JPH0380677A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH0380677A
JPH0380677A JP1217123A JP21712389A JPH0380677A JP H0380677 A JPH0380677 A JP H0380677A JP 1217123 A JP1217123 A JP 1217123A JP 21712389 A JP21712389 A JP 21712389A JP H0380677 A JPH0380677 A JP H0380677A
Authority
JP
Japan
Prior art keywords
mtf
lens
optical axis
objective lens
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1217123A
Other languages
Japanese (ja)
Inventor
Kimihiko Nishioka
公彦 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1217123A priority Critical patent/JPH0380677A/en
Publication of JPH0380677A publication Critical patent/JPH0380677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain a change in an MTF non rotationally symmetric with respect to an optical axis by making one lens face of an objective lens eccentric with respect to the optical axis of the objective lens so as to decrease the MTF. CONSTITUTION:An objective lens 6 of a TV camera 2 consists of a convex lens 10, a concave lens 11 and a convex lens 12 in the order of the object and a face 11a of the concave lens 11 is made eccentric by DELTA with respect to the optical axis of the objective lens 6. Then a uniform coma aberration is caused to the image forming face of the objective lens 6, that is, the entire photodetection face of a solid-state image sensor 7 as the aberration of the eccentric system to reduce the high frequency spatial frequency response (MTF). Thus, the change in the MTF due to the change in the diaphragm diameter is little to obtain a change in the MTF in non rotationally symmetry with respect to the optical axis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イメージガイドファイバー束や固体撮像素子
等物体像を空間的にサンプリングする受像手段を用いて
いるためモアレ、エリアジング。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention uses an image receiving means such as an image guide fiber bundle or a solid-state image pickup device that spatially samples an object image, so that moiré and aliasing are avoided.

クロスカラー等が発生し易い撮像光学系を備えた撮像装
置に関する。
The present invention relates to an imaging device equipped with an imaging optical system in which cross color etc. are likely to occur.

〔従来の技術〕[Conventional technology]

この種従来のモアレ除去手段を有する撮像装置としでは
、水晶板等の複屈折板から成る光学的ローパスフィルタ
ーを用いたものが有名である。
A well-known example of an imaging device having this kind of conventional moiré removal means is one using an optical low-pass filter made of a birefringent plate such as a quartz plate.

又、一種のソフトフォーカスレンズを用いてモアレを除
去する試みとして、例えば米国特許第4720637号
明細書に記載のものがある。
Further, as an attempt to remove moiré using a type of soft focus lens, there is a method described in, for example, US Pat. No. 4,720,637.

又、球面収差を発生させてモアレを除去するものとして
、特開平1−151880号公報に記載のものがある。
Further, as an apparatus for removing moiré by generating spherical aberration, there is a method described in Japanese Patent Laid-Open No. 1-151880.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、水晶板等を用いたものは、高価で寸法も大き
いという欠点があった。又、そのMTF(空間周波数レ
スポンス)を変えるには板の厚さを変えなければならず
、それは微妙に厚さの違う板を研磨して作ることになっ
て手間がかかり、それ故MTF特性を変えにくいという
欠点があった。
However, devices using quartz plates or the like have the drawbacks of being expensive and large in size. Also, in order to change the MTF (spatial frequency response), it is necessary to change the thickness of the plate, which is time-consuming and requires polishing plates with slightly different thicknesses. The drawback was that it was difficult to change.

一方、米国特許第4720637号明細書に記載のもの
は、レンズ系中に高次の球面収差を発生させる非球面を
設けて球面収差発生量を意識的に大きくし、像面におけ
る錯乱円の大きさを大きくすることにより高い空間周波
数に対するレンズ系自体のMTFを低下させるようにし
たものであって、高次収差により球面収差の絶対値が絞
り開口の大きさによらず大略一定になるようにして絞り
径の変化に拘らずレンズ系のMTFが一定に保たれるよ
うにしているが、非球面を用いているため製作し難いと
いう欠点があった。
On the other hand, the lens system described in U.S. Pat. By increasing the lens diameter, the MTF of the lens system itself for high spatial frequencies is lowered, and the absolute value of spherical aberration due to higher-order aberrations remains approximately constant regardless of the size of the diaphragm aperture. Although the MTF of the lens system is kept constant regardless of changes in the aperture diameter, it has the disadvantage that it is difficult to manufacture because it uses an aspherical surface.

又、特開平1−151880号公報に記載のものは、非
球面を用いないで(球面レンズだけで)球面収差を大き
くしてレンズ系自体のMTFを低下させてモアレを除去
するものであるが、これは高次収差が少なくて収差量が
NAと共に変化してしまうため、絞り径を変えるとレン
ズ系のMTFが変化してしまい、MTFが変化し易いと
いう欠点があった。又、光軸について回転対称なMTF
の変化しか持たせられないため、縦横の基本空間周波数
の異なるのが普通である固体撮像素子のモアレ除去には
十分でないという問題もあった。
Furthermore, the lens described in JP-A-1-151880 removes moiré by increasing the spherical aberration and lowering the MTF of the lens system itself without using an aspherical surface (using only a spherical lens). , this has a disadvantage that the amount of aberration changes with NA due to the small amount of high-order aberrations, so changing the aperture diameter changes the MTF of the lens system, making it easy to change the MTF. Also, the MTF is rotationally symmetrical about the optical axis.
There is also the problem that this is not sufficient to remove moiré from a solid-state image sensor, which typically has different horizontal and vertical fundamental spatial frequencies.

本発明は、上記問題点に鑑み、コンパクトでコストも安
<、MTF特性を変え易く、絞り径の変化によるMTF
の変化が少なく、光軸に関して非回転対称なMTFの変
化を実現できる撮像装置を提供することを目的としてい
る。
In view of the above-mentioned problems, the present invention is compact, low cost, easy to change MTF characteristics, and has the ability to reduce MTF by changing the aperture diameter.
It is an object of the present invention to provide an imaging device that can achieve changes in MTF that are rotationally asymmetric with respect to the optical axis with little change in MTF.

