JPH0380745B2 - - Google Patents

Info

Publication number
JPH0380745B2
JPH0380745B2 JP729984A JP729984A JPH0380745B2 JP H0380745 B2 JPH0380745 B2 JP H0380745B2 JP 729984 A JP729984 A JP 729984A JP 729984 A JP729984 A JP 729984A JP H0380745 B2 JPH0380745 B2 JP H0380745B2
Authority
JP
Japan
Prior art keywords
alkali metal
weight
parts
paper
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP729984A
Other languages
Japanese (ja)
Other versions
JPS60155565A (en
Inventor
Katsumi Kuboshima
Toshihiko Kurata
Kazuji Furuta
Isao Iwata
Shoichi Toshiro
Tomomitsu Kubo
Sadao Suganuma
Seikichi Tabei
Nobuhito Isoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Chemical Works Ltd
Original Assignee
Meisei Chemical Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Chemical Works Ltd filed Critical Meisei Chemical Works Ltd
Priority to JP729984A priority Critical patent/JPS60155565A/en
Publication of JPS60155565A publication Critical patent/JPS60155565A/en
Publication of JPH0380745B2 publication Critical patent/JPH0380745B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無機填料紙およびその製造方法に関
し、更に詳述すれば外観上は骨材の含有量を極度
に高めた無機填料紙であるがこれは適宜成形加工
を施すことが可能であり、成形加工後、700〜
1000℃程度の低温で加熱処理を行うとき、形成さ
れた形状を保持したまま焼結し、陶磁器様の硬度
と性状を呈する一種のセラミツクスペーパーであ
る低温焼結性無機填料紙およびその製造方法に関
するものである。 従来セラミツクスペーパー又はセラミツクスシ
ートとして、パルプ、骨材および定着剤からなる
無機填料紙は公知であり、これらの原料を水に分
散させ、抄き上げ紙状にする技術も知られてい
る。例えば特開昭56−63099号公報、特開昭56−
165097号公報および特開昭47−13612号公報など
が知られており、いずれも天然または合成繊維を
骨材(無機質微粒子)と共に抄造し紙葉状になし
ている。しかしながらこれらの従来のセラミツク
スシートまたはセラミツクスペーパーはいずれも
用いられる大部分の骨材が焼結温度が1300℃以上
と高いため焼結加工性が極めて悪く低温焼結性を
示さず、また高温に達する前に成形物の破損をき
たし形状保持性も悪い。 そこで本発明者等は上記に鑑み種々検討した結
果、従来の骨材にその焼結温度降下作用を有し、
かつ自己焼結作用を有する焼結剤を添加すること
により、低温焼結性と形状保持性を有する無機填
料紙が得られることを見出し本発明を完成した。 即ち本発明の第1の発明はパルプ、骨材および
定着剤からなる無機填料紙において、更に焼結剤
を添加してなることを特徴とする低温焼結性無機
填料紙である。 その製造方法は焼結剤の融点または溶解度の差
異により2大別され、その一である第2の発明は
パルプ、骨材、焼結剤および定着剤を水に分散さ
せ、次いで抄紙することを特徴とする低温焼結性
無機填料紙の製造方法であり、他の一である第3
の発明はパルプ、骨材および定着剤を水に分散さ
せ抄紙し、次いで焼結剤を添加することを特徴と
する低温焼結性無機填料紙の製造方法である。 以下第1の発明、第2の発明および第3の発明
について共通点があるので格別区別する必要のな
い場合は単に本発明ということで詳述する。 本発明で用いるパルプは繊維素の種類、形状に
一切関係なく、通常の製紙工業で用いられる如何
なるものも使用可能である。例えば繊維物質とし
て通常のLBKP、NBKP、GP、CGP、SCP、CP
などの木材パルプ、楮、三椏、麻などの靭皮繊
維、レーヨン、ポリオレフインなどの化学合成繊
維、石綿、珪酸カルシウム、ガラス、セラミツク
スなどの無機繊維等を挙げることができる。 また骨材としては、カオリナイト、ハロイサイ
ト、モンモリロナイト、パイロフイライト、セリ
サイト、タルクなどの粘土鉱物を主成分としたも
の、例えば蛙目粘土、木節粘土、信楽粘土、苗木
粘土、高玉カオリン、新発田カオリン、上信粘
土、伊奈粘土、村上粘土、〓器粘土(赤土)、天
草陶石、服部陶石、石川陶石、三石ロウ石など、
珪石、長石、珪長石(石粉)を主成分としたもの
例えば福島珪石、福島長石、釜戸長石、三雲長
石、平津長石、対州石、三河長石など、および砂
婆、藻珪と呼ばれる花崗岩風化物、炭酸カルシウ
ム、ドロマイト、ベントナイト、酸性白土、シヤ
モツトなどの一種又は二種以上を挙げることがで
きる。 定着剤としては天然系例えばカチオン変性デン
プン、酸性デンプン、ジアルデヒドデンプンなど
のデンプン誘導体、又アラビアゴム、グアガムな
どの植物ガム、アルギン酸ソーダ、合成高分子系
例えばアニオン変性・カチオン変性・両性変性ポ
リアクリルアマイド、ポリエチレンイミン、ポリ
アミド、エポキシ樹脂、アミン、アクリル関連モ
ノマーの単独又は共重合物および無機系例えば硫
酸アルミニウム等の多価金属塩などの一種又は二
種以上を挙げることができ、これらはいずれもパ
ルプと骨材および後述する焼結剤を歩留り良く定
着させる作用をなすものであり、その使用方法は
通常の抄紙技術のものと何んら異ならない。 又本発明における焼結剤は骨材との適宜の組合
せでその低温焼結性を高め、骨材同志の接合作用
を示しかつ自己焼結作用を有するものである。こ
れらの物質はいずれも600〜1250℃の融点を有し
単独で溶融した場合にはガラス状を示す。これら
の物質を骨材と混和して焼成すると骨材と反応し
て700〜1000℃で陶磁器状の固形物を生ずる。具
体例としては、水酸化リチウム、水酸化カルシウ
ム、水酸化マグネシウムなどのアルカリ土類金属
水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸
リチウム、重炭酸ナトリウム、重炭酸カリウムな
どの炭酸アルカリ金属塩、重炭酸アルカリ金属
塩、塩化ナトリウム、塩化カリウムなどの塩化ア
ルカリ金属塩、塩化バリウム、塩化カルシウムな
どの塩化アルカリ土類金属塩、塩化アルミニウ
ム、硼酸及びそのアルカリ金属塩、メタ硼酸カリ
ウム、メタ硼酸ナトリウム、メタ硼酸リチウムな
どのメタ硼酸アルカリ金属塩、四硼酸ナトリウ
ム、四硼酸カリウム、四硼酸リチウムなどの四硼
酸アルカリ金属塩、四硼酸カルシウムなどの四硼
酸アルカリ土類金属塩、燐酸カリウム、燐酸ナト
リウム、燐酸リチウムなどの燐酸アルカリ金属
塩、ピロ燐酸ナトリウム、ピロ燐酸水素ナトリウ
ム、ピロ燐酸カリウムなどのピロ燐酸アルカリ金
属塩、ピロ燐酸アルカリ土類金属塩、ピロ燐酸ナ
トリウムカルシウム、ピロ燐酸ナトリウムカルシ
ウムマグネシウムなどのピロ燐酸アルカリ金属ア
ルカリ土類金属塩、メタ燐酸ナトリウム、メタ燐
酸カリウム、メタ燐酸カルシウムなどのメタ燐酸
塩、珪酸ナトリウム、珪酸カリウム、珪酸リチウ
ムなどの珪酸アルカリ金属塩、セスキ珪酸アルカ
リ金属塩、メタ珪酸アルカリ金属塩、PbO−
SiO2系フリツト、PbO−B2O3−SiO2系フリツト、
Na2O−PbO−B2O3−SiO2系フリツト、Na2O−
CaO−B2O3−SiO2系フリツトなどのフリツト類、
ガラスカレツト、黒 石、真珠岩、松脂岩などのガラス質火山岩、木
灰、骨灰およびコレマナイトのうちから選ばれた
一種又は二種以上を挙げることができる。就中ピ
ロ燐酸塩類が好適である。これらの焼結剤はその
溶解度から2大別される。即ちそれ自体か、難溶
化処理を施した際に、その溶解度(g/
100gH2O20℃)が約0.5以下の難溶性のものとそ
れ以外の可溶性のものである。前者は抄紙の際パ
