particularly to a metal vapor-deposited sheet that has excellent gloss, moisture permeability, and is excellent in alkaline solution bottle washability when used as label paper for bottle labels and the like. Conventionally, metal foil laminated paper, especially aluminum foil laminated paper, has been widely used as packaging material, decorative material, or label paper. However, compared to metallized paper, laminated paper has disadvantages in terms of printing workability, and bottle labels require the label to be dissolved and peeled off in a short time at the same time as the bottle is washed in a bottle washing machine. In the case of laminated paper, when it is immersed in a caustic soda solution with a concentration of about 3 to 7%, which is used as a cleaning solution, a large amount of hydrogen gas is generated, which significantly deteriorates the working environment and poses a great danger in terms of disaster prevention. . On the other hand, although vapor-deposited sheets have been manufactured by vapor-depositing metals on the surface of fibrous materials such as paper, the vapor-deposited surface lacks smoothness when metals are vapor-deposited directly onto a substrate such as a fibrous material. It is known that the metal does not exhibit metallic luster and only a gray deposited surface can be obtained. For this reason, there are two methods: applying a sizing agent or a coating agent or adhesive containing a sizing agent to the surface of the substrate to fill in the irregularities on the surface, coating the surface with a resin to form a smooth surface, and then performing vacuum evaporation. Methods have been implemented in which an aqueous resin dispersion is applied to paper multiple times and then dried to perform vacuum vapor deposition of metal, but these methods still have insufficient metallic luster on the surface and have low productivity. In addition, the manufacturing cost was high due to technical difficulties, and the market was therefore limited, so it was not widely used. Therefore, a method is generally used in which a solvent-based resin liquid is applied to the surface of the substrate, smoothed, and then metal evaporated. However, in this case, the solvent causes air pollution, deterioration of coating industry conditions, and even the resin liquid itself. Because of the high price of the product, the resulting product inevitably had to be expensive. The purpose of the present invention is to improve the shortcomings of conventional metallized sheets in which a metal is vacuum-deposited after applying and drying an aqueous polymer dispersion to a substrate, and to improve metallization properties, moisture permeability, surface metallic luster, Another object of the present invention is to provide a metal-deposited sheet that has excellent alkaline solution bottle-washability when used as label paper for bottle labels and the like. This object of the present invention is to provide a metal vapor-deposited sheet in which an undercoat layer made of a synthetic resin and a metal vapor-deposited layer are sequentially laminated on one or both sides of a substrate, and if desired, an overcoat layer for protecting the metal vapor-deposited layer is further laminated. , the undercoat layer made of the synthetic resin is (meta)
The following properties obtained by polymerizing at least one monomer (A) selected from the group consisting of acrylic esters, conjugated dienes, aromatic vinyl compounds, and vinyl acetate, and a vinyl compound copolymerizable with the monomer (A). This is achieved by applying and drying an aqueous polymer dispersion having () and () on the substrate surface. () The minimum film forming temperature of the aqueous polymer dispersion is 60
below ℃. () The intrinsic viscosity of the portion of the polymer dissolved in tetrahydrofuran is 0.15 to 0.6 dl/g in the same solvent at a temperature of 25°C. In addition, the above-mentioned (meth)acrylic shall mean both acrylic and methacryl. The same applies to the following descriptions of this specification. According to an aspect of the present invention, the intrinsic viscosity of the dissolved portion of the polymer in tetrahydrofuran of the aqueous polymer dispersion is 0.2 to 0.5 at a temperature of 25° C. in the same solvent.
dl/g, the obtained metallized sheet exhibits even better metallic luster and alkaline solution bottle washability. According to another aspect of the present invention, at least one monomer (A) selected from the group consisting of (meth)acrylic acid ester, conjugated diene, aromatic vinyl compound, and vinyl acetate is copolymerized with the monomer (A). In the aqueous polymer dispersion obtained by polymerizing vinyl compounds that can be copolymerized, α,
When a β-unsaturated carboxylic acid is used, the metal-deposited sheet obtained exhibits even more excellent metallic high gloss and alkaline solution bottle washability. Further, it is particularly useful when coated paper, in which a layer mainly consisting of a pigment and a binder is provided on paper, is used as the substrate of the metallized sheet of the present invention. The monomer (A) for obtaining the aqueous polymer dispersion used in the production of the metal-deposited sheet of the present invention includes (meth)acrylic esters (those in which the alkyl group in the ester moiety has 1 to 12 carbon atoms, For example (meta)
Methyl acrylate, ethyl (meth)acrylate,