〔課題を解決するための手段及び作用〕本発明による撮
像装置は、物体像を形成する対物レンズと、イメージガ
イドファイバー束、固体撮像素子等物体像を空間的にサ
ンプリングする受像手段とを備えた撮像装置において、
前記対物レンズを構成するレンズのうちの少なくとも一
つのレンズ面を前記対物レンズの光軸に対して偏芯させ
て空間周波数レスポンスを低下させることにより、モア
レ等を除去するようにしたものである。
[Means and effects for solving the problems] An imaging device according to the present invention includes an objective lens that forms an object image, and image receiving means that spatially samples the object image, such as an image guide fiber bundle or a solid-state image sensor. In the imaging device,
Moiré and the like are removed by decentering the lens surface of at least one of the lenses constituting the objective lens with respect to the optical axis of the objective lens to reduce the spatial frequency response.

ここで、偏芯とは、平行なズレと傾きの両方を含む。Here, eccentricity includes both parallel deviation and inclination.

一般にレンズ系内のレンズ面をレンズ系の光軸に対し偏
芯させると、偏芯系の収差と呼ばれる諸収差(−様なコ
マ、像面の傾き、偏芯歪曲)が発生することが知られて
いる。このうち−様なコマ(uniform coma
、久保1)広著「光学」岩波書店刊第3章参照)は画面
全体に亘り一様に発生し、且つ像の歪みや像点の光軸方
向のズレなく点像をぼかすことができるので、この収差
によりレンズ系のMTFを低下させることができる。従
って、このような偏芯系を固体撮像素子等に物対像を形
成するための光学系として採用すれば、従来用いられて
いる水晶板等から成る光学的ローパスフィルターを全く
除去するか或は一部省略してもモアレ等の偽信号を効果
的に除去することができ、光学系の小型化にとって極め
て有利である。又、偏芯系は水晶板等に比べて、製作コ
ストも安<、MTF特性も変え易い。
It is generally known that when the lens surface in a lens system is decentered with respect to the optical axis of the lens system, various aberrations called eccentric aberrations (--like coma, tilt of the image plane, eccentric distortion) occur. It is being Uniform coma
, Kubo 1) "Optics" by Kou, published by Iwanami Shoten, Chapter 3) occurs uniformly over the entire screen, and it is possible to blur the point image without distortion of the image or deviation of the image point in the optical axis direction. , this aberration can reduce the MTF of the lens system. Therefore, if such an eccentric system is adopted as an optical system for forming an object-to-image on a solid-state image sensor, etc., the conventionally used optical low-pass filter consisting of a crystal plate or the like can be completely eliminated or Even if some parts are omitted, false signals such as moiré can be effectively removed, which is extremely advantageous for downsizing the optical system. In addition, the manufacturing cost of eccentric systems is lower than that of quartz plates, etc., and the MTF characteristics are easy to change.

又、−様コマは入射瞳径の変化に対してその2乗に比例
して増減するので、球面収差を発生させてMTFを低下
させるもの(球面収差はNAの3乗に比例して変化する
)よりも、絞り径の変化に対するMTFの変化が少なく
て有利である。又、−様コマは光軸に関して非回転対称
なMTFを実現する。
In addition, --like coma increases or decreases in proportion to the square of the entrance pupil diameter, so it causes spherical aberration and lowers the MTF (spherical aberration changes in proportion to the cube of the NA). ), it is advantageous in that the MTF changes less with respect to changes in the aperture diameter. Moreover, the −-like coma realizes an MTF that is rotationally asymmetric with respect to the optical axis.

〔実施例〕〔Example〕

以下、図示した一実施例に基づき本発明の詳細な説明す
る。
Hereinafter, the present invention will be described in detail based on an illustrated embodiment.

第1図は本発明による撮像装置の一実施例を備えたTV
カメラをファイバースコープの接眼部に取付けた状態を
示す図であって、接眼部以降を模式的に示したものであ
る。図中、ファイバースコープIはイメージガイドファ
イバー束3と接眼レンズ4とを備えている。又、5はフ
ァイバースコープlの射出瞳である。接眼部に取付けら
れたTVカメラ2は、対物レンズ6と対物レンズ6の光
軸に対して傾斜して配置された固体撮像素子7とを備え
ている。イメージガイドファイバー束3の射出端面に伝
達された物体像の光は接眼レンズ4により略平行光束と
なってファイバースコープ1を射出し、TVカメラ2内
に設けた対物レンズ6により固体撮像素子7上に物体像
即ちイメージガイドファイバー束3の射出端面の像を形
成する。
FIG. 1 shows a TV equipped with an embodiment of an imaging device according to the present invention.
FIG. 2 is a diagram showing a state in which a camera is attached to an eyepiece of a fiberscope, and schematically shows the area after the eyepiece. In the figure, a fiberscope I includes an image guide fiber bundle 3 and an eyepiece 4. Further, 5 is the exit pupil of the fiberscope l. The TV camera 2 attached to the eyepiece includes an objective lens 6 and a solid-state image sensor 7 arranged obliquely with respect to the optical axis of the objective lens 6. The light of the object image transmitted to the exit end face of the image guide fiber bundle 3 is turned into a substantially parallel light beam by the eyepiece 4 and exits the fiberscope 1, and then is directed onto the solid-state image sensor 7 by the objective lens 6 provided in the TV camera 2. An object image, that is, an image of the exit end face of the image guide fiber bundle 3 is formed.

