JPH0380787A - Adaptive notch filter - Google Patents

Adaptive notch filter

Info

Publication number
JPH0380787A
JPH0380787A JP1219906A JP21990689A JPH0380787A JP H0380787 A JPH0380787 A JP H0380787A JP 1219906 A JP1219906 A JP 1219906A JP 21990689 A JP21990689 A JP 21990689A JP H0380787 A JPH0380787 A JP H0380787A
Authority
JP
Japan
Prior art keywords
edge
luminance signal
circuit
detection means
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1219906A
Other languages
Japanese (ja)
Inventor
Yoshio Maeda
美穂 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1219906A priority Critical patent/JPH0380787A/en
Publication of JPH0380787A publication Critical patent/JPH0380787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To eliminate the crosstalk component of an edge part without lowering resolution by detecting an edge component included in an image from an input ted luminance signal, and increasing/decreasing the attenuation quantity of a bond blocking filter corresponding to the quantity of detected signal components. CONSTITUTION:Sampling values inputted to coefficient circuits 15-17 are shown as three points S1, S3, and S5 arranging in a vertical direction. Therefore, the output of the band blocking filter 3 goes to S3+(k/4) (S1-2S3+S5). It is pro vided with band blocking characteristic centering a vertical frequency 525/4(c/ph), and the attenuation quantity is increased as making a multiplication coefficient (k) approach to 1. Meanwhile, the correlation energy DYH and DYV of the image in horizontal and vertical directions are outputted from an edge detection circuit 4. A ROM table 34 decides the value of the multiplication coefficient (k) from the values DYV and DYH, and when the value DYV is small and the value DYH is large, the coefficient (k) is made approached to 1, and it is decreased when it is not. Therefore, the crosstalk component can be elimi nated as keeping the resolution of the luminance signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は適応型ノツチフィルタに関し、特に不完全な
YC分離によって生じた輝度信号中の色信号の漏話成分
を減衰させるノツチフィルタ回路に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an adaptive notch filter, and particularly to a notch filter circuit that attenuates crosstalk components of a chrominance signal in a luminance signal caused by incomplete YC separation. be.

〔従来の技術〕[Conventional technology]

第6図は色副搬送波の周波数f scの4倍でサンプリ
ングされたNTSC方式の輝度信号から漏話成分を抑圧
する従来のノツチフィルタの構成を示すブロック回路図
である。
FIG. 6 is a block circuit diagram showing the configuration of a conventional notch filter that suppresses crosstalk components from an NTSC luminance signal sampled at four times the frequency fsc of the color subcarrier.

図において、lは輝度信号のデジタルデータが入力され
る入力端子、303〜312は輝度信号を2サンプリン
グ周期2Tだけ遅らせる遅延回路、313〜323はそ
れぞれ2Tの遅延時間差を持つ輝度信号をそれぞれ所定
の倍率で増幅する係数回路で、その係数の値は図に示す
通りである。324は係数回路313〜323の出力を
加算する加算回路、2は漏話成分が除去された輝度信号
のデジタルデータを出力する出力端子である。
In the figure, l is an input terminal into which the digital data of the luminance signal is input, 303 to 312 are delay circuits that delay the luminance signal by two sampling periods 2T, and 313 to 323 are delay circuits that delay the luminance signal by two sampling periods 2T, respectively. This is a coefficient circuit that amplifies by a magnification, and the coefficient values are as shown in the figure. 324 is an adder circuit that adds the outputs of the coefficient circuits 313 to 323, and 2 is an output terminal that outputs digital data of a luminance signal from which crosstalk components have been removed.

次に動作について説明する。Next, the operation will be explained.