ルプ、骨材および定着剤と共に分散せしめること
が可能ないわゆる内式添加可能な焼結剤であり、
後者はパルプ、骨材および定着剤のみで抄紙した
後に添加するいわゆる外式添加する焼結剤であ
る。上記した焼結剤のうち内式添加可能な焼結剤
はアルカリ土類金属水酸化物、炭酸リチウム、四
硼酸リチウム、四硼酸カルシウム、燐酸リチウ
ム、重燐酸ナトリウム、ピロ燐酸アルカリ金属ア
ルカリ土類金属塩、メタ燐酸カリウム、メタ燐酸
カルシウム、フリツト、ガラスカレツト、ガラス
質火山岩、木灰、骨灰およびコレマナイトのうち
から選ばれた一種又は二種以上でありそれ以外は
外式添加する焼結剤である。難溶化処理としては
一般に粉体のカプセル化技術として知られている
粉体の表層を溶出防止皮膜で被覆する技術が適用
できる。即ち、アルギン酸ナトリウム、ポリアク
リル酸ナトリウム、ポリスチレンスルフオン酸ナ
トリウム、カルボキシメチルセルロースなどのア
ニオン解離性高分子化合物と多荷金属塩との反応
を利用するもの、ゼラチン・アラビアゴムと硫酸
アルミニウムの反応の如き高分子アニオン化合物
と高分子カチオン化合物間の反応を利用するも
の、あるいはジアミン化合物、ジオール化合物、
ジオール化合物と酸クロライドを反応させポリア
ミド、ポリエステル化を行わせるいわゆる界面重
合法などが適用できる。 本発明の無機填料紙は以上の原料から構成され
るものであるがその構成割合はパルプ100重量部
に対して、骨材200〜500重量部が用いられる。 本発明の無機填料紙が焼成された後の形状保持
に骨材は重要な役割を持つ。すなわち、無機填料
紙が焼成されるとき、パルプなどの有機物は燃焼
し、消失する。したがつて、焼成物は焼成残渣物
である骨材のみで形成されることになる。また、
焼成と共に有機物が消失する過程で形状を保ち続
ける必要がある。 骨材の使用量があまり少ないと焼成残渣分(骨
材)が少なく、焼成後の形状を保つことができな
い。 また、骨材は焼成処理を受ける際の収縮性、形
状保持、硬度、有孔度などに影響を及ぼす。 骨材の使用量は焼成物の用途によつて定められ
る。有孔度が大きく、弱強度のいわゆるソフトセ
ラミツクス分野の用途に供する場合は骨材の使用
量は比較的少なくて良い、また、有孔度が小さ
く、硬度が高いセラミツクス分野の用途に供する
場合は骨材の使用量を増加する必要がある。 本発明の無機填料紙は後述の如き多岐にわたる
用途に供することが可能である。従つて種々の試
験の結果、工芸材料、フイルターの如きソフトセ
ラミツクス分野に供する場合は骨材はパルプ100
重量部に対して200〜400重量部が妥当であり、構
造触媒担体の如き工業資材分野に供する場合は
400〜500重量部が妥当である。 骨材及び焼結剤をパルプ等の繊維物と混合し、
通常の抄紙法にて紙層成形する場合に骨材及び焼
結剤を有効に繊維物に定着させる必要がある。通
常の湿式抄紙法では大量の水に被抄紙物を分散す
る(0.5〜1.0%固形物)。従つて、定着処理をし
ない場合には骨材は繊維と定着せずに流失する。 本発明では定着剤を特に限定するものでなく、
骨材との組合わせにおいて適合する定着剤を使用
し、その添加量及び添加方法を工夫したものであ
る。 一般に使用される定着剤は、通常の抄紙方法で
用いられるように骨材、焼結剤及びパルプの分散
物中に加えることで定着を行う。 定着剤の使用量はパルプ100重量部に対して1
〜25重量部である。定着剤の作用は、繊維及び骨
材が水中でアニオンとしての挙動を示すのに対
し、定着剤はカチオンとしての挙動を示し、両者
は水中でイオン的に結合し、凝集して定着する。
この種の凝集効果は定着剤(カチオン化剤)の量
と比例するものでなく、最も有効に作用する範囲
がある。 1重量部未満では定着効果が充分でなく、25重
量部を超える使用はその割に定着効果が上がらず
不経済である。従つてパルプ100重量部に対して
1〜25重量部の添加が最も有効である。 本発明に係わる無機填料紙は基本原料としてパ
ルプ等の有機物を含有し、焼成時にこの有機物の
燃焼、消失が行なわれ、そのために有機物消失箇
所に空隙を生ずる。従つて、この空隙発生に伴な
い被焼成物の形状は不安定になり、焼成過程での
形状破損を生ずる。そこでこの空隙発生と平行的
に骨材同志を結着し、焼成温度の上昇と共に骨材
の融結を行なわせなければならない。すなわち焼
成の初期には自己接着効果を有し、焼成の後期
(温度上昇後)では骨材に対して焼結温度を降下
し融結させる効果を有する物質と骨材を組合わせ
ることで形状保持が可能となつたのである。 本発明で使用される焼結剤は、いずれも骨材に
対して焼成温度を降下し、融結させる効果を有す
る。このように焼成温度の降下及び焼成過程にお
ける軟質化の作用をする焼結剤の使用量をあまり
多く使用すれば焼成時に軟質化が激しく形状保持
が出来ない。また使用量が少ない場合には焼結効
果が少なく、焼成過程で形状保持が出来ない。 種々の試験の結果パルプ100重量部に対して50
〜1000重量部が最も有効であることが判明した。 焼結剤の使用量は焼結剤の種類によつても異な
る。骨材溶融温度降下作用が著しいものではあま
り多量に使用することができない。また、骨材溶
融温度降下作用が著しくないものでは比較的に多
量に使用する必要がある。 次に本発明の第2の発明に言及すると、これ
は、パルプ、骨材、焼結剤および定着剤を一緒に
した所謂内添した分散液を抄紙する低温焼結性無
機填料紙である。これについては先ずパルプを通
常の抄紙原料の難解方法例えばパルパー、ビータ
ー、リフアイナーなどで分散し、別に骨材と焼結
剤をケデイーミル、ミキサーなどの高速分散機を
用いて水と共に分散した液を調整し、両者を混合
し分散する。この際の固形分濃度は通常1〜5重
量%程度で良好な分散液が得られる。この分散液
中に前記した定着剤を加え、パルプと骨材およ
び、焼結剤の定着を行う。尤もパルプ、骨材、焼
結剤および定着剤を最初から一緒にし大量の水中
に分散しても差支えない。しかしながら通常は骨
材と焼結剤の種類にもよるがそれらの添加量が多
い場合には水度が低下し、また湿紙の強度も悪
くなることがあるので上記の如く原料各別の分散
液を調整しこれを混合するのが好ましい。又定着
剤についてもパルプ及び骨材、焼結剤の分散液に
水溶性アニオン化合物(例えば、ポリアクリルア
ミド変性物、アルギン酸ソーダ、アラビアゴムな
ど)を加え、しかる後にカチオン化合物を加え、
両者の凝集効果を媒介としてパルプと骨材、焼結
剤の凝集を行わせる方法が特に有効である。更に
定着剤のうちアニオン化合物及びカチオン化合物
の添加順序を変更したり、添加量を数回に分割す
ることも有効である。 パルプ、骨材、焼結剤及び定着剤の分散液に所
望により乾湿紙力増強剤の添加も行う。この目的
のためには例えば、乾燥紙力増強剤としてポリア
クリルアミド化合物など合成物、グアガム、デン
プンなど天然物が使用され、湿式紙力増強剤とし
ては尿素、メラミン系ホルマリン縮合物、エピク
ロールヒドリン系ポリアミド樹脂などが用いられ
る。 以上の混合分散液を更に固形分濃度0.5〜1.0%
程度まで稀釈し、金網上に流し込み水し、抄紙
する。抄紙後は常法に従い金網上より剥離し、次
いで乾燥し目的物を得る。この第2の発明におい
て用いられる焼結剤は既述した焼結剤のうち専ら
難溶性のものが用いられる。その使用量はパルプ
100重量部に対して50〜1000重量部が、得られる
低温焼結性無機填料紙の焼成処理を受ける際の形
状保持が可能な範囲で骨材の焼結温度を降下し融
結させる効果が大きく好ましい。骨材の使用量は
パルプ100重量部に対して200〜500重量部が、目
的物が焼成処理を受ける際の収縮性、形状保持、
硬度、有孔度などの諸物性上好適である。又定着
剤の使用量はパルプ100重量部あたり1〜25重量
部用いるのが、パルプと骨材、焼結剤の定着効
率、抄紙効率上最適である。 次に第3の発明であるが、これは用いる焼結剤
が、可溶性である場合の低温焼結性無機填料紙の
製造方法であり、パルプ、骨材および定着剤のみ
の分散液を抄紙した後次いで焼結剤を添加する所
謂外式添加方式によるものである。従つて抄紙ま
での工程については焼結剤の有無を除けば第2の
発明と異なるところはなく、焼結剤の添加態様が
相違するものである。即ち加溶性焼結剤は多量の
水に流失してしまうためパルプ、骨材および定着
剤とともに湿式抄紙(内添法)に供することがで
きないので、その添加方法を検討したところ、パ
ルプ、骨材および定着剤のみで先ず抄紙し、次い
で後加工で添加しても本発明の目的を達成し得る
ことを知見し完成されたものである。後加工によ
る添加については抄紙後の紙に対して可溶性焼結
剤の水溶液またはペースト状分散液の含浸処理、
塗付処理、スプレー塗付処理などの方法が適用さ
れる。そしてその際望ましくは含浸処理剤と併用
される。含浸処理剤は紙匹内成分の接着、含浸後