固体撮像素子7により電気信号に変換された物体像を表
わす信号は、カメラコントロールユニット8に供給され
て所定の信号処理を受け、モニターTV9に表示される
The signal representing the object image converted into an electrical signal by the solid-state image sensor 7 is supplied to the camera control unit 8, undergoes predetermined signal processing, and is displayed on the monitor TV 9.

ここで、TVカメラ2の対物レンズ6は物体側より順に
正レンズ10.負レンズ11.正レンズ12で構成され
ているが、負レンズ11の物体側の面11aが対物レン
ズ6の光軸に対してΔだけ偏芯している。
Here, the objective lens 6 of the TV camera 2 is a positive lens 10. Negative lens 11. Although it is composed of a positive lens 12, the object side surface 11a of the negative lens 11 is eccentric by Δ with respect to the optical axis of the objective lens 6.

このようにすると、この対物レンズ6の結像面即ち固体
撮像素子7の受光面全体に偏芯系の収差として−様なコ
マ収差が発生し、高周波のMTFが低下し、光学的ロー
パスフィルターと同様な効果が得られる。
If this is done, --like coma aberration will occur as decentering system aberration on the entire image forming surface of the objective lens 6, that is, the light receiving surface of the solid-state image sensor 7, and the high frequency MTF will decrease, resulting in an optical low-pass filter. A similar effect can be obtained.

第2図は固体撮像素子7の受光面上における点像強度分
布を概略的に示した図であって、点像強度分布が円形に
ならず、コマ収差特有の尾を引くような形(せ星状)に
なることを示している。従って、コマ収差が大きく発生
している状態では光学系のMTFは全方位対称(光軸に
関して回転対称)ではなく方向性を持つことになる。こ
の例では下方に尾を引くコマとなっているので、X方向
に比べてy方向のMTFが低い周波数で低下する。
FIG. 2 is a diagram schematically showing the point spread intensity distribution on the light-receiving surface of the solid-state image sensor 7, and shows that the point spread intensity distribution is not circular but has a trailing shape (not shown) peculiar to coma aberration. This indicates that it will be star-shaped. Therefore, in a state where a large amount of coma aberration occurs, the MTF of the optical system is not omnidirectionally symmetric (rotationally symmetric with respect to the optical axis) but has directionality. In this example, since the top has a downward tail, the MTF in the y direction decreases at a lower frequency than in the x direction.

第3図は本実施例の像面近傍における光線の収束状態を
示したもので、ガウス像面に対して上側光線が手前、下
側光線が後方で夫々光軸と交わっていることを示してい
る。
Figure 3 shows the state of convergence of the light rays near the image plane in this embodiment, and shows that the upper ray intersects with the optical axis in front of the Gaussian image plane, and the lower ray intersects with the optical axis at the rear. There is.

第4図は本実施例の光軸上物体に対するMTFを模式的
に示したもので、実線がy方向、破線がX方向、−点鎖
線が無偏芯時のMTFの変化を示している。これによれ
ば、この偏芯系がy方向についておよそuoをカットオ
フとする光学的ローパスフィルターとして機能すること
がわかる。又、光軸に関してMTF特性は非回転対称な
ので、イメージガイドファイバー束3の射出端面の繊維
の並びと固体撮像素子7の画素の配列との干渉により生
じるモアレを、解像力を必要最小限反落とすだけで除去
することができる。又、偏芯量Δの量を連続的に変えれ
ば、MTF特性が図中の一点鎖線から短波長側へ連続的
に変化するので、MTF特性を自由に変えることも出来
る。
FIG. 4 schematically shows the MTF for an object on the optical axis of this embodiment, where the solid line shows the y direction, the broken line shows the X direction, and the dashed line shows the change in MTF when there is no eccentricity. According to this, it can be seen that this eccentric system functions as an optical low-pass filter with a cutoff of approximately uo in the y direction. Furthermore, since the MTF characteristics are rotationally asymmetric with respect to the optical axis, moiré caused by interference between the fiber arrangement on the exit end face of the image guide fiber bundle 3 and the pixel arrangement of the solid-state image sensor 7 can be suppressed by reducing the resolving power to the minimum necessary. It can be removed with . Further, if the amount of eccentricity Δ is continuously changed, the MTF characteristic changes continuously from the dashed line in the figure toward the short wavelength side, so the MTF characteristic can be changed freely.

又、−様なコマの一般的性質として、結像面全体に亘り
一様に発生する性質の他に入射瞳径の変化に対してその
2乗に比例して変化するので、入射瞳径の変化に対して
その3乗に比例して変化する球面収差を用いたソフトフ
ォーカスよりも偏芯系の方がMTFの入射瞳径に対する
依存性が小さい即ち変化が少ないので有利である。
In addition, as a general property of a --like coma, in addition to the property that it occurs uniformly over the entire image forming surface, it also changes in proportion to the square of the entrance pupil diameter. An eccentric system is more advantageous than a soft focus system that uses spherical aberration, which changes in proportion to the cube of the change, because the dependence of the MTF on the entrance pupil diameter is smaller, that is, there is less change.

又、−様なコマは絞りに対して同心的な(面の曲率中心
が絞り側にあること)屈折面又は反射面で発生し易い。
Further, --like coma tends to occur on refractive surfaces or reflective surfaces that are concentric with the diaphragm (the center of curvature of the surface is on the diaphragm side).

