JPH0380866B2 - - Google Patents

Info

Publication number
JPH0380866B2
JPH0380866B2 JP59023702A JP2370284A JPH0380866B2 JP H0380866 B2 JPH0380866 B2 JP H0380866B2 JP 59023702 A JP59023702 A JP 59023702A JP 2370284 A JP2370284 A JP 2370284A JP H0380866 B2 JPH0380866 B2 JP H0380866B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
steel
yield strength
strength
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59023702A
Other languages
Japanese (ja)
Other versions
JPS60165365A (en
Inventor
Kazuo Fujiwara
Yasushi Torii
Kojiro Kitahata
Takeshi Inoe
Tadamasa Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2370284A priority Critical patent/JPS60165365A/en
Priority to US06/786,960 priority patent/US4689198A/en
Priority to PCT/JP1985/000051 priority patent/WO1985003528A1/en
Publication of JPS60165365A publication Critical patent/JPS60165365A/en
Publication of JPH0380866B2 publication Critical patent/JPH0380866B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸性環境下で耐食性にすぐれた高強度
オーステナイト系ステンレス鋼に関する。 近年、石油資源の涸渇化が問題視されるに至つ
ており、これを背景としてエネルギー資源の拡大
と安定確保を図るために、海上においては海底油
田の開発が進められており、また、陸上において
も従来は放置されてきた硫化水素や炭酸ガス等の
酸性ガスを含有する所謂サワーガスやサワーオイ
ルが採掘されるに至つている。このようなエネル
ギー資源の生産に関連する材料や装置は、塩化物
や酸性ガスとの接触が避けられず、従つて、この
ような分野での材料や装置に使用される鋼材料に
は先ず耐食性が要求され、更には深井戸化に伴つ
て強度要求が厳しさを増しつつあり、また、寒冷
地での使用には低温靭性も要求されることとな
る。 このような要求に応え得る材料としてはNi基
合金、Ti基合金、Co基合金等が知られているが、
これらの合金は従来の通常の底合金鋼に比べて余
りにも高価である。また、比較的底廉な材料とし
て、例えば、従来よりオーステナイト系ステンレ
ス鋼が知られているが、現在では耐食性−強度バ
ランスに劣り、特に、引張強さは大きいが、耐力
が十分ではない。一般に構造材料の強度計算の場
合、引張強さよりも耐力を基準とすることが多い
ため、耐力が低いと部材の大型化を招き、コスト
的にも好ましくない。 一般に鋼の耐力を向上させるための方法とし
て、CやNによる固溶強化のほか、析出強化、加
工強化等が知られているが、析出強化及び加工強
化は耐食性に悪影響を及ぼし、一方、C量を多く
すると、Cr炭化物を生成して鋼の耐食性を劣化
させ、N量を多くすると、鋼塊製造時に欠陥を生
じさせやすい。 そこで、本発明者らは、オーステナイト系ステ
ンレス鋼において、C及びNの含有量の上限を規
制して、これらの過剰の添加による耐食性の低下
と鋼塊製造時の欠陥発生を防ぎつつ固溶強化を図
る一方、VをCr、Ni等の元素と共存させること
によつて、Cr炭化物の生成を抑制すると共に、
V炭窒化物の分散析出によつて耐力を改善させ、
かくして、耐力及び耐食性を共に向上させること
に成功したものである。 従つて、本発明の目的は、酸性環境下で耐食性
にすぐれた高強度のオーステナイト系ステンレス
鋼を提供することを目的とする。 本発明による酸性環境下で耐食性にすぐれた高
強度オーステナイト系ステンレス鋼の第1は、 重量%で C 0.05〜0.15%、 Si 0.1〜0.5%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni 6〜10%、 Mo 2〜4%、 V 0.05〜0.25%、 N 0.15〜0.45%、 残部鉄及び不可避的不純物よりなることを特徴
とし、また、その第2は、 重量%で C 0.05〜0.15%、 Si 0.1〜0.5%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni 6〜10%、 Mo 2〜4%、 V 0.05〜0.25%、及び N 0.15〜0.45%に加えて、 Nb 0.05〜0.50%及びTi 0.01〜0.05%から選ばれ
る少なくとも1種、 残部鉄及び不可避的不純物よりなることを特徴
とする。 先ず、本発明によるオーステナイト系ステンレ
ス鋼における成分を限定理由について説明する。 Cはオーステナイトの安定化元素であると同時
に、侵入型固溶化元素として鋼の耐力を含めて強
度向上に効果がある。本発明においては、Ni及
びVとの共存下で微細な炭窒化物を析出させて、
鋼の耐力及び靭性を向上させるために、0.05%以
上を添加させることが必要であるが、0.15%を越
えるときは、Cr炭化物を生成して耐食性を低下
させる。従つて、C含有量は0.05〜0.15%とす
る。 Siは鋼の脱酸剤として0.1%以上を添加するこ
とが必要であるが、過度に添加するときは、熱間
延性を損なうため、上限を0.5%とする。 MnはSiと同様に鋼の脱酸剤として必要である
のみでなく、Nの固溶量の増加、オーステナイト
の安定化及び耐溶接割れ性の改善のために0.5%
以上を添加することが必要である。しかし、5%
を越えるときは、熱間加工性を損なう等の問題を
生じる。従つて、Mn含有量は0.5〜5%の範囲が
好ましく、特に、耐溶接割れ性を改善する観点か
らは2.0〜4.0%の範囲が好ましい。 本発明において、Crは鋼の耐食性の向上のた
めに必須の元素であると共に、Nの固溶限界を増
加させるためにも必要な元素である。しかし、過
度に添加するときは、オーステナイトとフエライ
トとのバランスを崩し、本発明鋼の特性を維持す
るためには、高価なNi等を多量に添加する必要
が生じるので好ましくなく、かくして、Cr含有
量は18〜25%とする。 NiはCr等とのバランスによつて耐食性や機械
的特性の向上のために必要な不可欠の元素であ
り、この目的のためには6%以上を添加すること
が必要であるが、反面、Crに対して過度に添加
するときは、却つて耐食性を劣化させるので、上
限を10%とする。 Moは鋼の耐食性、特に隙間腐食、孔食防止に
不可欠な元素であり、このために2%以上の添加
を必要とするが、しかし、過剰に添加しても耐食
性の向上効果が飽和する傾向にあり、更に製品価
格を高くするので、上限を4%とする。 Vは本発明において、鋼の強度、靭性及び耐食
性をバランスよく向上させるために、特に、Cr
炭化物の生成を抑えて耐食性を改善すると共に、
Vの炭窒化物の分散析出による耐力の向上を図る
ために、少なくとも0.05%の添加を必要とする。
しかし、過多に添加するときは、フエライトの生
成を促し、オーステナイトとフエライトとのバラ
ンスを崩して耐食性を劣化させる。従つて、上限