の可塑性付与、紙質の強化などの作用をするもの
で、通常ポリビニールアルコール、カルボキシメ
チルセルロース、デンプンなどの糊剤、ポリアク
リル酸エステル重合物、スチレン・ブタジエン共
重合物などの可塑性物などが用いられる。その他
パルプ、骨材、定着剤の種類、添加量、焼結剤の
添加量およびそれらの限定理由についても第1、
第2の発明と異なるところはない。 ところで本発明の低温焼結性無機填料紙の製造
方法を焼結剤の種類に応じて内添法と外添法に2
大別して説明したが、各原料の種類、物性、抄紙
効率、最終製品の物性によつては両者の併用又は
同一焼結剤を数分割して両添加法のいずれか一つ
あるいは併用して用いることが出来る。 かくして得られる本発明の無機填料紙は700〜
1000℃という低温で短時間に焼結し、陶磁器と類
似する硬度、外観を呈する。焼結前の本発明物は
通常の無機填料含有紙であり一般の紙成形加工に
供することができる。例えば、段ボール形付加工
による波状形の付与、製袋、製函加工による立体
成形、エンボツシング加工による凹凸形状の付
与、巻き込み、折たたみによる積層成形等通常の
紙と同様の成形処理が可能である。この成形物を
焼結すれば、照結前の形状を保つて焼結し、陶磁
器様になる。従つて本発明物は通常の窯業分野で
採用される粘土形処理と比較してはるかに複雑で
かつ薄層のセラミツク構造体の提供に役立つ。こ
の特性を生かして、本発明物は次のような分野に
適用される。 (1) 多孔性セラミツクスとしての特性を生かした
分野 填料紙中の有機物(パルプ成分)が燃焼消失
することにより間隙を生じ、多孔性の焼成物に
することが可能である。従つて、過体、吸着
体に供することができる。例えば、含油水処理
(過)体、ガス吸着体、触媒吸着担体、耐薬
品・耐熱性過体(フイルター)等である。 (2) 耐熱・耐薬品性を生かした分野 焼成物は陶磁器特性と類似し、耐熱、耐薬品
性を有する触媒担体、蓄熱体、ガス交換体、薬
液過体、耐熱資殖材、耐熱絶縁体等 (3) 成形加工特性を生かした分野 構造性触媒担体、構造性吸着体、耐熱性隔壁
材、構造性蓄熱剤、耐熱耐薬品隔膜材、耐熱保
温性建材等 (4) 手芸材料的特性を生かした分野 折りまげ、切断等通常の紙と同様な加工性を
有する。従つて、折紙や造花、人形のような造
形物にして、焼成することが可能である。 特殊造形陶芸材料、耐熱性装飾壁(タイル)
材、等 (5) 薄層焼結性及び融結性特性を生かした分野 本発明物を接合し焼結すれば、接合部で融結
接合が可能である。従つて、他の陶磁体との融
結接合が可能である。素焼セラミツク体の表面
処理材、装飾性表面処理材等 (6) 特殊構造成形性を生かした分野 上記した各項の特性を総合化した機能性構造
体として利用される。 簡易浄化槽の微生物担体、魚礁構体等 以下実施例を挙げて本発明を具体的に説明す
る。 実施例 1 (内式添加法) パルプ原料100g(アバカパルプ50g、
LBKP25g、NBKP25g)を水25に分散し、
(CSF400ml)これに骨材として楽焼杯土(カオリ
ン系粘土)350g、カオリナイト100g、焼結剤と
してピロ燐酸ナトリウム・カルシウム350gを水
5に分散した液を加え撹拌混合した。この分散
液にカチオン性アクリルアミド凝集剤(明成化学
工業(株)製、フアイレツクスRC−104)3.6gを加え
5分間撹拌混合した後、アニオン性アクリルアミ
ド系紙力増強剤(荒川化学工業(株)製、ポリストロ
ン191)9g、次いで再度カチオン性アクリルアミ
ド凝集剤3.6gを加え凝集定着を行つた。これに水
を加えて全量50に希釈し、このうち1.5を用
いて25×25cm角のシートを作成した。(坪量約
390g/m2) 得られたシートをφ3cm×5cmの円筒形にし、
電気炉中で400℃、30分間仮焼し、850℃、30分間
焼成した。得られた焼成物は原寸に対し約24%の
線収縮を示し円筒形状を保つてセラミツク化し
た。又縦方向の圧縮強度は1.5Kg/cm2であつた。 シートを折り鶴に折りたたみ、上記の条件で焼
成したところ、折り鶴の形状を伴つてセラミツク
ス化した。 実施例 2 (内式添加法) 0.5%アルギン酸ナトリウム水溶液1中に炭
酸リチウム400gを分散し、別した。次にアル
ギン酸ナトリウム液で湿潤した炭酸リチウムを
0.5%塩化カルシウム水溶液2中に激しく撹拌
しながら投入した後別した。 以上の難溶化処理をした炭酸リチウムは、20℃
の水100mlに対する溶出損失量が、未処理のもの
と比較して約1/10に抑制されていることが判つ
た。 かくして得られた水難溶性炭酸リチウムを、原
料パルプ100g(アバカパルプ50g、LBKP20g、
NBKP20g、石綿10g)に対して焼結剤として
350g、骨材として蛙目粘土200g、天草陶石150g、
定着剤としてカチオン性アクリルアミド凝集剤
(明成化学工業(株)製、フアイレツクスRC−104)
4g、アニオン性アクリルアミド系紙力増強剤
(明成化学工業(株)製、フアイレツクスM)4gを使
用して実施例1と同様に25×25cm角のシートを作
成した。(坪量約320g/m2) 又、実施例1と同様にφ3cm×5cmの円筒形に
成形し焼成したところ、原寸に対して約13%の線
収縮を示し、円筒形状を保つてセラミツクス化し
た。縦方向の圧縮強度は0.6Kg/cm2であつた。 実施例 3 (内式添加法) 5%ゼラチン水溶液1中に炭酸リチウム
400gを分散し別した。次にゼラチンで湿潤し
た炭酸リチウムを5%アラビアゴム水溶液2中
に撹拌分散し、これに硫酸アルミニウム水溶液を
加えてPH4.5に調整し別した。以上の難溶化処
理をした炭酸リチウムは、溶出損失量が未処理の
ものと比較して約1/15に抑制されていることが
判つた。かくして得られた水難溶性炭酸リチウム
を原料パルプ100g(アバカパルプ40g、
LBKP15g、NBKP15g、三椏10g、ガラス繊維
20g)に対して焼結剤として250g、骨材として木
節粘土200g、ドロマイト50g、定着剤としてカチ
オン性アクリルアミド凝集剤(明成化学工業(株)製
フイイレツクスRC−104)2.5g、アニオン性アク
リルアミド系紙力増強剤(明成化学工業(株)製フア
イレツクスM)2.5gを使用して実施例1と同様に
シートを作成した。(坪量約240g/m2) 又実施例1と同様に焼成したところ、約20%の
線収縮と、0.8〜0.9Kg/cm2の圧縮強度を示す円筒
形セラミツクスが得られた。 実施例 4 (外式添加法) パルプ原料100g(アバカパルプ40g、
LBKP30g、NBKP30g)を水25に分散し
(CSF400ml)これに骨材として伊奈粘土390g、
炭酸カルシウム60gを水6に分散した液を加え
撹拌混合した。この分散液にカチオン性アクリル
アミド凝集剤(明成化学工業(株)製、フアイレツク
スRC−104)1.65gを加え5分間撹拌混合した後
アニオン性アクリルアミド系紙力増強剤(明成化
学工業(株)製、フアイレツクスM)2.75g、次いで
再度カチオン性アクリルアミド凝集剤1.65gを加
え凝集定着を行つた。これに水を加えて全量50
に希釈し、このうち1.5を用いて25×25cm角の
シートを作成した。(坪量約240g/m2) 次に、水酸化リチウム50gをSBRラテツクス・
ポリビニールアルコール混合水溶液(SBRラテ
ツクス1.0%、ポリビニールアルコール1.0%)
500mlに溶解する。この混合水溶液を上記シート
に含浸し(含浸率100%)100〜110℃で乾燥した。
得られた紙を実施例1と同様に円筒状に成形し焼
成したところ線収縮23〜24%、圧縮強度0.8〜0.9
Kg/cm2を示す円筒形セラミツクスが得られた。 実施例 5 (内外添併用法) パルプ原料100g(アバカパルプ30g、
LBKP30g、NBKP30g、GP10g)を水25に分
散し(CSF400ml)、これに骨材として新発田カオ
リン350g、村上粘土100g、福島長石50g、焼結剤
としてピロ燐酸ナトリウム・カルシウム・マグネ
シウム250gを水5に分散した液を加え撹拌混
合した。この分散液にカチオン性アクリルアミド
凝集剤(明成化学工業(株)製フアイレツクスRC−
107)2.55gを加え5分間撹拌混合した後、アニオ
ン性アクリルアミド系紙力増強剤(明成化学工業
(株)製フアイレツクスM)4.25g、次いで再度カチ
オン性アクリルアミド凝集剤2.55gを加え凝集定
着を行つた。 これに水を加えて全量50に希釈し、このうち
1を用いて25×25cm角のシートを作成した。 次に水酸化リチウム30gを水300mlに溶解し、
含浸率100%で先のシートに含浸処理を行つた。 得られた紙を実施例1と同様の焼成に供したと
ころ線収縮27%、縦方向圧縮強度1.6Kg/cm2を示
す円筒形セラミツクスが得られた。 実施例 6 表1に示すパルプ原料、骨材、焼結剤及び定着