第6図のフィルタの周波数特性(振幅特性)は第7図に
示すように色副搬送波の周波数f scの近傍で減衰す
る帯域阻止特性となっている。一方、第8図のようにY
C分離フィルタの特性が点線内では色信号、点線外では
輝度信号として分離するものであれば、水平エツジなど
で図の斜線に示すように色信号は点線をはみだし、輝度
信号側に漏れ込む、しかしながら、この漏話成分は主と
して水平周波数のf fie付近に存在するので、輝度
信号を第4図の特性を持つフィルタに通すことにより、
十分に除去することが可能である。
The frequency characteristics (amplitude characteristics) of the filter shown in FIG. 6 are band rejection characteristics that are attenuated near the frequency f sc of the color subcarrier, as shown in FIG. 7. On the other hand, as shown in Figure 8, Y
If the characteristics of the C separation filter are such that it separates the area within the dotted line as a color signal and the area outside the dotted line as a luminance signal, the color signal will extend beyond the dotted line and leak into the luminance signal side at horizontal edges, etc., as shown by the diagonal lines in the figure. However, since this crosstalk component mainly exists near the horizontal frequency f fie, by passing the luminance signal through a filter with the characteristics shown in Fig. 4,
It is possible to fully remove it.

なお、ここではデジタル回路で構成された従来のノツチ
フィルタについて述べたが、第4図の周波数特性を持つ
ものであれば、アナログ回路で構成してもよく、むしろ
アナログフィルタの方が現在広く使用されている。
Although we have discussed conventional notch filters constructed with digital circuits, they may also be constructed with analog circuits as long as they have the frequency characteristics shown in Figure 4. Analog filters are currently more widely used. has been done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のノツチフィルタは以上のように構成されているの
で、漏話成分のみならず、輝度信号の高域成分をも減衰
させてしまうため、再生画像の解像度が劣化するなどの
問題点があった。
Since the conventional notch filter is configured as described above, it attenuates not only the crosstalk component but also the high frequency component of the luminance signal, resulting in problems such as deterioration of the resolution of the reproduced image.

この発明は上記のような問題点を解消するためになされ
たもので、解像度を保ちなから漏話成分のみを減衰させ
ることのできるノツチフィルタを得ることを目的とする
This invention was made to solve the above-mentioned problems, and aims to provide a notch filter that can attenuate only crosstalk components while maintaining resolution.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る適応型ノツチフィルタは、入力された輝
度信号から画像に含まれるエツジ成分を検出し、この検
出した信号成分の多少に応じて入力輝度信号中の上記エ
ツジ成分と同じ方向の色信号の漏話成分を除去する帯域
阻止フィルタの減衰量を増減させるようにしたものであ
る。
The adaptive notch filter according to the present invention detects edge components included in an image from an input luminance signal, and detects a color signal in the same direction as the edge component in the input luminance signal according to the amount of the detected signal component. The amount of attenuation of a band rejection filter that removes crosstalk components is increased or decreased.

〔作用〕[Effect]

この発明における減衰量可変形の帯域阻止フィルタは、
エツジ成分の多少に応じて漏話成分による妨害が目立ち
やすい画像のエツジ部分の漏話成分を、解像度を低下さ
せることなく除去することができる。
The variable attenuation band rejection filter in this invention is
Crosstalk components at the edge portions of an image where interference by crosstalk components is likely to be noticeable depending on the amount of edge components can be removed without reducing resolution.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は4f0でサンプリングされたNT
SC方式の輝度信号が入力される入力端子、3は輝度信
号を入力とし、漏話成分を抑圧する帯域阻止フィルタ、
4は輝度信号から水平エツジを検出するエツジ検出回路
、2は漏話成分を抑圧した輝度信号が出力される出力端
子である。
In Figure 1, 1 is NT sampled at 4f0
3 is an input terminal into which the SC method luminance signal is input; 3 is a band rejection filter which inputs the luminance signal and suppresses crosstalk components;
4 is an edge detection circuit that detects horizontal edges from the luminance signal; 2 is an output terminal from which a luminance signal with suppressed crosstalk components is output.