を0.25%とする。 NはCと同様にオーステナイト形成元素であ
り、固溶によつて鋼の耐力を向上させると共に、
微細な炭窒化物を形成して靭性を改善する効果を
有する。この効果を有効に発現させるためには
0.15%以上の添加を必要とするが、しかし、過剰
に低下すると、鋼塊製造時に不都合を生じるので
上限を0.45%とする。 本発明によるオーステナイト系ステンレス鋼に
おいては、上記した元素に加えて、Nb及びTiか
ら選ばれる少なくとも1種の元素を添加すること
ができる。 Nbは炭化物を形成して、Cを安定化する元素
として知られているが、N含有量が多い鋼におい
ては、微細な炭窒化物を形成して、耐力及び靭性
を共に改善する。かかる効果を発現させるために
は、0.05%以上を添加することが必要であるが、
過剰に添加するときは溶接性を劣化させると共
に、Nbが安定な炭窒化物を形成する元素である
ところから、固溶C及びN量の減少を招き、却つ
て耐力を減少させ、また、巨大な炭窒化物を形成
して靭性を著しく損なう。従つて、その上限を
0.50%とする。 TiもNbと同様に非常に安定な炭窒化物を形成
する元素であつて、0.01〜0.50%の範囲で添加す
るとき鋼の耐力を改善するが、過剰の添加は却つ
て耐力のみならず、靭性の低下を招くので、その
含有量を上記のように規制する。 以上のように、本発明のオーステナイト系ステ
ンレス鋼によれば、C及びNの含有量の上限を規
制して、これらの過剰の添加による耐食性の低下
と鋼塊製造時の欠陥発生を防ぎつつ固溶強化を図
る一方、VをCr、Ni等の元素と共存させること
によつて、Cr炭化物の生成を抑制しつつ、V炭
窒化物の分散強化を図り、これら固溶強化と析出
強化とをバランスさせることにより、酸性環境下
で耐食性にすぐれると共に、耐力にもすぐれる特
性を有する。 以下に実施例を挙げて本発明を説明する。 実施例 第1表に本発明鋼及び従来鋼としての市販材料
の化学組成と下記式の値を示し、第2表にはこれ
らの鋼の機械的性質及び耐食性を示す。尚、鋼番
号1〜6は溶体化処理を施した鋼材であり、鋼番
号7〜10は市販鋼材である。また、鋼番号11及び
12は、化学組成は本発明の範囲に含まれるが、下
記式の値が本発明において規制する値をはずれる
ものである。
The present invention relates to a high-strength austenitic stainless steel that has excellent corrosion resistance in an acidic environment. In recent years, the depletion of oil resources has come to be seen as a problem, and against this backdrop, in order to expand and secure stable energy resources, offshore oil fields are being developed, and onshore oil fields are being developed. So-called sour gas and sour oil, which contain acidic gases such as hydrogen sulfide and carbon dioxide gas, have been mined until now. Materials and equipment related to the production of such energy resources inevitably come into contact with chlorides and acid gases, and therefore the steel materials used in materials and equipment in such fields must first have corrosion resistance. In addition, strength requirements are becoming more severe as wells become deeper, and low-temperature toughness is also required for use in cold regions. Ni-based alloys, Ti-based alloys, Co-based alloys, etc. are known as materials that can meet these demands.
These alloys are too expensive compared to conventional conventional bottom alloy steels. In addition, for example, austenitic stainless steel has been known as a relatively inexpensive material, but currently it has a poor corrosion resistance-strength balance, and in particular, although it has a high tensile strength, it does not have a sufficient yield strength. In general, when calculating the strength of structural materials, yield strength is often used as a standard rather than tensile strength, so if the yield strength is low, the size of the member will increase, which is not desirable in terms of cost. In addition to solid solution strengthening with C and N, precipitation strengthening and work strengthening are generally known as methods for improving the yield strength of steel. However, precipitation strengthening and work strengthening have a negative effect on corrosion resistance; If the amount is increased, Cr carbide will be generated and the corrosion resistance of the steel will be deteriorated, and if the amount of N is increased, defects will easily occur during the production of steel ingots. Therefore, the present inventors set an upper limit for the content of C and N in austenitic stainless steel, thereby preventing a decrease in corrosion resistance and the occurrence of defects during the production of steel ingots due to the excessive addition of these elements, while solid solution strengthening. At the same time, by making V coexist with elements such as Cr and Ni, the formation of Cr carbides is suppressed, and