剤を実施例1と同様に水に分散し撹拌混合後全量
50に希釈した。(No.3,4は焼結剤外添法のた
め除く) このうち3を用いて25×25cm角のシートを作
製した。 No.3,4に焼結剤の外式添加を行ない、これら
を実施例1と同様に焼成試験を行つた。 シートの焼成前後の物性値を表2に示した。
The present invention relates to an inorganic filler paper and a method for manufacturing the same.More specifically, the present invention relates to an inorganic filler paper with an extremely high aggregate content in appearance, but it can be shaped and processed as appropriate. After processing, 700~
This invention relates to low-temperature sinterable inorganic filler paper, which is a type of ceramic paper that sinters while retaining its formed shape and exhibits ceramic-like hardness and properties when heat-treated at a low temperature of about 1000°C, and a method for producing the same. It is something. Conventionally, inorganic filler paper made of pulp, aggregate, and fixing agent is known as ceramic paper or ceramic sheet, and a technique of dispersing these raw materials in water and forming it into paper is also known. For example, JP-A-56-63099, JP-A-56-
No. 165097 and Japanese Unexamined Patent Application Publication No. 13612/1984 are known, and both of them are made into paper sheets by making natural or synthetic fibers together with aggregate (inorganic fine particles). However, most of the aggregates used in these conventional ceramic sheets or ceramic papers have a high sintering temperature of 1,300°C or higher, resulting in extremely poor sintering processability and no low-temperature sinterability, and they reach high temperatures. The molded product is damaged beforehand and its shape retention is poor. Therefore, as a result of various studies in view of the above, the present inventors found that conventional aggregates have the effect of lowering the sintering temperature.
The present invention was completed based on the discovery that by adding a sintering agent having a self-sintering effect, an inorganic filler paper having low-temperature sinterability and shape retention can be obtained. That is, the first aspect of the present invention is a low-temperature sinterable inorganic filled paper comprising pulp, aggregate, and a fixing agent, further comprising a sintering agent. The manufacturing method is divided into two types depending on the difference in melting point or solubility of the sintering agent. One of them, the second invention, involves dispersing pulp, aggregate, sintering agent, and fixing agent in water, and then making paper. This is a method for producing a low-temperature sinterable inorganic filler paper, which is characterized by a third method.
The invention is a method for producing low-temperature sinterable inorganic filled paper, which comprises dispersing pulp, aggregate, and fixing agent in water to form paper, and then adding a sintering agent. Hereinafter, the first invention, the second invention, and the third invention will be described in detail simply as the present invention when there is no need to distinguish them because they have common features. The pulp used in the present invention can be any pulp used in the ordinary paper manufacturing industry, regardless of the type or shape of the cellulose. For example, the usual LBKP, NBKP, GP, CGP, SCP, CP as fiber materials
Examples include wood pulp such as kozo, mitsumata, bast fibers such as hemp, chemically synthetic fibers such as rayon and polyolefin, and inorganic fibers such as asbestos, calcium silicate, glass, and ceramics. In addition, as aggregates, those mainly composed of clay minerals such as kaolinite, halloysite, montmorillonite, pyrophyllite, sericite, and talc, such as Frogme clay, Kibushi clay, Shigaraki clay, Naegi clay, Takadama kaolin, Shibata kaolin, Joshin clay, Ina clay, Murakami clay, Tsuki clay (red clay), Amakusa pottery stone, Hattori pottery stone, Ishikawa pottery stone, Mitsuishi wax stone, etc.