何故なら、非同心的面を偏芯させると上側光線と下側光
線の屈折の非対称性のために高次の偏芯コマ収差が発生
し、結像面内でのコマの発生量が像高と共に変化してし
まうからである。従って、偏芯させる面としては、2次
の偏芯系の三つの収差即ち−様なコマ、像面の傾き(=
偏芯像面鷹曲、偏芯非点収差)、偏芯歪曲収差のうち像
面の傾き、偏芯歪曲収差の発生が少なく、−様なコマの
発生の大きな面を選ぶのが良い。
This is because when a non-concentric surface is decentered, high-order eccentric coma aberration occurs due to the asymmetry of refraction between the upper and lower rays, and the amount of coma generated within the imaging plane increases with the image height. This is because it changes with the Therefore, as a surface to be decentered, the three aberrations of the second-order eccentric system, namely --like coma, and the tilt of the image plane (=
It is better to select a surface that has less occurrence of image plane inclination and eccentric distortion among eccentric aberrations (eccentric field hawk curvature, eccentric astigmatism) and eccentric distortion, and has a large occurrence of --like coma.

尚、本実施例では、面11a (第1図)の偏芯に伴う
−様なコマの他に像面の傾き(片ボケ)が生じるが、こ
の像面の傾きは像高に関して1次で変化するので、第1
図に示した如く固体撮像素子7の受光面を光軸に対して
傾斜させてやれば、片ボケを除去することができる。
In this embodiment, in addition to the --like coma due to eccentricity of the surface 11a (Fig. 1), a tilt of the image plane (unilateral blur) occurs, but this tilt of the image plane is linear with respect to the image height. Since it changes, the first
If the light-receiving surface of the solid-state image sensor 7 is tilted with respect to the optical axis as shown in the figure, the one-sided blur can be removed.

次に本発明撮像装置の光学系の数値例を示す。Next, a numerical example of the optical system of the imaging device of the present invention will be shown.

艷菫亘ユ これは第5図に示した如き構成を有しており、そのレン
ズデータは以下の表1の通りである。
This lens has a configuration as shown in FIG. 5, and its lens data is shown in Table 1 below.

表  1 f=loo 、 F/8,0 、ω=7.1’63.5
794 d、 =3.7099 n、 =1.78472 v、
 =25.71r 2=−87,8271 d 2= 2.1823 r+=■(絞り) d + ” 1.0912 r 、 =−41,0842 d、 =2.1823 n2=1.68893 v2=
31.08r s =33.6665 d i ” 14.8397 h =■ do =2.1823 ns =1.59270 νh
 =35.29r 、 = 35.6982 d y = 10.9116 n + = 1.640
00 v 4=60.09r、=−35,6982 d、  =3.2735 r 9 =■ d =  =30.5523  n 5 = 1.51
633   v s  =64.150BJ=−100
0、If(=13.0939.5K=104.588 
 。
Table 1 f=loo, F/8,0, ω=7.1'63.5
794 d, =3.7099 n, =1.78472 v,
=25.71r 2=-87,8271 d2=2.1823 r+=■(Aperture) d+'' 1.0912 r, =-41,0842 d, =2.1823 n2=1.68893 v2=
31.08r s =33.6665 d i ” 14.8397 h =■ do =2.1823 ns =1.59270 νh
= 35.29r, = 35.6982 dy = 10.9116 n + = 1.640
00 v 4 = 60.09r, = -35,6982 d, = 3.2735 r 9 = ■ d = = 30.5523 n 5 = 1.51
633 v s = 64.150 BJ = -100
0, If (=13.0939.5K=104.588
.

SA  =0.216.    MST   =0.6
19但し、fは全系焦点距離、F/はFナンバ、ωは半
画角、rlは第1面の曲率半径、dlは第1面と第(i
+1)面との間隔、n、は4番面の光学素子の屈折率、
ν、は5番目の素子のアツベ数、OBJは物体位置、I
Hは像高、SKはバックフォーカス、SAは全系の球面
収差係数、M S ’rは全系の偏芯コマ収差係数であ
る。
SA=0.216. MST=0.6
19 However, f is the focal length of the entire system, F/ is the F number, ω is the half angle of view, rl is the radius of curvature of the first surface, and dl is the distance between the first surface and the (i-th
+1) The distance from the surface, n, is the refractive index of the optical element on the fourth surface,
ν is the Atsube number of the fifth element, OBJ is the object position, I
H is the image height, SK is the back focus, SA is the spherical aberration coefficient of the entire system, and M S 'r is the eccentric comatic aberration coefficient of the entire system.

この場合、第8面r8を15′傾けている。このように
接合レンズを偏芯させると、偏芯量を加工上加減するこ
とも、或は芯出顕微鏡等で偏芯量を測定しながら組み立
てることができるので便利である。
In this case, the eighth surface r8 is inclined by 15'. When the cemented lens is decentered in this way, it is convenient because the amount of eccentricity can be adjusted during processing or the amount of eccentricity can be measured with a centering microscope or the like during assembly.

以下の表2はこの数値例の偏芯補正係数表である。Table 2 below is an eccentricity correction coefficient table for this numerical example.

表  2 MS O,00474 −0,00256 0,01904 −0,00748 −0,03057 0,02563 0,02762 0,02821 −0,01284 o、oooo。Table 2 M.S. O,00474 -0,00256 0,01904 -0,00748 -0,03057 0,02563 0,02762 0,02821 -0,01284 o, ooooo.

0100466 0.00449 0.04126 0.03986 0.00275 o、oooo。0100466 0.00449 0.04126 0.03986 0.00275 o, ooooo.

O,00243 o、oooo。O,00243 o, ooooo.

DM O,00942 0,00510 0,01381 −0,00543 −0,01505 0,01264 0,02102 0,02146 0,00822 o、oooo。DM O,00942 0,00510 0,01381 -0,00543 -0,01505 0,01264 0,02102 0,02146 0,00822 o, ooooo.

O,00398 0,00383 0,00539 0,00506 0,00526 o、oooo。O,00398 0,00383 0,00539 0,00506 0,00526 o, ooooo.

O,00451 o、oooo。O,00451 o, ooooo.