(meth)propyl acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, amine (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate, (meth)acrylic acid 2 - selected from the group consisting of ethylhexyl, octyl (meth)acrylate, lauryl (meth)acrylate), conjugated dienes (e.g. butadiene, isoprene), aromatic vinyl compounds (e.g. styrene, α-methylstyrene) and vinyl acetate. At least one type is used. As a vinyl compound copolymerizable with monomer (A),
α,β-unsaturated carboxylic acids (e.g. methacrylic acid, acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid), (meth)acrylonitrile,
(meth)acrylamide, N-methylol (meth)
Examples include acrylamide, 2-hydroxyethyl (meth)acrylate, glycidyl (meth)acrylate, ethylene glycol di(meth)acrylate, diallyl phthalate, and divinylbenzene.
Among these, α,β-unsaturated carboxylic acids are preferred;
Among them, methacrylic acid and acrylic acid are particularly preferred. When obtaining an aqueous polymer dispersion using the monomer mixture, for example, 70 to 300 parts by weight of water, 0.05 to 5.0 parts by weight of an emulsifier, and 100 parts by weight of the monomer mixture.
Polymerization initiator 0.1-3.0 parts by weight, chain transfer agent 0-10.0
Parts by weight, optionally chelating agent,
1 to 10 at 40 to 90℃ using a PH adjuster according to the usual method.
Allow time to react. Here, anionic, nonionic, or anionic-nonionic combinations are appropriately used as emulsifiers, and examples of anionic emulsifiers include higher alcohol sulfates, sodium alkylbenzene sulfonates, and sodium dialkyl succinate sulfonates. Examples of nonionic emulsifiers include polyoxyethylene alkyl ether and polyoxyethylene alkyl phenol ether. Examples of the polymerization initiator include persulfates and hydrogen peroxide, and depending on the case, a reducing agent may also be used in combination. Chain transfer agents include halogenated hydrocarbons (e.g. carbon tetrachloride, chloroform), mercaptans (e.g. n-dodecylmercaptan, t-dodecylmercaptan, n-octylmercaptan),
Xanthogens (eg dimethylxanthogen disulfide, diisopropylxanthogen disulfide) are mentioned. The particle size of the obtained aqueous polymer dispersion is 0.01μ to 1μ, preferably 0.04μ to
0.2μ is particularly preferred. The minimum film forming temperature of the aqueous polymer dispersion in the present invention needs to be 60°C or lower, preferably 50°C or lower. Minimum image film temperature (hereinafter referred to as MFT) is the lowest temperature at which an aqueous polymer dispersion forms a continuous film, or in other words, the critical temperature at which a film forms above this temperature but does not form below this temperature. To tell. In the present invention, MFT was measured by the following method. Using a thermal gradient testing device manufactured by Nippon Rigaku Kogyo Co., Ltd., the measurement sample was applied onto a thermally sloped steel plate (length 600 mm x width 150 mm) to a uniform coating thickness of 0.2 mm, and the sample was coated in dry air. The lowest temperature at which a continuous film was formed after drying was measured and defined as MFT. This MFT is 60℃
If the water-based polymer dispersion is applied and then dried efficiently using a normal drying process, the polymer resin will not form a sufficient film and will not be able to fill in the fine irregularities that exist on the substrate surface. Therefore, it lacks smoothness and loses its metallic luster after vapor deposition. At the same time, it has poor moisture permeability, making it unsuitable as a packaging material for tobacco products, etc. Further, in the aqueous polymer dispersion of the present invention, the intrinsic viscosity of the dissolved portion of the polymer in tetrahydrofuran is 0.15 to 0.6 at a temperature of 25°C in the same solvent.
dl/g, particularly preferably 0.2 to 0.5 dl/g. What is the intrinsic viscosity of the dissolved portion of a polymer in tetrahydrofuran (hereinafter referred to as THF)? After adjusting the aqueous polymer dispersion to pH 7, pour it into a glass shear dish to a film thickness of 1 mm, and heat it at 45℃.
Leave it under constant temperature and humidity of 40RH% for 72 hours. Furthermore, the film was taken out and vacuum dried at the same temperature. Cut out the obtained dry film, accurately weigh 0.5g, and weigh 100g.
Soak in THF for 24 hr with shaking. After this, the dissolved part of the polymer was filtered with filter paper, the THF was volatilized under heating at 50°C, the polymer was taken out, the polymer in the dissolved part was dissolved in THF again, and the polymer was measured using an Ubbelobe viscometer. Determine the intrinsic viscosity using the usual method at a temperature of 25°C. If this intrinsic viscosity exceeds 0.6 dl/g, not only will sufficient metallic luster not be obtained after metal vapor deposition, but it will also be used for bottle labels, etc.
The removability of the label (hereinafter referred to as alkaline bottle washing properties) becomes poor when the bottle is washed with a bottle heated to 10°C. If the intrinsic viscosity is less than 0.15 dl/g, when the aqueous polymer dispersion is applied to the substrate surface, dried, and then vacuum evaporated, the evaporated surface becomes white and matte, and the metal-deposited sheet may become similar to paper. When used as a packaging material, it has poor moisture permeability, resulting in the inconvenience of not being able to protect the contents. If desired, a crosslinking agent may be added as an additive to the aqueous polymer dispersion of the present invention. This is particularly effective in imparting resistance to specific solvents contained in topcoat liquids or inks. Examples of crosslinking agents include melamine-formalin resins, urea resins, glyoxal resins, polyamide resins, epoxy compounds, inorganic metal complexes, and aziridine compounds. Particularly preferred crosslinking agents include epoxy compounds (e.g. glycerol polyglycidyl ether), inorganic metal complexes (e.g. zirconium ammonium carbonate complex), aziridine compounds (e.g.