Those whose main components are silica, feldspar, and feldspar (stone powder), such as Fukushima silica, Fukushima feldspar, Kamado feldspar, Mikumo feldspar, Hiratsu feldspar, Taishu stone, and Mikawa feldspar, and weathered granite called Saba and Mokei. , calcium carbonate, dolomite, bentonite, acid clay, and siyamoto. Examples of fixing agents include natural ones such as cationically modified starch, acidic starch, starch derivatives such as dialdehyde starch, vegetable gums such as gum arabic and guar gum, sodium alginate, and synthetic polymers such as anionically modified, cationically modified and amphoteric modified polyacrylic. Examples include one or more of amide, polyethyleneimine, polyamide, epoxy resin, amine, acrylic-related monomers alone or copolymers, and inorganic systems such as polyvalent metal salts such as aluminum sulfate. It functions to fix pulp, aggregate, and a sintering agent (described later) with a good yield, and its usage is no different from that in normal papermaking technology. In addition, the sintering agent in the present invention enhances its low-temperature sinterability when combined with aggregates, exhibits a bonding effect between aggregates, and has a self-sintering effect. All of these substances have melting points of 600 to 1250°C and exhibit a glassy state when melted alone. When these substances are mixed with aggregate and fired, they react with the aggregate to form a ceramic-like solid at 700-1000°C. Specific examples include alkaline earth metal hydroxides such as lithium hydroxide, calcium hydroxide, and magnesium hydroxide; alkali metal carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, sodium bicarbonate, and potassium bicarbonate; Alkali metal carbonates, alkali metal chlorides such as sodium chloride and potassium chloride, alkaline earth metal chlorides such as barium chloride and calcium chloride, aluminum chloride, boric acid and its alkali metal salts, potassium metaborate, sodium metaborate, meta Alkali metal metaborate salts such as lithium borate, alkali metal salts of tetraborate such as sodium tetraborate, potassium tetraborate, lithium tetraborate, alkaline earth metal salts of tetraborate such as calcium tetraborate, potassium phosphate, sodium phosphate, lithium phosphate Alkali metal phosphates such as sodium pyrophosphate, sodium hydrogen pyrophosphate, potassium pyrophosphate, alkaline earth metal pyrophosphates, alkali pyrophosphates such as sodium calcium pyrophosphate, sodium calcium pyrophosphate, magnesium pyrophosphate, etc. Metal alkaline earth metal salts, metaphosphates such as sodium metaphosphate, potassium metaphosphate, calcium metaphosphate, alkali metal silicates such as sodium silicate, potassium silicate, lithium silicate, alkali metal sesquisilicate, alkali metal metasilicate , PbO−
SiO 2 frit, PbO−B 2 O 3 −SiO 2 frit,
Na 2 O−PbO−B 2 O 3 −SiO 2 -based frit, Na 2 O−
Frits such as CaO−B 2 O 3 −SiO 2 type frits,
Examples include one or more selected from glass volcanic rocks such as glass cullet, black stone, perlite, and pinestone, wood ash, bone ash, and colemanite. Among these, pyrophosphates are preferred. These sintering agents are classified into two types based on their solubility. That is, its solubility (g/
100gH 2 O (20°C) is approximately 0.5 or less, which is poorly soluble, and the rest is soluble. The former is a sintering agent that can be added internally and can be dispersed together with pulp, aggregate, and fixing agent during papermaking.
The latter is a so-called externally added sintering agent that is added after paper is made using only pulp, aggregate, and fixing agent. Among the above sintering agents, the sintering agents that can be added internally are alkaline earth metal hydroxides, lithium carbonate, lithium tetraborate, calcium tetraborate, lithium phosphate, sodium biphosphate, alkali metal pyrophosphates, and alkaline earth metal pyrophosphates. The sintering agent is one or more selected from salt, potassium metaphosphate, calcium metaphosphate, frit, glass cullet, glassy volcanic rock, wood ash, bone ash, and colemanite, and the others are externally added sintering agents. As the treatment for making the powder less soluble, a technique generally known as a powder encapsulation technique in which the surface layer of the powder is coated with an elution-preventing film can be applied. That is, methods that utilize the reaction between anion-dissociating polymer compounds such as sodium alginate, sodium polyacrylate, sodium polystyrene sulfonate, and carboxymethyl cellulose and multi-charged metal salts, and reactions between gelatin/gum arabic and aluminum sulfate. Those that utilize the reaction between a polymer anion compound and a polymer cation compound, or diamine compounds, diol compounds,
A so-called interfacial polymerization method in which a diol compound and an acid chloride are reacted to form polyamide or polyester can be applied. The inorganic filler paper of the present invention is composed of the above raw materials, and the composition ratio is 200 to 500 parts by weight of aggregate to 100 parts by weight of pulp. Aggregate plays an important role in maintaining the shape of the inorganic filler paper of the present invention after it is fired. That is, when the inorganic filler paper is fired, organic materials such as pulp are burned and lost. Therefore, the fired product is formed only from aggregate, which is the firing residue. Also,
It is necessary to maintain the shape while the organic matter disappears during firing. If the amount of aggregate used is too small, the firing residue (aggregate) will be small and the shape after firing will not be maintained. In addition, aggregate affects shrinkage, shape retention, hardness, porosity, etc. during firing. The amount of aggregate used is determined by the use of the fired product. When used in the field of so-called soft ceramics with high porosity and low strength, the amount of aggregate used can be relatively small; when used in the field of ceramics with low porosity and high hardness, It is necessary to increase the amount of aggregate used. The inorganic filler paper of the present invention can be used for a wide variety of purposes as described below. Therefore, as a result of various tests, when used in soft ceramics fields such as craft materials and filters, pulp 100% is used as the aggregate.
200 to 400 parts by weight is appropriate, and when used in the field of industrial materials such as structural catalyst carriers,
400-500 parts by weight is reasonable. Mix aggregate and sintering agent with fibrous materials such as pulp,
When forming a paper layer using a normal papermaking method, it is necessary to effectively fix aggregate and sintering agent to the fibrous material. In normal wet papermaking methods, the paper material is dispersed in a large amount of water (0.5-1.0% solids). Therefore, if no fixing treatment is performed, the aggregate will not be fixed to the fibers and will be washed away. In the present invention, the fixing agent is not particularly limited,
A fixing agent that is compatible with the aggregate is used, and the amount and method of addition is devised. Generally used fixing agents are added to the dispersion of aggregate, sintering agent, and pulp to achieve fixing, as used in conventional papermaking processes. The amount of fixing agent used is 1 per 100 parts by weight of pulp.
~25 parts by weight. The action of the fixing agent is that while fibers and aggregates behave as anions in water, the fixing agent behaves as cations, and the two bond ionically in water, coagulate, and fix.
This type of aggregation effect is not proportional to the amount of fixing agent (cationizing agent), and there is a range in which it acts most effectively. If it is less than 1 part by weight, the fixing effect will not be sufficient, and if it exceeds 25 parts by weight, the fixing effect will not be increased and it will be uneconomical. Therefore, it is most effective to add 1 to 25 parts by weight per 100 parts by weight of pulp. The inorganic filler paper according to the present invention contains an organic substance such as pulp as a basic raw material, and this organic substance is burned and disappears during firing, thereby creating voids in the areas where the organic substance disappears. Therefore, the shape of the object to be fired becomes unstable due to the generation of voids, resulting in damage to the shape during the firing process. Therefore, it is necessary to bind the aggregates together in parallel with the generation of the voids, and to cause the aggregates to fuse together as the firing temperature increases. In other words, in the early stages of firing, it has a self-adhesive effect, and in the later stages of firing (after the temperature rises), the shape is maintained by combining the aggregate with a substance that has the effect of lowering the sintering temperature and melting the aggregate. became possible. All of the sintering agents used in the present invention have the effect of lowering the sintering temperature of the aggregate and causing it to fuse. If the amount of the sintering agent, which lowers the firing temperature and softens the material during the firing process, is used in too large an amount, the material will become too soft during firing and will not be able to maintain its shape. Moreover, if the amount used is small, the sintering effect will be small and the shape will not be maintained during the firing process. As a result of various tests, 50% per 100 parts by weight of pulp
~1000 parts by weight was found to be most effective. The amount of sintering agent used also differs depending on the type of sintering agent. If the effect of lowering the aggregate melting temperature is significant, it cannot be used in too large a quantity. In addition, if it does not significantly lower the aggregate melting temperature, it is necessary to use it in a relatively large amount. Next, referring to the second invention of the present invention, this is a low-temperature sinterable inorganic filler paper that is made from a so-called internally added dispersion in which pulp, aggregate, sintering agent, and fixing agent are combined. For this purpose, pulp is first dispersed using conventional papermaking raw materials such as difficult-to-understand methods such as pulpers, beaters, and refiners. Separately, aggregate and sintering agent are dispersed with water using a high-speed dispersion machine such as a Keddy mill or mixer to prepare a liquid. Then, mix and disperse the two. At this time, the solid content concentration is usually about 1 to 5% by weight to obtain a good dispersion. The above-described fixing agent is added to this dispersion to fix the pulp, aggregate, and sintering agent. Of course, the pulp, aggregate, sintering agent and fixing agent may be mixed together from the beginning and dispersed in a large amount of water. However, depending on the type of aggregate and sintering agent, if they are added in large amounts, the water content may decrease and the strength of the wet paper may also deteriorate, so dispersion of each raw material is required as described above. Preferably, the liquid is prepared and mixed. Regarding the fixing agent, a water-soluble anionic compound (for example, polyacrylamide modified product, sodium alginate, gum arabic, etc.) is added to the dispersion of pulp, aggregate, and sintering agent, and then a cationic compound is added.