但し、MSは第3図で定義した−様なコマ、DMは像面
の傾き(子午方向)であって、Eは1′各面が偏芯(傾
き)した時、Dは0.OI各面が偏芯(平行なズレ)し
た時を示している。
However, MS is the --like coma defined in Fig. 3, DM is the inclination (meridian direction) of the image plane, E is 1' when each surface is eccentric (tilted), and D is 0. This shows when each OI surface is eccentric (parallel misalignment).

この数値例は、第8面r8は絞りに対して同心的な方向
を向いているが、−様なコマMSの発生量が大きく且つ
像面の傾きDMが小さいのがわかる。又、固体撮像素子
7は、第8面r8の傾きによって生じるDMの値が−0
,00539X 15=−0,080885であるから
、像高IHが13.094であることを考慮して、 かし、以上は子午面のみの像面の傾きを考えた場合であ
り、子午面と直角な方向の像面の傾きDSは一般に表2
のDMの1/3となるので、子午方向とそれに直角な方
向の像面の傾きの平均は、となるので、 固体撮像素子7の傾きθ (第5図) は、θ=21.2’ X2/3・14.1’となる。実
用上、程度まで許容できる。
In this numerical example, although the eighth surface r8 faces in a direction concentric with the aperture, it can be seen that the amount of --like coma MS generated is large and the image plane tilt DM is small. Further, in the solid-state image sensor 7, the value of DM caused by the tilt of the eighth surface r8 is -0.
,00539 The inclination DS of the image plane in the perpendicular direction is generally shown in Table 2.
The average of the inclinations of the image plane in the meridian direction and the direction perpendicular to it is 1/3 of DM, so the inclination θ of the solid-state image sensor 7 (Fig. 5) is θ=21.2' It becomes X2/3・14.1'. For practical purposes, it is acceptable to some extent.

第6図(A)及び(B)に本数値例のMTF特性を示し
た。第6図(A)及び(B)は夫々第8面r8が無偏芯
時及び15′偏芯時の光軸上の物体に対する固体撮像素
子7の受光面上のMTFを夫々示している。又、実線は
X方向のM T F 、点線はy方向のMTFを夫々示
している。又、DFはレンズ系(ガラスブロックも含む
)の最終面か固体撮像素子7の受光面までの距離である
FIGS. 6(A) and 6(B) show the MTF characteristics of this numerical example. FIGS. 6A and 6B show the MTF on the light-receiving surface of the solid-state image sensor 7 for an object on the optical axis when the eighth surface r8 is not eccentric and when it is 15' eccentric, respectively. Further, the solid line indicates MTF in the X direction, and the dotted line indicates MTF in the y direction. Further, DF is the distance from the final surface of the lens system (including the glass block) to the light receiving surface of the solid-state image sensor 7.

これによれば、第8面rlの偏芯によってMTFが高周
波の領域で低下しており、光学的ローパスフィルターと
しての特性が発揮されているのがわかる。又、第8面r
8の偏芯量は15’と微小なので、レンズ系をコンパク
トに構成できるとい利点がある。
According to this, it can be seen that the MTF decreases in the high frequency region due to the eccentricity of the eighth surface rl, and the characteristics as an optical low-pass filter are exhibited. Also, the 8th side r
Since the eccentricity of lens 8 is as small as 15', it has the advantage that the lens system can be constructed compactly.

値例2 これは第7図に示した如き構成を有しており、そのレン
ズデータは以下の表3の通りである。
Value Example 2 This lens has a configuration as shown in FIG. 7, and its lens data is as shown in Table 3 below.

表  3 f=46.526. F/7.9 、ω=6.1゜r、
  = 00 (絞り) d、 =0.3000 r 2−■ d2=1.0000  n1=1.51633   v
1=64.15rコー〔〉り) d、 =7.0000 r + = 18.0030 d= =2.9300 n2=1.607291/2 
=59.38r s ”’−372.7940 d5=6.8900 r e ”−18,1100 da =o、5soo ns =1.67270 vs
 =32.1Or ? = 18.1100 d、 =2.3500 r s = 44.8390 d、 =1.8200 nt =1.58297 v、
 =46,33r 9 =−15,1920 do  =1.2000 rho−■ d lo= 13.0000  n +  = 1.5
1633   v +  =64.15r   −■ d、、=2.9000 r I2:00 dl。=1.6000  n7=1.51633   
vt  =64.15r ■=の 0BJ=500   18=4.9400,5K=16
.500I SA+ =0.028 、   l MS
T  l =0.113但し、各符号の意味は数値例1
と同じである。
Table 3 f=46.526. F/7.9, ω=6.1°r,
= 00 (aperture) d, =0.3000 r 2-■ d2=1.0000 n1=1.51633 v
1=64.15r d, =7.0000 r + = 18.0030 d= =2.9300 n2=1.607291/2
=59.38rs ”'-372.7940 d5=6.8900 r e ”-18,1100 da =o, 5soons =1.67270 vs
=32.1Or? = 18.1100 d, = 2.3500 r s = 44.8390 d, = 1.8200 nt = 1.58297 v,
=46,33r 9 =-15,1920 do =1.2000 rho-■ d lo= 13.0000 n + = 1.5
1633 v + =64.15r −■ d,, =2.9000 r I2:00 dl. =1.6000 n7=1.51633
vt = 64.15r ■ = 0BJ = 500 18 = 4.9400, 5K = 16
.. 500I SA+ =0.028, l MS
T l =0.113 However, the meaning of each symbol is as shown in Numerical Example 1
is the same as

この場合、第6面r6を+y方向に0.15 、第7面
r7を−y方向に夫々0.06695光軸と平行にずら
している。即ち、 Δ、=0.15  、   Δ、 =−o、06695
である。このように、二つの面を偏芯させたのは、第6
面r、によって生じた像面の傾きを第7面r、の偏芯で
相殺し、且つ両面r6.ryの偏芯で−様なコマを発生
させるためである。従って、この例では固体撮像素子7
を光軸に対して直角に配置することができる。
In this case, the sixth surface r6 is shifted in the +y direction by 0.15, and the seventh surface r7 is shifted in the -y direction by 0.06695 in parallel to the optical axis. That is, Δ,=0.15, Δ,=−o, 06695
It is. In this way, the reason why the two surfaces are eccentric is that the sixth
The inclination of the image plane caused by the surface r is offset by the eccentricity of the seventh surface r, and both surfaces r6. This is because the eccentricity of ry causes a −-like coma to occur. Therefore, in this example, the solid-state image sensor 7
can be arranged perpendicular to the optical axis.