帯域阻止フィルタ3において、7〜10は人力輝度信号
をそれぞれ908T、2T、2T、908T (T=1
/4 rsc:サンプリング周期)だけ遅らせる遅延回
路、15〜17は遅延回路7〜9の出力をそれぞれW+
 /z、 %倍する係数回路、24は係数回路15〜1
7の出力に符号をつけて加算する加算回路、11は加算
回路24の出力を2Tだけ遅らせる遅延回路、30はR
OMテーブル33の出力と遅延回路11の出力を乗算す
る乗算回路、25は遅延回路9の出力から乗算回路30
の出力を減じる符号付加算回路である。
In the band rejection filter 3, 7 to 10 are human luminance signals of 908T, 2T, 2T, and 908T, respectively (T=1
Delay circuits 15 to 17 delay the outputs of delay circuits 7 to 9 by W+
/z, % multiplication coefficient circuit, 24 is coefficient circuit 15-1
7 is an adder circuit that adds a sign to the output, 11 is a delay circuit that delays the output of adder circuit 24 by 2T, and 30 is R.
A multiplication circuit 25 multiplies the output of the OM table 33 and the output of the delay circuit 11;
This is a sign addition/addition circuit that subtracts the output of .

次にエツジ検出回路4は水平方向の相関を検出する水平
相関検出回路5と垂直方向の相関を検出する垂直相関検
出回路6からなる。水平相関検出回路5において、18
は入力輝度信号をA倍する係数回路、19.20は遅延
回路8.10の出力をそれぞれA+ ’74倍する係数
回路、26は係数回路18〜20の出力を加算する加算
回路、12は加算回路26の出力を4Tだけ遅らせる遅
延回路、27は加算回路26の出力から遅延回路12の
出力を減じる符号付加算回路、31は符号付加算回路2
7の出力の絶対値(ABS)をとる絶対値回路である。
Next, the edge detection circuit 4 includes a horizontal correlation detection circuit 5 for detecting correlation in the horizontal direction and a vertical correlation detection circuit 6 for detecting correlation in the vertical direction. In the horizontal correlation detection circuit 5, 18
19.20 is a coefficient circuit that multiplies the input luminance signal by A, 19.20 is a coefficient circuit that multiplies the outputs of delay circuits 8 and 10 by A+'74, 26 is an addition circuit that adds the outputs of coefficient circuits 18 to 20, and 12 is an addition circuit. A delay circuit that delays the output of the circuit 26 by 4T, 27 a sign addition/addition circuit that subtracts the output of the delay circuit 12 from the output of the addition circuit 26, and 31 a sign addition/addition circuit 2.
This is an absolute value circuit that takes the absolute value (ABS) of the output of 7.

また、垂直相関検出回路6において、28は人力輝度信
号と遅延回路lOの出力との差分を求める符号付加算回
路、13.14は符号付加算回路28の出力を2Tだけ
遅らせる遅延回路、21は加算回路28の出力を×倍す
る係数回路、22゜23は遅延回路13.14の出力を
それぞれA。
In the vertical correlation detection circuit 6, 28 is a sign addition/addition circuit that calculates the difference between the human luminance signal and the output of the delay circuit 1O, 13.14 is a delay circuit that delays the output of the sign addition/addition circuit 28 by 2T, and 21 is a Coefficient circuits 22 and 23 multiply the output of the adder circuit 28 by x, and 23 and 23 respectively represent the outputs of the delay circuits 13 and 14 as A.

A倍する係数回路、29は係数回路21〜23の出力を
加算する加算回路、32は加算回路29の出力の絶対値
(ABS)をとる絶対値回路である。
29 is an adder circuit that adds the outputs of the coefficient circuits 21 to 23; and 32 is an absolute value circuit that takes the absolute value (ABS) of the output of the adder circuit 29.