(diethylene urea, 4,4-diaminodiphenylmethane), and the amount added thereof is preferably 0.1 to 5% by weight based on the solid content of the polymer. 0.1
If the crosslinking effect is less than % by weight, a sufficient crosslinking effect cannot be expressed, so when forming an overcoat layer on a metal vapor deposited layer, when a resin liquid containing a solvent-based solvent, especially an alcohol-based solvent, is used as an overcoat liquid (hereinafter referred to as primer). , the solvent penetrates into the undercoat layer and swells or dissolves the resin, causing it to lose its luster. If it exceeds 5% by weight, the aqueous polymer dispersion added becomes unstable, thickens or gels, and becomes difficult to coat onto a substrate. Furthermore, other additives include leveling agents (e.g., styrene-maleic anhydride copolymer resin with an acid value of 100 or more, rosin-modified polyester resin with an acid value of 150 or more), thickeners (e.g., sodium polyacrylate, methyl cellulose), and antifoaming agents. agents may be added. In addition, for the purpose of cost reduction, etc., polyethylene, which is compatible with the aqueous polymer dispersion of the present invention,
Known emulsions such as polyethylene/vinyl acetate, polyvinyl chloride, polyvinylidene chloride, etc. can also be mixed as long as the properties targeted by the present invention are not impaired. In the present invention, the substrate refers to coated paper such as ordinary art paper, nonwoven fabric, tracing paper,
These include thin papers such as glassine paper and condenser paper, and generally paper sheets, as well as synthetic papers. Generally, it is preferable to provide a primer layer on the surface of the metal vapor deposited layer in order to prevent oxidation due to moisture, oxygen, etc. in the air, but when printing is performed on the metal vapor deposited surface, providing the primer layer is essential. Roll coater method, air knife method, blade coater method, gate roll size press method, inclined size press method, etc. are used to apply the aqueous polymer dispersion to the substrate to form the coating layer, and the coating amount is 0.5. ~10g/ m2 , preferably 2~
It is 5g/ m2 . Drying temperature after application is 70℃~180℃
℃, preferably 100℃ to 150℃. Examples of metals to be vapor-deposited include aluminum, zinc, silver, gold, lead, and copper. Aluminum and zinc are preferably used. The thickness of the deposited layer is 200~1000Å, preferably 300~
It is 700Å. Examples of the present invention will be described below. Note that parts or percentages shown below indicate parts by weight or percentages by weight. Example 1 Preparation of Sample No. 1 A heater and a nitrogen gas introduction device were attached to a flask reactor equipped with a reflux condenser, a stirrer, a thermometer, and a monomer addition pump, and 100.0 parts of water was added to the flask reactor. , 0.5 parts of sodium dodecylbenzenesulfonate as emulsifiers, 5.0 parts of 2-ethylhexyl acrylate, 4.5 parts of styrene, 0.5 parts of acrylic acid.
After adding 0.2 parts of potassium persulfate as a polymerization initiator and 0.02 parts of n-dodecyl mercaptan as a chain transfer agent, and replacing the gas phase with nitrogen gas for 15 minutes,
The internal temperature of the reactor was raised to 60°C, and the reaction was carried out for 1 hour (hereinafter, the reaction up to this stage will be referred to as the first stage). After this, in a separate container, add 100.0 parts of water, 0.5 part of emulsifier sodium dodecylbenzenesulfonate, and polyoxyethylene nonyl phenyl ether (Nippon Nyukazai Co., Ltd.).
After adding 0.3 parts of Newcol509), 45.0 parts of 2-ethylhexyl acrylate, 22.0 parts of methyl methacrylate, 3.0 parts of acrylic acid, 20.0 parts of styrene, and 0.2 parts of n-dodecylmercaptan were added to the solution, and the mixture was stirred with a stirrer. After emulsifying the monomer by stirring vigorously, the emulsified monomer was continuously added dropwise over 2 hours while stirring to such an extent that the monomer phase did not separate. After adding the emulsified monomer, a solution of 0.05 parts of potassium persulfate dissolved in 5.0 parts of water was further added, and the mixture was aged at 70°C for 2 hours, and then cooled (hereinafter, this stage of the reaction is referred to as the second stage). . Thereafter, the pH was adjusted to 7 with an ammonia solution, and then filtered through a 120-mesh wire mesh. The obtained polymer dispersion was designated as sample No. 1. The MFT of this polymer dispersion was 3°C, and the intrinsic viscosity of the dissolved portion in THF was 0.23 dl/g. Samples Nos. 2 to 5 were obtained in the same manner by changing the type and amount of monomer and the amount of chain transfer agent. Preparation of Sample No. 6 A flask reactor equipped with a reflux condenser, a stirrer, a thermometer, and a monomer addition pump was equipped with a heater and a nitrogen gas introduction device, and 80.0 parts of water and as an emulsifier were added to the flask reactor. Disodium sulfosuccinate monoester (Cyanamid Co., Ltd.; A-