以下の表4はこの数値例の偏芯補正体数表である。Table 4 below is an eccentricity correction body number table for this numerical example.

2 3 4 5 6 7 l 9 表  4 5 O900006 o、oooo。2 3 4 5 6 7 l 9 Table 4 5 O900006 o, ooooo.

O,00006 o、oooo。O,00006 o, ooooo.

0000232 0.00442 −0.00274 0.00025 0.00526 −0.00995 0.00288 0.00546 0.00185 0.00142 0.00424 M O,00032 o、oooo。0000232 0.00442 -0.00274 0.00025 0.00526 -0.00995 0.00288 0.00546 0.00185 0.00142 0.00424 M O,00032 o, ooooo.

O,00032 o、oooo。O,00032 o, ooooo.

O,00604 0,01153 0,00033 0,00003 0,00369 −0,00698 −0,00825 −0,01564 0,00396 0,00304 0,00326 D     O,009530,00731r 、  
  E     0600061    −0.001
15D     O,000000,00000r 、
、   E   −0,000480,00079o 
    o、ooooo      o、oooo。
O,00604 0,01153 0,00033 0,00003 0,00369 -0,00698 -0,00825 -0,01564 0,00396 0,00304 0,00326 D O,009530,00731r,
E 0600061 -0.001
15D O,000000,00000r,
, E -0,000480,00079o
o, ooooo o, ooooo.

r 、    E     0,00041    −
0.00061D     O,000000,000
00r 、 j  E    −0,000390,0
0056D     O,000000,00000但
し、各符号の意味は数値例1と同じである。
r, E 0,00041 −
0.00061D O,000000,000
00r, j E -0,000390,0
0056D O, 000000, 00000 However, the meaning of each symbol is the same as in Numerical Example 1.

第8図(A)及び(B)は夫々本数値例の無偏芯時及び
上記偏芯時の光軸上の物体に対する固体撮像素子7の受
光面上のMTFを示している。又、実線はX方向のMT
F、点線はy方向のMTFを示している。
FIGS. 8A and 8B show the MTF on the light-receiving surface of the solid-state image sensor 7 with respect to an object on the optical axis when there is no eccentricity and when the eccentricity is described above, respectively, in this numerical example. Also, the solid line is MT in the X direction.
F, the dotted line indicates the MTF in the y direction.

より一般的には、i面の偏芯(平行なズレ)をΔ1の傾
きをElとし、それに対応する偏芯の補表わし、像面の
傾きとしてDMl、DMlと表わせば、−様なコマが発
生する条件は、 M S T =ΣMS Δ +ΣMS ≠ 0 ・・・・(3) となる。又、像面の傾きを相殺する条件は、DMT三Σ
DM、  ・Δ1+ΣDM、  ・El−0・・・・(
4) となる。ここで偏芯している面についての和Σをとって
いるのは、二つ以上の面を偏芯させても、勿論良いから
である。
More generally, if the eccentricity (parallel deviation) of the i-plane is represented by the slope of Δ1 as El, and the corresponding eccentricity is expressed as DMl, DMl as the inclination of the image plane, a --like coma is obtained. The conditions for this occurrence are as follows: M S T =ΣMS Δ +ΣMS ≠ 0 (3). Also, the conditions for canceling the tilt of the image plane are DMT3Σ
DM, ・Δ1+ΣDM, ・El−0・・・(
4) It becomes. The reason why the sum Σ of the eccentric surfaces is taken here is that it is of course possible to eccentricize two or more surfaces.

又、偏芯によって生じた−様なコマ収差の発生量があま
り小さいとMTFを低下させることができない。又、無
偏芯系の球面収差をSAとする時、MST  + ≧−
13AI        ・・・・(5)であることが
必要である。
Furthermore, if the amount of --like coma aberration caused by eccentricity is too small, the MTF cannot be lowered. Also, when the spherical aberration of the non-eccentric system is SA, MST + ≧-
13AI...(5) is required.

又、各面の偏芯、傾きの方向は、光軸に垂直な平面内で
2次元的に自由に選ぶことができる。式(3)、 (4
)、 (5)は子午平面内の場合を示しているが、偏芯
、傾きが光軸を含む二つ以上の平面に含まれる場合は、
各平面毎に式(31,(4)、 (5)を考えれば良い
Further, the direction of eccentricity and inclination of each surface can be freely selected two-dimensionally within a plane perpendicular to the optical axis. Equation (3), (4
), (5) shows the case in the meridian plane, but if the eccentricity or inclination is included in two or more planes including the optical axis,
It is sufficient to consider equations (31, (4), and (5)) for each plane.

或は、各面の偏芯、傾きの方向が、多数の光軸を含む平
面にまたがる場合には、式(3)の代わりに、M S 
TミΣ MS、・Δ1 +Σ MS、−E・・・・(6
) を用いれば良い。そして、この場合でも式(5)は適用
できる。
Alternatively, when the direction of eccentricity and inclination of each surface spans a plane containing many optical axes, instead of formula (3), M S
Tmi Σ MS, Δ1 +Σ MS, -E... (6
) can be used. Even in this case, equation (5) can be applied.