次に動作について説明する。遅延回路7〜10により第
3図に示す画素のサンプリング値31〜S、が得られる
。ここで、帯域阻止フィルタ3はサンプリング値S、、
S、、S、を用いて加算回路24の出力に、 (Sz   233  + Ss  )を得る。これは
f meを中心とする帯域通過フィルタとなる。その周
波数特性を第4図に示す。次にこの出力は乗算回路30
により、k(0≦に≦1)倍され、加算回路25により
もとの信号S、から減算される。よって加算回路25の
出力は、S、+      (St  −232+34
  )となる。これはf scを中心とする帯域阻止フ
ィルタである。その周波数特性を第5図に示す。このフ
ィルタの減衰量は乗算係数kにより変化し、kが大きく
なるほど減衰量も大きい。
Next, the operation will be explained. The delay circuits 7 to 10 obtain pixel sampling values 31 to S shown in FIG. 3. Here, the band rejection filter 3 has a sampling value S,
(Sz 233 + Ss) is obtained as the output of the adder circuit 24 using S,,S,. This results in a bandpass filter centered at f me. The frequency characteristics are shown in FIG. Next, this output is sent to the multiplier circuit 30
Therefore, it is multiplied by k (0≦≦1) and subtracted from the original signal S by the adder circuit 25. Therefore, the output of the adder circuit 25 is S, + (St -232+34
). This is a bandstop filter centered at fsc. The frequency characteristics are shown in FIG. The amount of attenuation of this filter changes depending on the multiplication coefficient k, and the larger k is, the greater the amount of attenuation is.

水平相関検出回路5では遅延回路7〜10.係数回路1
8〜20.加算回路26が垂直方向の低ンがOとなる特
性を持つ。Y、、Y、をこの低域通過フィルタによって
得られたSt、S4における垂直方向の低域成分とする
と、符号付加算器27の出力は、 Y、−Y。
The horizontal correlation detection circuit 5 includes delay circuits 7 to 10. Coefficient circuit 1
8-20. The adder circuit 26 has a characteristic that the low voltage in the vertical direction is O. If Y,, Y, are the vertical low frequency components of St, S4 obtained by this low-pass filter, the output of the sign adder 27 is Y, -Y.

となる。これは直流成分及びf scでゲインがOとな
る帯域通過フィルタで、その特性は第9図で表わされる
。水平方向に画像が変化していないときは、Y2とY4
の値は等しく、 Yz  Y4=0 であるが、そうでないときは一般に第9図におけるO、
f、c以外の周波数成分が抽出されて、Y、−Y4≠O となる。そこで、絶対値回路31により、DvH= Y
t  Ya を求めて、水平方向の相関エネルギーとする。D7Hの
値が小さいほど、水平方向の画像の相関が強いといえる
becomes. This is a bandpass filter whose gain is O at DC component and fsc, and its characteristics are shown in FIG. When the image does not change horizontally, Y2 and Y4
The values of are equal, Yz Y4=0, but otherwise O, in Figure 9 are generally
Frequency components other than f and c are extracted, so that Y, -Y4≠O. Therefore, by the absolute value circuit 31, DvH=Y
Find t Ya and use it as the correlation energy in the horizontal direction. It can be said that the smaller the value of D7H, the stronger the correlation between images in the horizontal direction.

一方、垂直相関検出回路6では符号付加算器28の出力
に、 /8(c/ph)を中心とする垂直方向の帯域通過フィ
ルタであり、525/8 (C/ph)は垂直方向の色
副搬送波周波数525/4 (c/p h)の半分に相
当する。次に遅延回路13,14、係数回路21〜23
、加算回路29は水平方向の低域通過フィルタを構成す
る。このフィルタは第11図に示すように、foでゲイ
ンがOとなる特性を持つ。従って加算回路29の出力は
、I Ys と書ける。ここでY、、Y、はSt、Ssにおける水平
方向の低域成分である。垂直方向に画像が変化していな
いときは、Yt とY、の値は等しく、Y t  Ys
 = 0 であるが、そうでないときは、 Yt  Ys≠O である。従って、絶対値回路32の出力Dvv=  Y
t  Ys は垂直方向の画像の相関エネルギーを与える。
On the other hand, in the vertical correlation detection circuit 6, the output of the sign adder 28 is a vertical band-pass filter centered at /8 (c/ph), where 525/8 (C/ph) is the vertical color. This corresponds to half of the subcarrier frequency 525/4 (c/ph). Next, delay circuits 13 and 14, coefficient circuits 21 to 23
, the adder circuit 29 constitutes a horizontal low-pass filter. As shown in FIG. 11, this filter has a characteristic in which the gain is O at fo. Therefore, the output of the adder circuit 29 can be written as I Ys. Here, Y, , Y are horizontal low frequency components in St and Ss. When the image does not change in the vertical direction, the values of Yt and Y are equal, and Y t Ys
= 0, but otherwise, Yt Ys≠O. Therefore, the output Dvv of the absolute value circuit 32 = Y
t Ys gives the correlation energy of the image in the vertical direction.