Particularly effective is a method in which the pulp, aggregate, and sintering agent are agglomerated through the aggregation effect of the two. Furthermore, it is also effective to change the order in which the anionic compound and cationic compound are added in the fixing agent, or to divide the amount of addition into several portions. If desired, a wet and dry paper strength enhancer is also added to the dispersion of pulp, aggregate, sintering agent, and fixing agent. For this purpose, for example, synthetic materials such as polyacrylamide compounds and natural products such as guar gum and starch are used as dry paper strength enhancers, while urea, melamine-based formalin condensates, and epichlorohydrin are used as wet paper strength enhancers. Polyamide resin and the like are used. Add the above mixed dispersion to a solid content concentration of 0.5 to 1.0%.
Dilute to a certain extent, pour it onto a wire mesh, rinse with water, and make paper. After papermaking, the paper is peeled off from the wire mesh according to a conventional method, and then dried to obtain the desired product. The sintering agent used in this second invention is exclusively a sparingly soluble sintering agent among the sintering agents mentioned above. The amount used is pulp
50 to 1000 parts by weight per 100 parts by weight of low-temperature sinterable inorganic filler paper has the effect of lowering the sintering temperature of the aggregate and fusing it to the extent that it can maintain its shape during the firing process. Largely desirable. The amount of aggregate used is 200 to 500 parts by weight per 100 parts by weight of pulp.
It is suitable for various physical properties such as hardness and porosity. The amount of fixing agent to be used is 1 to 25 parts by weight per 100 parts by weight of pulp, which is optimal in terms of fixing efficiency of the pulp, aggregate and sintering agent, and papermaking efficiency. Next, the third invention is a method for producing low-temperature sinterable inorganic filler paper when the sintering agent used is soluble, and paper is made from a dispersion of only pulp, aggregate, and fixing agent. This is by a so-called external addition method in which a sintering agent is then added. Therefore, the process up to paper making is the same as the second invention except for the presence or absence of a sintering agent, and the only difference is the manner in which the sintering agent is added. In other words, since the soluble sintering agent is washed away by a large amount of water, it cannot be used in wet paper making (internal addition method) together with the pulp, aggregate, and fixing agent. The present invention was completed after discovering that the object of the present invention can be achieved even if the fixing agent is used alone in paper making and then added in post-processing. For addition during post-processing, impregnation treatment with an aqueous solution or paste dispersion of a soluble sintering agent on the paper after papermaking,
Methods such as painting, spray painting, etc. are applied. In this case, it is preferably used in combination with an impregnation treatment agent. Impregnating agents have the effect of adhering components within the paper web, imparting plasticity after impregnation, and reinforcing the paper quality, and are usually sizing agents such as polyvinyl alcohol, carboxymethyl cellulose, and starch, polyacrylic acid ester polymers, and styrene.・Plastic materials such as butadiene copolymers are used. In addition, the types and amounts of pulp, aggregate, fixing agent, amount of sintering agent added, and reasons for their limitations are also explained in the first section.
There is no difference from the second invention. By the way, the method for manufacturing the low-temperature sinterable inorganic filler paper of the present invention can be divided into two methods, an internal addition method and an external addition method, depending on the type of sintering agent.
Although explained separately, depending on the type of each raw material, physical properties, papermaking efficiency, and physical properties of the final product, both may be used in combination, or the same sintering agent may be divided into several parts and either one of the two addition methods or a combination may be used. I can do it. The inorganic filler paper of the present invention obtained in this way has a
Sintered in a short time at a low temperature of 1000℃, it has a hardness and appearance similar to ceramics. The product of the present invention before sintering is a normal inorganic filler-containing paper and can be subjected to general paper forming processes. For example, it is possible to perform the same forming processes as ordinary paper, such as giving a wavy shape by corrugated board shaping, three-dimensional forming by bag making and box making, giving uneven shapes by embossing, and laminating by rolling and folding. . If this molded product is sintered, it will maintain its shape before sintering and become ceramic-like. The invention therefore lends itself to the provision of much more complex and thin-layered ceramic structures than the clay mold treatments employed in the conventional ceramic industry. Taking advantage of this characteristic, the present invention can be applied to the following fields. (1) Fields that take advantage of the characteristics of porous ceramics When the organic matter (pulp component) in the filler paper burns and disappears, voids are created, making it possible to create porous fired products. Therefore, it can be used as an adsorbent. Examples include oil-impregnated water treatment bodies, gas adsorbents, catalyst adsorption carriers, chemical-resistant and heat-resistant membranes (filters), and the like. (2) Fields that take advantage of heat and chemical resistance Fired products have properties similar to those of ceramics, such as catalyst carriers, heat storage bodies, gas exchange bodies, chemical liquid overbodies, heat-resistant culture materials, and heat-resistant insulators that have heat and chemical resistance. etc. (3) Fields that take advantage of the characteristics of molding processing Structural catalyst carriers, structural adsorbents, heat-resistant partition materials, structural heat storage agents, heat-resistant and chemical-resistant diaphragm materials, heat-resistant and heat-retaining building materials, etc. (4) Characteristics of handicraft materials Fields where it can be used: It can be processed in the same way as regular paper, such as folding and cutting. Therefore, it is possible to make objects such as origami, artificial flowers, and dolls and fire them. Special shaped ceramic materials, heat-resistant decorative walls (tiles)
Materials, etc. (5) Fields that take advantage of thin layer sinterability and fusibility properties If the present invention is bonded and sintered, fusion bonding is possible at the bonded portion. Therefore, fusion bonding with other ceramic materials is possible. Surface treatment materials for unglazed ceramic bodies, decorative surface treatment materials, etc. (6) Fields that take advantage of special structural formability Used as functional structures that integrate the characteristics of each of the above items. Microorganism carrier for simple septic tank, fish reef structure, etc. The present invention will be specifically explained below with reference to Examples. Example 1 (internal addition method) 100g of pulp raw material (50g of abaca pulp,
Disperse 25 g of LBKP, 25 g of NBKP) in 25 g of water,
(400 ml of CSF) To this were added 350 g of Rakuyaki Haido (kaolin clay) as aggregates, 100 g of kaolinite, and 350 g of sodium/calcium pyrophosphate dispersed in 5 parts of water as a sintering agent and mixed with stirring. To this dispersion, 3.6 g of a cationic acrylamide flocculant (manufactured by Meisei Chemical Industry Co., Ltd., Firex RC-104) was added and mixed with stirring for 5 minutes. , Polystron 191), and then 3.6 g of a cationic acrylamide flocculant were added again to perform flocculation and fixation. Water was added to dilute this to a total volume of 50, and 1.5 of this was used to create a 25 x 25 cm square sheet. (Basm weight approx.