尚、Δ1.E1については上限がある。Δ1があまり大
きいと、光線の軸外光束部分がケラして、通らなくなる
。このためΔ1には上限があり、1Δ11≦EP   
      ・・・・(7)である。但し、EPは絞り
径(半径)である。絞りのない光学系では、これを入射
瞳径と考えて良い。
In addition, Δ1. There is an upper limit for E1. If Δ1 is too large, the off-axis luminous flux portion of the light beam will be eclipsed and will not pass through. Therefore, Δ1 has an upper limit, and 1Δ11≦EP
...(7). However, EP is the aperture diameter (radius). In an optical system without an aperture, this can be considered the entrance pupil diameter.

尚、半径Rの球面の場合、Δ、とElには次の関係があ
る。
In the case of a spherical surface with radius R, Δ and El have the following relationship.

Δ E    =                ・・・
・(8)第9図は他の実施例の光学系を示しており、こ
れは、ズームレンズのズーミングと共にMTF特性が変
化するように、レンズ13.14を偏芯させた例である
。レンズ15.16はズーミングと共に光軸方向に動く
ものであって、ズームレンズを構成している。
ΔE=・・・
(8) FIG. 9 shows an optical system of another embodiment, and this is an example in which the lenses 13 and 14 are decentered so that the MTF characteristics change with zooming of the zoom lens. Lenses 15 and 16 move in the optical axis direction during zooming, and constitute a zoom lens.

この例では更に、水晶板(フィルター)17を追加しで
ある。これは、次の理由による。本発明による撮像装置
のレンズ系は、高周波のMTFを広い周波数帯域に亘っ
て低下させることができるが、MTFが最初にOとなる
点はあまりはっきりせず、且つMTFの低下もなだらか
である。このため、低周波のMTFの低下がやや大きい
。一方、水晶板は低周波のMTFの低下は小さいが、高
周波の持ち上がりが大きい。そこで、本実施例のように
両者を組合せ、且つ水晶板(又は複屈折フィルター)の
カットオフ周波数を偏芯レンズ系の低MTF領域より低
く選べば、第1O図の実線のようなMTF特性が得られ
、低周波のMTFの低下を小さく且つ高周波のMTFを
広い周波数帯域に亘り低下させることができるよ 以上、各実施例は全て球面レンズを用いているが、平行
平面を傾けるようにしても良いし、又非球面を偏芯させ
るようにしても良い。又、非球面は光軸対称面に限らず
トーリック面などでも良い。
In this example, a crystal plate (filter) 17 is further added. This is due to the following reason. Although the lens system of the imaging device according to the present invention can reduce the high-frequency MTF over a wide frequency band, the point at which the MTF first becomes O is not very clear, and the MTF decreases gradually. Therefore, the decrease in MTF at low frequencies is somewhat large. On the other hand, in the case of a quartz crystal plate, the drop in MTF of low frequencies is small, but the rise of high frequencies is large. Therefore, if the two are combined as in this example, and the cutoff frequency of the crystal plate (or birefringent filter) is selected to be lower than the low MTF region of the eccentric lens system, the MTF characteristic as shown by the solid line in Figure 1O can be obtained. Thus, it is possible to reduce the drop in the low frequency MTF and reduce the high frequency MTF over a wide frequency band.Although spherical lenses are used in all of the embodiments, it is also possible to tilt the parallel planes. It is also possible to make the aspherical surface eccentric. Further, the aspherical surface is not limited to the optical axis symmetrical surface, but may also be a toric surface.

本発明による撮像装置は、内視鏡用テレビカメラ、硬性
鏡用テレビカメラに限らず、電子カメラ。
The imaging device according to the present invention is not limited to a television camera for an endoscope or a television camera for a rigid endoscope, but also an electronic camera.

VTRカメラ、テレビカメラ、更にはファイバースコー
プ、ファイバースコープに接続される供覧用スコープな
どにも応用できる。
It can be applied to VTR cameras, television cameras, and even fiberscopes and viewing scopes connected to fiberscopes.