さて、クロスルミナンス妨害の目立ちやすい水平エツジ
においては水平方向の相関が強く、垂直方向の相関が弱
い、ROMテーブル33はD Y H+I)yvの値か
ら乗算係数にの値を決定し、DYMが小さくDvvが大
きいときにはkを1に近づけ、そうでないときにはkを
小さくするように働く。
Now, at horizontal edges where cross-luminance interference is more noticeable, the correlation in the horizontal direction is strong and the correlation in the vertical direction is weak.The ROM table 33 determines the value of the multiplication coefficient from the value of DYH+I)yv, It works to bring k closer to 1 when Dvv is large, and to make k smaller when it is not.

なお、遅延回路11は帯域阻止フィルタ及び相量検出回
路における信号遅延量の違いを調整するためのものであ
る。
Note that the delay circuit 11 is for adjusting the difference in signal delay amount between the band rejection filter and the phase amount detection circuit.

なお、上記実施例では帯域阻止フィルタ3を水平フィル
タで構成し、水平エツジにおいてその減衰量を大きくす
るようにしたが、帯域阻止フィルタ3を垂直フィルタで
構成し、垂直エツジでその減衰量を大きくするようにし
てもよい。
In the above embodiment, the band rejection filter 3 is configured with a horizontal filter, and the attenuation amount is increased at the horizontal edge. However, the band rejection filter 3 is configured with a vertical filter, and the attenuation amount is increased at the vertical edge. You may also do so.

第2図にそのようにした本発明の他の実施例を示す0図
において、第1図と同−構成部分には同一符号を付して
いる。同図において、係数回路15〜17に入力される
サンプリング値は第3図中の垂直方向に並ぶ3点St 
、S! 、Ssである。
In FIG. 2, which shows another embodiment of the present invention, the same components as those in FIG. 1 are denoted by the same reference numerals. In the same figure, the sampling values input to the coefficient circuits 15 to 17 are at three points St aligned in the vertical direction in FIG.
,S! , Ss.

従って、帯域阻止フィルタ3の出力は、S3  +  
   (s+   233  +3%  )となる、こ
れは垂直周波数525/4 (C/ph)を中心とする
帯域阻止特性を持ち、その減衰量は第1図の場合と同様
にkが1に近づくほど大きくなる。
Therefore, the output of the band rejection filter 3 is S3 +
(s+233+3%), which has a band rejection characteristic centered at the vertical frequency 525/4 (C/ph), and its attenuation increases as k approaches 1, as in the case of Figure 1. Become.

一方、エツジ検出回路4では第1図のエツジ検出回路4
と全く同様に構成され、前述のように水平方向の画像の
相関エネルギーと垂直方向の画像の相関エネルギー、 DvH−I Yt  Y41 Dvv=  YI  Ys が出力される。
On the other hand, in the edge detection circuit 4, the edge detection circuit 4 in FIG.
It is configured in exactly the same manner as described above, and the correlation energy of the horizontal image and the correlation energy of the vertical image, DvH-I Yt Y41 Dvv=YI Ys, are output.

クロスル旦ナンス妨害の目立ちやすい垂直エツジにおい
ては垂直方向の相関が強く、水平方向の相関が弱い。R
OMテーブル34はD VV、  D?、の値から乗算
係数にの値を決定し、DVvが小さく、DVHが大きい
ときにはkを1に近づけ、そうでないときにはkを小さ
くするように働く。
At vertical edges where cross-over interference is more noticeable, the correlation in the vertical direction is strong and the correlation in the horizontal direction is weak. R
The OM table 34 is D VV, D? The value of the multiplication coefficient is determined from the values of , and when DVv is small and DVH is large, k is brought close to 1, and otherwise, k is made small.

なお、遅延回路11は帯域阻止フィルタおよび相関検出
回路における信号遅延量の違いを調整するためのもので
ある。
Note that the delay circuit 11 is for adjusting the difference in signal delay amount between the band rejection filter and the correlation detection circuit.