Improved yield strength by dispersing precipitation of V carbonitrides,
In this way, we succeeded in improving both the yield strength and corrosion resistance. Therefore, an object of the present invention is to provide a high-strength austenitic stainless steel with excellent corrosion resistance in an acidic environment. The first high-strength austenitic stainless steel of the present invention with excellent corrosion resistance in an acidic environment contains, in weight percent, C 0.05-0.15%, Si 0.1-0.5%, Mn 0.5-5.0%, Cr 18-25%, Ni 6-10%, Mo 2-4%, V 0.05-0.25%, N 0.15-0.45%, the balance being iron and inevitable impurities, and the second is C 0.05-0.15 in weight%. %, Si 0.1-0.5%, Mn 0.5-5.0%, Cr 18-25%, Ni 6-10%, Mo 2-4%, V 0.05-0.25%, and N 0.15-0.45%, plus Nb 0.05 0.50% and at least one selected from 0.01 to 0.05% Ti, with the balance being iron and inevitable impurities. First, the reason for limiting the components in the austenitic stainless steel according to the present invention will be explained. C is an austenite stabilizing element, and at the same time, as an interstitial solid solution element, it is effective in improving the strength, including the yield strength, of steel. In the present invention, fine carbonitrides are precipitated in the coexistence of Ni and V,
In order to improve the yield strength and toughness of steel, it is necessary to add Cr in an amount of 0.05% or more, but if it exceeds 0.15%, Cr carbides are formed and corrosion resistance is reduced. Therefore, the C content is set to 0.05 to 0.15%. It is necessary to add Si in an amount of 0.1% or more as a deoxidizing agent for steel, but when excessively added, hot ductility is impaired, so the upper limit is set to 0.5%. Like Si, Mn is not only necessary as a deoxidizing agent for steel, but also increases the amount of solid solution of N, stabilizes austenite, and improves weld cracking resistance by 0.5%.
It is necessary to add the above. However, 5%
If it exceeds this, problems such as loss of hot workability will occur. Therefore, the Mn content is preferably in the range of 0.5 to 5%, and particularly preferably in the range of 2.0 to 4.0% from the viewpoint of improving weld cracking resistance. In the present invention, Cr is an essential element for improving the corrosion resistance of steel, and is also an element necessary for increasing the solid solubility limit of N. However, excessive addition is undesirable because it disrupts the balance between austenite and ferrite, and in order to maintain the properties of the steel of the present invention, it becomes necessary to add a large amount of expensive Ni, etc. The amount should be 18-25%. Ni is an indispensable element necessary for improving corrosion resistance and mechanical properties depending on the balance with Cr etc. For this purpose, it is necessary to add 6% or more, but on the other hand, Cr If added in excess, the corrosion resistance will deteriorate, so the upper limit is set at 10%. Mo is an essential element for the corrosion resistance of steel, especially for preventing crevice corrosion and pitting corrosion.For this purpose, it is necessary to add 2% or more, but even if it is added in excess, the effect of improving corrosion resistance tends to be saturated. The upper limit will be set at 4%, as this will further increase the product price. In the present invention, in order to improve the strength, toughness, and corrosion resistance of steel in a well-balanced manner, V is particularly added to Cr.