102) 3.0 parts, polyoxyethylene nonyl phenyl ether (Kao Atlas Co., Ltd.; Emulgen 985) 0.5
parts, potassium persulfate 0.3 parts, sodium bicarbonate
0.1 part, vinyl acetate 5.0 parts, crotonic acid 1.0 parts, 2-ethylhexyl acrylate 4.0 parts, chain transfer agent n
-0.03 part of dodecyl mercaptan was added, and the gas phase was replaced with nitrogen gas for 15 minutes, followed by a reaction at 65 to 70°C for 30 minutes (first stage reaction). Thereafter, in a container, 70.0 parts of water, 2.0 parts of emulsifier disodium sulfosuccinate monoester (Cyanamitsu Co., Ltd.; A-102), and polyoxyethylene nonyl phenyl ether (Kao Atlas Co., Ltd.; Emulgen) were added.
985) 1.0 part, 2-ethylhexyl acrylate 32.0
parts, vinyl acetate 54.0 parts, crotonic acid 4.0 parts, n-
After adding 0.04 part of dodecyl mercaptan and emulsifying it with a stirrer, it was continuously added dropwise over the required time of 3 hours. At the end of the addition, add 0.05 parts of potassium persulfate to 5.0 parts of water.
A partially dissolved solution was added, aged at 75°C for 2 hours, and then cooled (second stage reaction). Then, after adjusting the pH to 7 in ammonia solution
It was filtered through a 120 mesh wire mesh. The obtained polymer dispersion was designated as sample No. 6. The MFT of this polymer dispersion was 0°C, and the intrinsic viscosity of the dissolved portion in THF was 0.41 dl/g. Samples No. 7 and 8 were obtained in the same manner by changing the amount of chain transfer agent. Preparation of Sample No. 9 150 parts of water, 150 parts of water,
Sodium dodecylbenzenesulfonate 0.8 part as emulsifier, butadiene 5.0 parts, styrene 5.0 parts, methacrylic acid 2.0 parts, polymerization initiator sodium persulfate 0.5 part, reducing agent sodium bisulfite 0.15 parts, chain transfer agent t-dodecyl mercaptan. 0.2 part was added, the temperature was raised to 60°C, and the mixture was reacted for 2 hours (first stage reaction). Then, the butadiene was added in a pressure vessel with a stirrer.
20.0 parts, styrene 65.0 parts, methacrylic acid 3.0 parts, t
- prepare a mixture of 0.3 parts of dodecyl mercaptan;
Continuous addition was carried out over a required time of 10 hours. At the end of the addition, add 0.1 part of sodium persulfate to water.
A solution dissolved in 10.0 parts was added, and the mixture was aged at 65°C for 3 hours and then cooled (second stage reaction). Then, adjust the pH to 5 with potassium hydroxide solution,
After introducing steam under reduced pressure to remove unreacted monomers, the pH was readjusted to 7 with an ammonia solution, and the pH was adjusted to 120.
It was filtered through mesh wire mesh. The MFT of the obtained polymer dispersion was 32°C, and the intrinsic viscosity of the dissolved portion in THF was 0.31 dl/g. Samples Nos. 10 to 12 were obtained in the same manner by changing the type and amount of monomer and the amount of chain transfer agent. Next, sample No. 1 of the aqueous polymer dispersion with adjusted pH.
-12 was coated on a single-sided coated paper of 64 g/m 2 using an air knife coater to a density of 3 g/m 2 and dried. Thereafter, an aluminum layer was vacuum-deposited to a thickness of about 500 Å in a vacuum evaporation apparatus adjusted to 10 -4 mmHg, and the surface condition (aluminum deposition properties) was observed. After that, to protect the deposited layer, apply a salt-vinyl acetate primer (AC-2400 manufactured by Dainichiseika KK).
Each was coated using a gravure coater. The gloss, alkaline bottle washability, and moisture permeability of the obtained vapor-deposited paper were measured. The results are shown in Table-1. Aluminum deposition property: The surface condition after vacuum deposition was visually judged. ◎: The visual gloss of the vapor deposited surface is very good. ○: The visual gloss of the vapor deposited surface is excellent. △: The vapor deposited surface is slightly white. ×: The vapor deposited surface is white and matte. Gloss: The gloss value of the vapor deposited paper with a primer layer is Gloss meter (type VG-) manufactured by Nichiri Co., Ltd.
1D), and the emission and reception angles were each 45°. Alkaline bottle washability: Evaporated paper was pasted on a glass plate with starch glue, dried, and then rotated (1 rpm) in a 4% caustic soda aqueous solution at 70°C, and judged based on the time required for the vapor-deposited paper to peel off. ◎: within 5 minutes, ○: within 15 minutes, ×: 15 minutes or more Moisture permeability: Measured according to JIS Z0208 (atmospheric conditions: temperature 40°C, humidity 90%RH). Comparative Example Comparative Example Samples Nos. 1 to 3 were the same as Example Sample No. 1 except that the composition of the polymer dispersion applied to the coated paper was changed, and Comparative Example Samples No. 4 and 5 were the same as Example Sample No. 1. Sample No.6
Similarly, Comparative Example Sample No. 6 and 7 are Example Sample No.
A comparative sample was prepared in the same manner as in Example 9. In addition,
The comparative samples are not included in the limited range of the present invention in either MFT or intrinsic viscosity. These comparative samples were subjected to metal vapor deposition under the same conditions as the example samples, and their performance as vapor-deposited paper was measured. The results are shown in Table-2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【特許請求の範囲】[Claims]