また上記第1図及び第2図の実施例では全ての回路をデ
ジタル回路で構成したが、ガラス遅延線などを用いてア
ナログ回路で構成してもよい。
Further, in the embodiments shown in FIGS. 1 and 2, all the circuits are constructed from digital circuits, but they may also be constructed from analog circuits using glass delay lines or the like.

また、上記実施例では入力はNTSC方式の輝度信号と
したが、これに限られるものではなく、遅延量を適応さ
せればNTSC方式以外の入力信号であってもよい。
Further, in the above embodiment, the input is a luminance signal of the NTSC system, but the input is not limited to this, and an input signal other than the NTSC system may be used as long as the amount of delay is adapted.

さらにサンプリング周波数は4f−に限らず、注目画素
に対して上下、左右に隣接画素が得られる。どのような
サンプリング周波数であってもかナンスの目立つエツジ
部分でのみ色信号成分を強く減衰させるようにしたので
、輝度信号の解像度を保ちながら効果的に漏話成分を除
去することができるノツチフィルタを得られる効果があ
る。
Furthermore, the sampling frequency is not limited to 4f-, and neighboring pixels can be obtained above, below, and to the left and right of the pixel of interest. Regardless of the sampling frequency, the chrominance signal component is strongly attenuated only at the edge parts where nonce is noticeable, so the notch filter can effectively remove crosstalk components while maintaining the resolution of the luminance signal. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるノツチフィルタのブ
ロック回路図、第2図はこの発明の他の実施例のブロッ
ク回路図、第3図はこの実施例の標本点の位置を示す図
、第4図、第5図及び第9図、第10図、第11図、第
12図はこの実施例のフィルタ特性を示す図、第6図は
従来のノツチフィルタを示す構成図、第7図、第8図は
従来のノツチフィルタの動作を示す説明図である。 3・・・帯域阻止フィルタ、4・・・エツジ検出回路、
5・・・水平相関検出回路、6・・・垂直相関検出回路
、7〜14・・・遅延回路、15〜23・・・係数回路
、24〜29・・・加算回路、30・・・乗算回路、3
1.32・・・絶対値回路、33.34・・・ROMテ
ーブル。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block circuit diagram of a notch filter according to one embodiment of the invention, FIG. 2 is a block circuit diagram of another embodiment of the invention, and FIG. 3 is a diagram showing the positions of sampling points in this embodiment. Figures 4, 5, 9, 10, 11, and 12 are diagrams showing the filter characteristics of this embodiment, Figure 6 is a configuration diagram showing a conventional notch filter, and Figure 7 is a diagram showing the filter characteristics of this embodiment. , FIG. 8 is an explanatory diagram showing the operation of a conventional notch filter. 3...band rejection filter, 4...edge detection circuit,
5...Horizontal correlation detection circuit, 6...Vertical correlation detection circuit, 7-14...Delay circuit, 15-23...Coefficient circuit, 24-29...Addition circuit, 30...Multiplication circuit, 3
1.32... Absolute value circuit, 33.34... ROM table. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)カラーテレビジョン信号より分離された輝度信号
から画像に含まれる水平方向または垂直方向のエッジ成
分を検出するエッジ検出手段と、このエッジ検出手段が
検出するエッジの方向と同じ方向の色信号の周波数成分
を 減衰させる減衰量可変形の帯域阻止フィルタとを備え、 上記エッジ検出手段は、 上記輝度信号の周波数成分のうち、検出すべきエッジと
垂直な方向には低域成分であり、水平な方向には色副搬
送波周波数の2分の1に相当する周波数成分である成分
を抽出し、その絶対値を求めて検出すべきエッジと水平
な方向の画像の相関エネルギーを検出する第1の相関エ
ネルギー検出手段と、 上記輝度信号の周波数成分のうち、検出すべき水平な方
向には低域成分であり、垂直な方向には色副搬送波周波
数の2分の1に相当する周波数成分である成分を抽出し
、その絶対値を求めて検出すべきエッジと垂直な方向の
画像の相関エネルギーを検出する第2の相関エネルギー
検出手段とからなり、 上記第1の相関エネルギー検出手段と、上記第2の相関
エネルギー検出手段の出力の多少に応じて、上記帯域阻
止フィルタの減衰量を増減させるように構成してなるこ
とを特徴とする適応型ノッチフィルタ。
(1) An edge detection means for detecting horizontal or vertical edge components included in an image from a luminance signal separated from a color television signal, and a color signal in the same direction as the edge detected by this edge detection means. and a variable-attenuation band rejection filter that attenuates the frequency components of the luminance signal, and the edge detection means detects that among the frequency components of the luminance signal, there are low-frequency components in the direction perpendicular to the edge to be detected, and horizontal The first step extracts a frequency component corresponding to one half of the color subcarrier frequency in the direction, and calculates its absolute value to detect the correlation energy of the image in the horizontal direction with the edge to be detected. Correlation energy detection means; Of the frequency components of the luminance signal, the horizontal direction to be detected is a low frequency component, and the vertical direction is a frequency component corresponding to one half of the color subcarrier frequency. a second correlation energy detection means for extracting a component and finding its absolute value to detect the correlation energy of the image in a direction perpendicular to the edge to be detected; the first correlation energy detection means; 2. An adaptive notch filter characterized in that the attenuation amount of the band rejection filter is increased or decreased depending on the output of the correlation energy detection means 2.
JP1219906A 1989-08-24 1989-08-24 Adaptive notch filter Pending JPH0380787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1219906A JPH0380787A (en) 1989-08-24 1989-08-24 Adaptive notch filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1219906A JPH0380787A (en) 1989-08-24 1989-08-24 Adaptive notch filter