390g/m 2 ) The obtained sheet was made into a cylindrical shape of φ3cm x 5cm,
It was calcined in an electric furnace at 400°C for 30 minutes, and then fired at 850°C for 30 minutes. The obtained fired product exhibited a linear shrinkage of about 24% relative to its original size, maintained a cylindrical shape, and was turned into a ceramic. Moreover, the compressive strength in the longitudinal direction was 1.5 Kg/cm 2 . When the sheet was folded into an origami crane and fired under the above conditions, it was made into ceramic with the shape of an origami crane. Example 2 (Internal addition method) 400 g of lithium carbonate was dispersed in 1 of a 0.5% sodium alginate aqueous solution and separated. Next, add lithium carbonate moistened with sodium alginate solution.
It was poured into a 0.5% calcium chloride aqueous solution 2 with vigorous stirring and then separated. Lithium carbonate that has undergone the above treatment to make it difficult to dissolve is heated at 20°C.
It was found that the amount of elution loss per 100 ml of water was suppressed to about 1/10 of that of the untreated sample. The poorly water-soluble lithium carbonate thus obtained was mixed with 100 g of raw material pulp (50 g of abaca pulp, 20 g of LBKP,
As a sintering agent for NBKP20g, asbestos 10g)
350g, Frogme clay 200g as aggregate, Amakusa pottery stone 150g,
A cationic acrylamide flocculant (manufactured by Meisei Chemical Industry Co., Ltd., Firex RC-104) as a fixing agent
A 25×25 cm square sheet was prepared in the same manner as in Example 1 using 4 g of anionic acrylamide paper strength enhancer (FIREX M, manufactured by Meisei Chemical Industry Co., Ltd.). (Basic weight approximately 320 g/m 2 ) Also, when it was molded into a cylindrical shape of φ3 cm x 5 cm and fired in the same manner as in Example 1, it showed a linear shrinkage of approximately 13% with respect to the original size, and the cylindrical shape was maintained and it was made into ceramic. did. The compressive strength in the longitudinal direction was 0.6 Kg/cm 2 . Example 3 (Internal addition method) Lithium carbonate in 1 5% gelatin aqueous solution
400g was dispersed and separated. Next, lithium carbonate moistened with gelatin was stirred and dispersed in a 5% aqueous gum arabic solution 2, and an aqueous aluminum sulfate solution was added thereto to adjust the pH to 4.5, and the mixture was separated. It was found that the elution loss of lithium carbonate treated to make it less soluble was suppressed to about 1/15 of that of untreated lithium carbonate. The poorly water-soluble lithium carbonate thus obtained was mixed into 100g of raw material pulp (40g of abaca pulp,
LBKP15g, NBKP15g, Mitsumata 10g, glass fiber
20g), 250g of sintering agent, 200g of Kibushi clay and 50g of dolomite as aggregate, 2.5g of cationic acrylamide flocculant (Filex RC-104 manufactured by Meisei Chemical Industry Co., Ltd.) as fixing agent, and anionic acrylamide type. A sheet was prepared in the same manner as in Example 1 using 2.5 g of a paper strength enhancer (FIREX M manufactured by Meisei Chemical Industry Co., Ltd.). (Basic weight: about 240 g/m 2 ) When fired in the same manner as in Example 1, cylindrical ceramics were obtained which showed linear shrinkage of about 20% and compressive strength of 0.8 to 0.9 Kg/cm 2 . Example 4 (External addition method) 100g of pulp raw material (40g of abaca pulp,
30g of LBKP, 30g of NBKP) were dispersed in 25ml of water (400ml of CSF), and 390g of Ina clay was added as aggregate.
A solution prepared by dispersing 60 g of calcium carbonate in 6 parts of water was added and mixed with stirring. To this dispersion, 1.65 g of a cationic acrylamide flocculant (manufactured by Meisei Kagaku Kogyo Co., Ltd., FIREX RC-104) was added and mixed with stirring for 5 minutes. 2.75 g of Fireex M) and then 1.65 g of a cationic acrylamide flocculant were added again to perform flocculation and fixation. Add water to this for a total of 50
A 25 x 25 cm square sheet was made using 1.5 of the diluted solution. (Basic weight approximately 240g/m 2 ) Next, 50g of lithium hydroxide was added to the SBR latex.
Polyvinyl alcohol mixed aqueous solution (SBR latex 1.0%, polyvinyl alcohol 1.0%)
Dissolve in 500ml. The sheet was impregnated with this mixed aqueous solution (impregnation rate 100%) and dried at 100 to 110°C.
When the obtained paper was formed into a cylindrical shape and fired in the same manner as in Example 1, the linear shrinkage was 23-24% and the compressive strength was 0.8-0.9.
A cylindrical ceramic was obtained exhibiting a weight of Kg/cm 2 . Example 5 (combined internal and external addition method) 100g of pulp raw material (30g of abaca pulp,
LBKP30g, NBKP30g, GP10g) were dispersed in 25ml of water (400ml of CSF), and 350g of Shibata kaolin, 100g of Murakami clay, 50g of Fukushima feldspar as aggregates, and 250g of sodium/calcium/magnesium pyrophosphate as sintering agents were dispersed in 5% of water. The solution was added and mixed by stirring. Add a cationic acrylamide flocculant (FIREX RC- manufactured by Meisei Kagaku Kogyo Co., Ltd.) to this dispersion.
107) After adding 2.55g and stirring for 5 minutes, add anionic acrylamide paper strength enhancer (Meisei Chemical Industry Co., Ltd.
4.25 g of Fireex M) (manufactured by Firex Co., Ltd.) and then 2.55 g of a cationic acrylamide flocculant were added again to effect coagulation and fixation. Water was added to dilute this to a total volume of 50, and one of these was used to prepare a 25 x 25 cm square sheet. Next, dissolve 30g of lithium hydroxide in 300ml of water,
The previous sheet was impregnated with an impregnation rate of 100%. When the obtained paper was subjected to firing in the same manner as in Example 1, a cylindrical ceramic having a linear shrinkage of 27% and a longitudinal compressive strength of 1.6 kg/cm 2 was obtained. Example 6 The pulp raw materials, aggregate, sintering agent, and fixing agent shown in Table 1 were dispersed in water in the same manner as in Example 1, and the total amount was mixed with stirring.