In addition to suppressing the formation of carbides and improving corrosion resistance,
In order to improve the yield strength through the dispersed precipitation of V carbonitrides, it is necessary to add at least 0.05%.
However, when added in excess, it promotes the formation of ferrite, disrupts the balance between austenite and ferrite, and deteriorates corrosion resistance. Therefore, the upper limit is set at 0.25%. Like C, N is an austenite-forming element, and improves the yield strength of steel through solid solution.
It has the effect of forming fine carbonitrides and improving toughness. In order to effectively express this effect,
It is necessary to add 0.15% or more, but if the content decreases excessively, it will cause problems during the production of steel ingots, so the upper limit is set at 0.45%. In addition to the above-mentioned elements, at least one element selected from Nb and Ti can be added to the austenitic stainless steel according to the present invention. Nb is known as an element that forms carbides and stabilizes C, but in steel with a high N content, it forms fine carbonitrides and improves both yield strength and toughness. In order to express such an effect, it is necessary to add 0.05% or more,
When added in excess, it deteriorates weldability, and since Nb is an element that forms stable carbonitrides, it leads to a decrease in the amount of solid solution C and N, which in turn decreases the yield strength and causes huge Forms carbonitrides that significantly impair toughness. Therefore, the upper limit
It shall be 0.50%. Like Nb, Ti is also an element that forms very stable carbonitrides, and when added in the range of 0.01 to 0.50%, it improves the yield strength of steel. Since it causes a decrease in toughness, its content is regulated as described above. As described above, according to the austenitic stainless steel of the present invention, the upper limit of the content of C and N is regulated to prevent a decrease in corrosion resistance and the occurrence of defects during the production of steel ingots due to excessive addition of these. While aiming at solution strengthening, by making V coexist with elements such as Cr and Ni, dispersion strengthening of V carbonitrides is achieved while suppressing the formation of Cr carbides, and these solid solution strengthening and precipitation strengthening are achieved. By achieving a good balance, it has excellent corrosion resistance in an acidic environment as well as excellent yield strength. The present invention will be explained below with reference to Examples. Examples Table 1 shows the chemical compositions and values of the following formulas of commercially available materials as the steel of the present invention and conventional steel, and Table 2 shows the mechanical properties and corrosion resistance of these steels. Note that steel numbers 1 to 6 are solution-treated steel materials, and steel numbers 7 to 10 are commercially available steel materials. Also, steel number 11 and
Although the chemical composition of No. 12 is within the scope of the present invention, the value of the following formula is outside the value regulated by the present invention.