Publications (1)

Publication Number Publication Date
JPH0380787A true JPH0380787A (en) 1991-04-05

Family

ID=16742884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1219906A Pending JPH0380787A (en) 1989-08-24 1989-08-24 Adaptive notch filter

Country Status (1)

Country Link
JP (1) JPH0380787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005900A1 (en) * 1998-07-21 2000-02-03 Tiernan Communications, Inc. Adaptive anti-crosscolor notch filter for secam encoder
WO2000040036A1 (en) * 1998-12-31 2000-07-06 Tiernan Communications, Inc. Non-linear digital notch filter for secam video encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005900A1 (en) * 1998-07-21 2000-02-03 Tiernan Communications, Inc. Adaptive anti-crosscolor notch filter for secam encoder
WO2000040036A1 (en) * 1998-12-31 2000-07-06 Tiernan Communications, Inc. Non-linear digital notch filter for secam video encoder

Similar Documents

Publication Publication Date Title
US4646138A (en) Video signal recursive filter with luma/chroma separation
US4658285A (en) Video signal noise reduction apparatus
JPS63121371A (en) Video signal processor
JPH0380787A (en) Adaptive notch filter
JPS58121889A (en) Comb type filter
JPS63141490A (en) Adaptive y/c separation circuit
JPH0313194A (en) Notched filter
KR19980079061A (en) A luminance and color signal separation method and a luminance and color signal separation circuit for performing the same
JP3428148B2 (en) Filter circuit
JPH06339151A (en) Cross color reducing device for brightness signal chrominance signal separator
JPH02162990A (en) Adaptive type notch filter
JPH01206793A (en) Correlation detecting circuit
JPS6057793A (en) Movement detection circuit
JPH03187697A (en) Yc separation circuit
JPH02285779A (en) Contour correction device
JPS6315587A (en) Pal luminance signal and chrominance signal separating device
JPH0773181B2 (en) Filter device
JPH0392093A (en) Movement detection circuit
JPS63180287A (en) Adapting type luminance and chromaticity separating circuit
JPH04119790A (en) Luminance signal chrominance signal separator
JPH03266589A (en) Yc separating circuit
JPH06113315A (en) Noise reduction circuit
JPH01251981A (en) Method for separating y/c
JPH0622332A (en) Luminance signal/chrominance signal separator circuit, television receiver or video signal recording and reproducing device
JPS6292693A (en) Y/c separating device for color television signal