Diluted to 50. (Nos. 3 and 4 are excluded because of the sintering agent external addition method.) Of these, No. 3 was used to produce a 25 x 25 cm square sheet. A sintering agent was externally added to Nos. 3 and 4, and a firing test was conducted on these in the same manner as in Example 1. Table 2 shows the physical properties of the sheet before and after firing.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 パルプ、骨材および定着剤からなる無機填料
紙において、更に焼結剤を添加してなることを特
徴とする低温焼結性無機填料紙。 2 パルプ100重量部に対して、骨材200〜500重
量部、定着剤1〜25重量部および焼結剤50〜1000
重量部からなる特許請求の範囲第1項記載の低温
焼結性無機填料紙。 3 焼結剤として水酸化リチウム、アルカリ土類
金属水酸化物、炭酸アルカリ金属塩、重炭酸アル
カリ金属塩、塩化アルカリ金属塩、塩化アルカリ
土類金属塩、塩化アルミニウム、硼酸及び硼酸ア
ルカリ金属塩、メタ硼酸アルカリ金属塩、四硼酸
アルカリ金属塩、四硼酸アルカリ土類金属塩、燐
酸アルカリ金属塩、ピロ燐酸アルカリ金属塩、ピ
ロ燐酸アルカリ土類金属塩、ピロ燐酸アルカリ金
属アルカリ土類金属塩、メタ燐酸塩、珪酸アルカ
リ金属塩、セスキ珪酸アルカリ金属塩、メタ珪酸
アルカリ金属塩、フリツト、ガラスカレツト、ガ
ラス質火山岩、木灰、骨灰およびコレマナイトの
うちから選ばれた一種又は二種以上を使用する特
許請求の範囲第1項又は第2項記載の低温焼結性
無機填料紙。 4 パルプ、骨材、焼結剤および定着剤を水に分
散させ、次いで抄紙することを特徴とする低温焼
結性無機填料紙の製造方法。 5 パルプ100重量部に対して、骨材200〜500重
量部、焼結剤50〜1000重量部および定着剤1〜25
重量部を水に分散させ、次いで抄紙する特許請求
の範囲第4項記載の低温焼結性無機填料紙の製造
方法。 6 焼結剤としてアルカリ土類金属酸化物、炭酸
リチウム、四硼酸リチウム、四硼酸カルシウム、
燐酸リチウム、重燐酸ナトリウム、ピロ燐酸アル
カリ金属アルカリ土類金属塩、メタ燐酸カリウ
ム、メタ燐酸カルシウム、フリツト、ガラスカレ
ツト、ガラス質火山岩、木灰、骨灰およびコレマ
ナイトのうちから選ばれた一種又は二種以上を使
用する特許請求の範囲第4項又は第5項記載の低
温焼結性無機填料紙の製造方法。 7 パルプ、骨材および定着剤を水に分散させ抄
紙し、次いで焼結剤を添加することを特徴とする
低温焼結性無機填料紙の製造方法。 8 パルプ100重量部に対して、骨材200〜500重
量部および定着剤1〜25重量部を水に分散させ抄
紙し、次いで焼結剤50〜1000重量部を添加する特
許請求の範囲第7項記載の低温焼結性無機填料紙
の製造方法。 9 焼結剤として水酸化リチウム、炭酸ナトリウ
ム、炭酸カリウム、重炭酸ナトリウム、重炭酸カ
リウム、塩化アルカリ金属塩、塩化アルカリ土類
金属塩、塩化アルミニウム、硼酸及び硼酸アルカ
リ金属塩、メタ硼酸アルカリ金属塩、四硼酸ナト
リウム、四硼酸カリウム、燐酸ナトリウム、燐酸
カリウム、ピロ燐酸ナトリウム、ピロ燐酸カリウ
ム、メタ燐酸ナトリウム、メタ燐酸カリウム、珪
酸アルカリ金属塩、セスキ珪酸アルカリ金属塩、
メタ珪酸アルカリ金属塩のうちから選ばれた一種
又は二種以上を使用する特許請求の範囲第7項又
は第8項記載の低温焼結性無機填料紙の製造方
法。
[Scope of Claims] 1. A low-temperature sinterable inorganic filled paper comprising pulp, aggregate, and fixing agent, further comprising a sintering agent. 2. For 100 parts by weight of pulp, 200 to 500 parts by weight of aggregate, 1 to 25 parts by weight of fixing agent, and 50 to 1000 parts by weight of sintering agent.
The low temperature sinterable inorganic filled paper according to claim 1, consisting of parts by weight. 3 Lithium hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, alkali metal bicarbonate, alkali metal chloride, alkaline earth metal chloride, aluminum chloride, boric acid and alkali metal borate, as sintering agents; Alkali metal metaborate, alkali metal tetraborate, alkaline earth metal tetraborate, alkali metal phosphate, alkali metal pyrophosphate, alkaline earth metal pyrophosphate, alkali metal alkaline earth metal pyrophosphate, meta A patent claim using one or more selected from phosphate, alkali metal silicate, alkali metal sesquisilicate, alkali metal metasilicate, frit, glass cullet, glassy volcanic rock, wood ash, bone ash, and colemanite. Low-temperature sinterable inorganic filler paper according to scope 1 or 2. 4. A method for producing low-temperature sinterable inorganic filled paper, which comprises dispersing pulp, aggregate, sintering agent, and fixing agent in water, and then forming paper. 5 For 100 parts by weight of pulp, 200 to 500 parts by weight of aggregate, 50 to 1000 parts by weight of sintering agent, and 1 to 25 parts by weight of fixing agent.
5. The method for producing a low-temperature sinterable inorganic filled paper according to claim 4, wherein parts by weight are dispersed in water and then paper is made. 6 As a sintering agent, alkaline earth metal oxide, lithium carbonate, lithium tetraborate, calcium tetraborate,
One or more selected from lithium phosphate, sodium biphosphate, alkali earth metal pyrophosphate, potassium metaphosphate, calcium metaphosphate, frit, glass cullet, glassy volcanic rock, wood ash, bone ash, and colemanite. A method for producing a low-temperature sinterable inorganic filler paper according to claim 4 or 5. 7. A method for producing low-temperature sinterable inorganic filler paper, which comprises dispersing pulp, aggregate, and fixing agent in water to form paper, and then adding a sintering agent. 8. Paper is made by dispersing 200 to 500 parts by weight of aggregate and 1 to 25 parts by weight of fixing agent in water based on 100 parts by weight of pulp, and then 50 to 1000 parts by weight of sintering agent is added. A method for producing a low-temperature sinterable inorganic filler paper as described in . 9 As a sintering agent, lithium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, alkali metal chloride, alkaline earth metal chloride, aluminum chloride, boric acid, alkali metal borate, alkali metal metaborate , sodium tetraborate, potassium tetraborate, sodium phosphate, potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, sodium metaphosphate, potassium metaphosphate, alkali metal silicate, alkali metal sesquisilicate,
9. The method for producing a low-temperature sinterable inorganic filler paper according to claim 7 or 8, wherein one or more selected from alkali metal metasilicate salts are used.
JP729984A 1984-01-20 1984-01-20 Low temperature sinterable inorganic filler paper and manufacture Granted JPS60155565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP729984A JPS60155565A (en) 1984-01-20 1984-01-20 Low temperature sinterable inorganic filler paper and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP729984A JPS60155565A (en) 1984-01-20 1984-01-20 Low temperature sinterable inorganic filler paper and manufacture

Publications (2)

Publication Number Publication Date
JPS60155565A JPS60155565A (en) 1985-08-15
JPH0380745B2 true JPH0380745B2 (en) 1991-12-25

Family

ID=11662143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP729984A Granted JPS60155565A (en) 1984-01-20 1984-01-20 Low temperature sinterable inorganic filler paper and manufacture

Country Status (1)

Country Link
JP (1) JPS60155565A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630753B (en) * 2015-11-02 2018-10-12 中国石油化工股份有限公司 A kind of colored road surface material and preparation method thereof

Also Published As

Publication number Publication date
JPS60155565A (en) 1985-08-15

Similar Documents

Publication Publication Date Title
US3510394A (en) Production of water-laid felted mineral fiber panels including use of flocculating agent
US5294299A (en) Paper, cardboard or paperboard-like material and a process for its production
US3775141A (en) Hardened inorganic refractory fibrous compositions
US4539046A (en) Production of vermiculite products
EP0073854B1 (en) Fibrous materials
JPS6255600B2 (en)
EP0541888B1 (en) Noncombustible sheet, noncombustible laminated sheet, noncombustible honey-comb structural material, noncombustible board, noncombustible molded product, and manufacturing method thereof
CN102910860A (en) Preparation method of environment-friendly and ageing-resistant calcium silicate ceramic fiber building insulation board
US4885330A (en) Non-dispersible vermiculite products
US3794505A (en) Method of producing calcium silicate hydrate insulation material devoid of asbestos
JPH08310881A (en) Porous sintered body and its production
JPS6242877B2 (en)
JPH0380745B2 (en)
DK171501B1 (en) Paper-like or cardboard-like material and process for its preparation
US4629507A (en) Water glass-based inorganic material and process for producing the same
JPS622080B2 (en)
US4549931A (en) Inorganic binders for articles formed from fibers
US3150034A (en) Wallboard and method of making same
JPS60200822A (en) Microporous clayey material consisting of smectite type mineral, neutral polymer and silica and its production
JPH0459271B2 (en)
JP3351599B2 (en) Foam board
JPH07102560B2 (en) Method for manufacturing nonflammable molded body
JPH0475193B2 (en)
JPH05339895A (en) Production of incombustible formed material
JPS5939765A (en) Manufacture of porous alumina sintered body