【表】【table】

【表】【table】

【表】 ることを示す。
図面に下記式と得られるオーステナイト系ステ
ンレス鋼の耐食性との関係を示す。図において、
番号は鋼番号を示す。従つて、本発明において
は、前記した諸元素のうち、特に耐力の改善に寄
与するC、Si、Ni及びNが次式の関係を満たす
ことが、オーステナイト系ステンレス鋼の耐力と
耐食性を共に改善するために重要であることが分
る。 37≦100C%+20Si%+Ni%+60N%≦49 上記式の値が49よりも大きいときは耐食性、特
に耐硫化物割れ性が劣化し、一方、37よりも小さ
いときは耐食性と耐力とのバランスが崩れ、とも
にすぐれたオーステナイト系ステンレス鋼を得る
ことができないことが明らかである。 尚、耐食性の試験方法及び評価は次のとおりで
ある。 硫化物応力腐食割れ試験 試験片をU字曲げにて応力付加し、NACE液
(5%食塩溶液+0.5%酢酸+1気圧硫化水素ガス
飽和)中に1か月間浸漬し、その後、顕微鏡
(100倍)にて割れ発生の有無を判定した。 塩化物応力腐食割れ試験 U字曲げ試験片を空気飽和人工海水と共にオー
トクレーブ中に封入し、100℃に昇温して1か月
間保持した。その後、割れ発生の有無を100倍の
顕微鏡にて判定した。 隙間腐食試験 塩酸にてPHを3.5に調整した50℃の人工海水中
へ、ポリテトラフルオロエチレンにてシールした
ボルトナツトで締めつけた2枚の試験片を2週間
浸漬した。その後、隙間腐食の有無を目視及び重
量減少により判定した。 孔食試験 塩酸にてPHを3.5に調整した50℃の人工海水中
へ平板試験片を1か月間浸漬し、このときの孔食
発生の有無を目視及び重量減により判定した。 本発明鋼によれば、耐硫化物割れ性、耐塩化物
割れ性、耐隙間腐食性及び耐孔食性のいずれにも
すぐれると共に、耐力も約45Kgf/mm2以上であ
り、耐食性と強度との間にバランスがとれてお
り、更に、衝撃特性にもすぐれることが明らかで
ある。しかし、鋼番号5〜10の従来鋼において
は、これらのバランスがすぐれており、耐食性及
び耐力のいずれか、又は両方において劣り、ま
た、鋼番号11及び12の鋼材は耐食性にはすぐれる
が、耐力が小さいことが明らかである。従つて、
前記式の値が所定の範囲にあるときに、耐食性と
共に耐力にすぐれることが理解される。
[Table] Shows that.
The drawing shows the relationship between the formula below and the corrosion resistance of the austenitic stainless steel obtained. In the figure,
The number indicates the steel number. Therefore, in the present invention, among the above-mentioned elements, C, Si, Ni, and N, which particularly contribute to improving the yield strength, satisfy the following relationship, which improves both the yield strength and corrosion resistance of austenitic stainless steel. It turns out that it is important to 37≦100C%+20Si%+Ni%+60N%≦49 When the value of the above formula is larger than 49, corrosion resistance, especially sulfide cracking resistance, deteriorates, while when it is smaller than 37, the balance between corrosion resistance and yield strength is poor. It is clear that an excellent austenitic stainless steel cannot be obtained. The test method and evaluation of corrosion resistance are as follows. Sulfide stress corrosion cracking test The test piece was stressed by U-bending, immersed in NACE solution (5% salt solution + 0.5% acetic acid + 1 atm hydrogen sulfide gas saturation) for one month, and then subjected to microscopy (100 The presence or absence of cracking was determined by Chloride Stress Corrosion Cracking Test A U-shaped bend test piece was sealed in an autoclave with air-saturated