1 真空のイオン注入室内にウエハその他のワー
クを設置し、その前面にイオンビームを照射して
イオン注入処理を施すようにしたものに於て、該
イオン注入室の側方に該イオン注入室と仕切弁を
介して連通し且つ真空圧と大気圧とに制御可能な
ロードロツク室を設け、その内部に、ワークを取
付けた板状のワークホルダを着脱自在に保持し且
つ該仕切弁を介してイオン注入室内へと往復搬送
するワークホルダ搬送装置と、該ワークホルダの
前方からワークを加熱する輻射加熱装置と、該ワ
ークホルダの背面に接離自在のワーク冷却装置並
びに該ワークをワークホルダとの間に密封する蓋
体を着脱自在に保持し且つ該ワークホルダへ該蓋
体を接離すべく移動自在の蓋体移動装置を設け、
更に該ワークホルダ搬送装置の先端をワーク及び
ワークホルダの交換のために側方へ屈曲自在に構
1. When a wafer or other workpiece is placed in a vacuum ion implantation chamber and the front surface of the workpiece is irradiated with an ion beam to perform ion implantation processing, the ion implantation chamber and the ion implantation chamber are placed on the side of the ion implantation chamber. A load lock chamber is provided that communicates through a gate valve and can control vacuum pressure and atmospheric pressure.A plate-shaped work holder with a workpiece attached thereto is removably held inside the chamber, and ions are supplied through the gate valve. A work holder transport device that reciprocates into the injection chamber, a radiant heating device that heats the work from the front of the work holder, a work cooling device that can freely approach and separate from the back of the work holder, and a device that connects the work to the work holder. A lid moving device is provided that removably holds a lid for sealing the work holder and is movable to move the lid toward and away from the work holder;
Furthermore, the tip of the work holder transfer device is configured to be able to be bent laterally for exchanging the work and the work holder.