又、第9図に示した如く、固体撮像素子を含むテレビカ
メラ本体と、偏芯レンズ系を含むレンズ群とを点線のと
ころで分割可能にしてレンズ群を交換式にしても良い。
Further, as shown in FIG. 9, the television camera body including the solid-state image pickup device and the lens group including the eccentric lens system may be separated along the dotted line, so that the lens group can be made interchangeable.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による撮像装置は、コンパクトでコ
ストも安<、MTF特性を変え易く、絞り径の変化によ
るMTFの変化が少なく、光軸に関して非回転対称なM
TFの変化を実現できるという実用上重要な利点を有し
ている。
As described above, the imaging device according to the present invention is compact, inexpensive, easy to change MTF characteristics, has little change in MTF due to change in aperture diameter, and has an MTF that is non-rotationally symmetrical with respect to the optical axis.
It has a practically important advantage of being able to change the TF.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による撮像装置の一実施例を備えたTV
カメラをファイバースコープ等の接眼部に取付けた状態
を示す図、第2図は上記実施例の固体撮像素子7の受光
面上における点像強度分布を概略的に示した図、第3図
は上記実施例の像面近傍における光線の収束状態を示し
た図、第4図は上記実施例の光軸上の物体に対するMT
Fを示した図、第5図は本発明撮像装置の光学系の数値
例1の構成を示す図、第6図(A)及び(B)は夫々数
値例1の無偏芯時及び偏芯時の光軸上の物体に対する固
体撮像素子の受光面上のMTFを示す図、第7図は数値
例2の構成を示す図、第8図(A)及び(B)は夫々数
値例2の無偏芯時及び偏芯時の光軸上の物体に対する固
体撮像素子の受光面上のMTFを示す図、第9図は他の
実施例の光学系を示す図、第10図は上記の他の実施例
のM T F特性を示す図である。 1・・・・ファイバースコープ、2・・・・TVカメラ
3・・・・イメージガイドファイバー束、4・・・・接
眼レンズ、5・・・・射出瞳、6・・・・対物レンズ、
7・・・・固体撮像素子、8・・・・カメラコントロー
ルユニット、9・・・・モニターTV、10.12・・
・・正レンズ、11・・・・負レンズ、lla・・・・
面、13゜14.15.16・・・・レンズ、17・・
・・水晶板。 第 図 第2図 第3図 第4図 第5図 6 第 6図 (A) (B) 第9図 第10図
FIG. 1 shows a TV equipped with an embodiment of an imaging device according to the present invention.
A diagram showing the camera attached to the eyepiece of a fiberscope, etc., FIG. 2 is a diagram schematically showing the point image intensity distribution on the light receiving surface of the solid-state image sensor 7 of the above embodiment, and FIG. A diagram showing the state of convergence of light rays near the image plane in the above embodiment, and FIG. 4 shows the MT for an object on the optical axis in the above embodiment.
FIG. 5 is a diagram showing the configuration of Numerical Example 1 of the optical system of the imaging device of the present invention, and FIGS. 6(A) and (B) are Numerical Example 1 with no eccentricity and eccentricity, respectively. Figure 7 is a diagram showing the configuration of numerical example 2, and Figures 8 (A) and (B) are diagrams showing the MTF on the light-receiving surface of the solid-state image sensor with respect to an object on the optical axis. A diagram showing the MTF on the light-receiving surface of the solid-state image sensor for an object on the optical axis when there is no eccentricity and when there is eccentricity, FIG. 9 is a diagram showing an optical system of another embodiment, and FIG. 10 is a diagram other than the above. It is a figure which shows the MTF characteristic of the Example. 1...Fiber scope, 2...TV camera 3...Image guide fiber bundle, 4...Eyepiece lens, 5...Exit pupil, 6...Objective lens,
7...Solid-state image sensor, 8...Camera control unit, 9...Monitor TV, 10.12...
...Positive lens, 11...Negative lens, lla...
Surface, 13° 14.15.16...Lens, 17...
...Crystal plate. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 6 (A) (B) Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 物体像を形成する対物レンズと、イメージガイドファイ
バー束、固体撮像素子等物体像を空間的にサンプリング
する受像手段とを備えた撮像装置において、前記対物レ
ンズを構成するレンズのうちの少なくとも一面を前記対
物レンズの光軸に対して偏芯させて空間周波数レスポン
スを低下させるようにしたことを特徴とする撮像装置。
In an imaging device comprising an objective lens that forms an object image, and an image receiving means that spatially samples the object image, such as an image guide fiber bundle or a solid-state image sensor, at least one surface of the lenses constituting the objective lens is An imaging device characterized in that an objective lens is decentered with respect to an optical axis to reduce spatial frequency response.
JP1217123A 1989-08-23 1989-08-23 Image pickup device Pending JPH0380677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217123A JPH0380677A (en) 1989-08-23 1989-08-23 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217123A JPH0380677A (en) 1989-08-23 1989-08-23 Image pickup device

Publications (1)

Publication Number Publication Date
JPH0380677A true JPH0380677A (en) 1991-04-05

Family

ID=16699215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217123A Pending JPH0380677A (en) 1989-08-23 1989-08-23 Image pickup device

Country Status (1)

Country Link
JP (1) JPH0380677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618470A1 (en) * 1993-03-30 1994-10-05 Sony Corporation Image pickup optical system
KR100339630B1 (en) * 1995-04-19 2002-10-04 시게아끼 하야사까 Single counter stimulation induction generator
CN110799301A (en) * 2017-06-23 2020-02-14 普雷茨特两合公司 Device and method for measuring a distance for a laser processing system and laser processing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618470A1 (en) * 1993-03-30 1994-10-05 Sony Corporation Image pickup optical system
KR100339630B1 (en) * 1995-04-19 2002-10-04 시게아끼 하야사까 Single counter stimulation induction generator
CN110799301A (en) * 2017-06-23 2020-02-14 普雷茨特两合公司 Device and method for measuring a distance for a laser processing system and laser processing system

Similar Documents

Publication Publication Date Title
US5625495A (en) Telecentric lens systems for forming an image of an object composed of pixels
US10101641B2 (en) Zoom lens, projection display device, and imaging apparatus
JP3547103B2 (en) Wide-angle imaging lens
JP3033274B2 (en) Aspherical zoom lens and video camera using it
US10401599B2 (en) Zoom lens, projection display device, and imaging apparatus
JP2002162562A (en) Photographic lens
US6600610B2 (en) Standard photographic lens
JP2000111798A5 (en)
JP4744711B2 (en) Image capture lens
JP3026130B2 (en) Aspherical zoom lens and video camera using it
US10416422B2 (en) Zoom lens, projection display device, and imaging apparatus for forming an intermediate image
JPH1184234A (en) Photographing lens
JP3085823B2 (en) Aspherical zoom lens and video camera using it
JP4359061B2 (en) Small zoom lens, and digital camera and video camera using the same
JP2000292699A (en) Zoom lens, and video camera using zoom lens
JPH11133316A (en) Ocular and virtual image providing device
JPH0380677A (en) Image pickup device
JPH05333266A (en) Small-sized two-group zoom lens
JP2002162561A (en) Photographic lens
JPH116960A (en) Lens system and image pickup device
JP2001100092A (en) Photographic optical system
JP2002098887A (en) Photographing lens
JP2576058B2 (en) Projection lens
JPS61210312A (en) Relay lens system
JP3056338B2 (en) Aspherical zoom lens and video camera using it