artificial seawater, heated to 100°C, and held for one month. Thereafter, the presence or absence of cracking was determined using a 100x microscope. Crevice Corrosion Test Two test specimens tightened with bolts and nuts sealed with polytetrafluoroethylene were immersed for two weeks in 50°C artificial seawater whose pH was adjusted to 3.5 with hydrochloric acid. Thereafter, the presence or absence of crevice corrosion was determined visually and by weight loss. Pitting Corrosion Test A flat plate specimen was immersed for one month in artificial seawater at 50°C whose pH was adjusted to 3.5 with hydrochloric acid, and the presence or absence of pitting corrosion was determined visually and by weight loss. According to the steel of the present invention, it has excellent sulfide cracking resistance, chloride cracking resistance, crevice corrosion resistance, and pitting corrosion resistance, and has a yield strength of about 45 Kgf/mm 2 or more, and has a good combination of corrosion resistance and strength. It is clear that the impact properties are well balanced and the impact properties are also excellent. However, conventional steels with steel numbers 5 to 10 have an excellent balance of these, but are inferior in corrosion resistance and/or yield strength, and steels with steel numbers 11 and 12 have excellent corrosion resistance, but It is clear that the yield strength is low. Therefore,
It is understood that when the value of the above formula is within a predetermined range, both corrosion resistance and yield strength are excellent.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明で規定する式の値と0.2%耐力と
の関係を示すグラフである。
The drawing is a graph showing the relationship between the value of the formula defined in the present invention and 0.2% proof stress.

【特許請求の範囲】[Claims]

1 C0.08重量%以下、Si1.0重量%以下、Mn0.7
重量%以下、P0.04重量%以下、S0.005重量%以
下、Ni8.0〜12.0重量%、Cr17.0〜20.0重量%、
Mo0.40〜0.80重量%、Cu0.3重量%以下、Bi0.03
〜0.1重量%、Sn0.03〜0.2重量%、および残部が
Feからなることを特徴とする耐食性および被削
性を改善したNi−Cr系ステンレス鋼。
1 C0.08wt% or less, Si1.0wt% or less, Mn0.7
Weight% or less, P0.04 weight% or less, S0.005 weight% or less, Ni8.0~12.0 weight%, Cr17.0~20.0 weight%,
Mo0.40~0.80wt%, Cu0.3wt% or less, Bi0.03
~0.1 wt%, Sn0.03~0.2 wt%, and the balance
A Ni-Cr stainless steel with improved corrosion resistance and machinability characterized by being composed of Fe.