Claims (1)

4 基体が紙上に顔料およびバインダーを主体と
する層を設けた塗工紙である特許請求の範囲第1
項記載の金属蒸着シート。
4. Claim 1, wherein the substrate is coated paper with a layer mainly composed of pigment and binder on paper.
Metal vapor-deposited sheet as described in section.
JP16279783A 1983-09-05 1983-09-05 Metallic vapor-deposited sheet Granted JPS6056063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16279783A JPS6056063A (en) 1983-09-05 1983-09-05 Metallic vapor-deposited sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16279783A JPS6056063A (en) 1983-09-05 1983-09-05 Metallic vapor-deposited sheet

Publications (2)

Publication Number Publication Date
JPS6056063A JPS6056063A (en) 1985-04-01
JPH0380869B2 true JPH0380869B2 (en) 1991-12-26

Family

ID=15761389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16279783A Granted JPS6056063A (en) 1983-09-05 1983-09-05 Metallic vapor-deposited sheet

Country Status (1)

Country Link
JP (1) JPS6056063A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363221A (en) * 2001-06-06 2002-12-18 Mitsubishi Rayon Co Ltd Vinylic polymer for metallized paper and metallized paper for label using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58520U (en) * 1981-06-26 1983-01-05 株式会社日立製作所 Input filter for modulating DC amplifier
JPS6421329U (en) * 1987-07-28 1989-02-02

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171935U (en) * 1983-05-02 1984-11-16 凸版印刷株式会社 label

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58520U (en) * 1981-06-26 1983-01-05 株式会社日立製作所 Input filter for modulating DC amplifier
JPS6421329U (en) * 1987-07-28 1989-02-02

Also Published As

Publication number Publication date
JPS6056063A (en) 1985-04-01

Similar Documents

Publication Publication Date Title
CN103547450B (en) There is paper and the cardboard packaging of polymeric blends barrier coat
JP2008513617A (en) Method for producing a substrate coated in one or more layers with a coating liquid composition containing a binder for adhesion
JP2792165B2 (en) Method for producing copolymer latex
JPS6183397A (en) Aqueous under coat agent containing no surfactant for paper to be covered with metal and its use
JPH0380869B2 (en)
US20080255301A1 (en) Low-Blister Paper Coating Slips
JPH05163308A (en) Production of copolymer latex
JPH0726495A (en) Method for production paper board and paper board obtained by this method
JPS6223112B2 (en)
JPH0149621B2 (en)
JP2744649B2 (en) Copolymer latex, coated paper and carpet using the same
JP4033531B2 (en) Latex composition for paper coating and method for producing the same
JP2005256235A (en) Composition for coating paper and coated paper
JPH11508968A (en) Use of paper coatings with high butadiene content for gravure printing
JP2001192997A (en) Method of producing binder for offset printing paper coating
JPH025574B2 (en)
JP2965611B2 (en) Method for producing copolymer latex
JP4454073B2 (en) Latex composition for release paper undercoat
JP3788553B2 (en) Paper coating composition and coated paper
JPH11507999A (en) Use of paper coatings with high butadiene content in offset printing
JP2849451B2 (en) Production method of new copolymer latex
JPH06279552A (en) Production of copolymer latex for paper coating
JP3620616B2 (en) Undercoat agent for release paper
JPH0912966A (en) Undercoating for release paper
JPH05239113A (en) Production of copolymer latex