Claims (1)

V 0.05〜0.25%、及び N 0.15〜0.35%加えて、 Nb 0.05〜0.50%及びTi 0.01〜0.50%から選ばれ
る少なくとも1種、 残部鉄及び不可避的不純物よりなり、且つ、式 37≦100C%+20Si%+Ni%+60N≦49 を満たすことを特徴とする酸性環境下で耐食性に
すぐれた耐酸性腐食用高強度オーステナイト系ス
テンレス鋼。
In addition to V 0.05-0.25% and N 0.15-0.35%, at least one selected from Nb 0.05-0.50% and Ti 0.01-0.50%, the balance being iron and inevitable impurities, and having the formula 37≦100C%+20Si %+Ni%+60N≦49 High strength austenitic stainless steel for acid corrosion resistance with excellent corrosion resistance in acid environments.
JP2370284A 1984-02-09 1984-02-09 High strength austenite stainless steel excellent in corrosion resistance under acidic environment Granted JPS60165365A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2370284A JPS60165365A (en) 1984-02-09 1984-02-09 High strength austenite stainless steel excellent in corrosion resistance under acidic environment
US06/786,960 US4689198A (en) 1984-02-09 1985-02-07 Austenitic stainless steel with high corrosion resistance and high strength when heat treated
PCT/JP1985/000051 WO1985003528A1 (en) 1984-02-09 1985-02-07 Highly corrosion-resistant, high-strength austenitic stainless steel and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2370284A JPS60165365A (en) 1984-02-09 1984-02-09 High strength austenite stainless steel excellent in corrosion resistance under acidic environment

Publications (2)

Publication Number Publication Date
JPS60165365A JPS60165365A (en) 1985-08-28
JPH0380866B2 true JPH0380866B2 (en) 1991-12-26

Family

ID=12117703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2370284A Granted JPS60165365A (en) 1984-02-09 1984-02-09 High strength austenite stainless steel excellent in corrosion resistance under acidic environment

Country Status (1)

Country Link
JP (1) JPS60165365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531199B1 (en) * 2014-08-08 2015-06-24 주식회사 신우엔지니어링 Equipment and method for manufacturing drum screen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210690A (en) * 2006-02-07 2007-08-23 Mitsubishi Electric Corp Guide rail for elevator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373414A (en) * 1976-12-02 1978-06-29 Allegheny Ludlum Ind Inc Austenite stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373414A (en) * 1976-12-02 1978-06-29 Allegheny Ludlum Ind Inc Austenite stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531199B1 (en) * 2014-08-08 2015-06-24 주식회사 신우엔지니어링 Equipment and method for manufacturing drum screen

Also Published As

Publication number Publication date
JPS60165365A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
US5582656A (en) Ferritic-austenitic stainless steel
EP0151487B1 (en) Ferritic-austenitic duplex stainless steel
JPWO2005007915A1 (en) Martensitic stainless steel
CN107138876B (en) High-temperature creep resistant low-nickel copper-containing T/P92 steel welding material
JP3106674B2 (en) Martensitic stainless steel for oil wells
JPH10503809A (en) Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
US4705581A (en) Soft magnetic stainless steel
JP3982069B2 (en) High Cr ferritic heat resistant steel
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
EP0708184A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JPH0380866B2 (en)
JPH0643626B2 (en) Martensitic stainless steel for oil country tubular goods
JPH0770700A (en) High proof stress and high corrosion resistant austenitic stainless cast steel
JPH05212582A (en) Welding material for high-cr ferrite heat resistant material
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
JPS60116750A (en) Heat-resistant austenitic alloy containing v and n
CN107988555A (en) A kind of resource-saving diphase stainless steel containing rare earth
JPH021902B2 (en)
JPS61235544A (en) High-strengh austenitic stainless steel for welding construction having superior sour resistance
JPS6187855A (en) Stainless steel having superior corrosion resistance and hot workability
JPS63270444A (en) Steel for line pipe having excellent sour resistance
JP2857248B2 (en) Low carbon Cr-Mo steel sheet with excellent high temperature strength and weld crack resistance
JP2001234276A (en) Cr-Mo STEEL HAVING HIGH TOUGHNESS AND EXCELLENT IN REHEAT CRACKING RESISTANCE