JPH0380611B2 - - Google Patents
Info
- Publication number
- JPH0380611B2 JPH0380611B2 JP61165930A JP16593086A JPH0380611B2 JP H0380611 B2 JPH0380611 B2 JP H0380611B2 JP 61165930 A JP61165930 A JP 61165930A JP 16593086 A JP16593086 A JP 16593086A JP H0380611 B2 JPH0380611 B2 JP H0380611B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- diameter
- resin
- extruded
- continuously
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920005989 resin Polymers 0.000 claims description 33
- 239000011347 resin Substances 0.000 claims description 33
- 238000001125 extrusion Methods 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 238000004132 cross linking Methods 0.000 description 16
- 239000010687 lubricating oil Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000003921 oil Substances 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- -1 Polytetrafluoroethylene Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明は各種配管やケーブルの接続部、その
他各種の管や棒の防食あるいは保温などのための
被覆に使用される熱収縮管の製造方法に関し、特
に架橋型樹脂を使用した熱収縮管を連続的に製造
する方法に関するものである。[Detailed Description of the Invention] Industrial Application Field This invention relates to a method of manufacturing heat shrinkable tubes used for coating various piping and cable connections, and other various types of tubes and rods for corrosion protection or heat retention. In particular, it relates to a method for continuously manufacturing heat-shrinkable tubes using crosslinked resin.
従来の技術
従来から、石油、ガス、水道あるいは化学プラ
ント等のライニング鋼管の接続部や、電力ケーブ
ルあるいは通信ケーブルの保護鋼管の接続部など
の防食や保温には、加熱によつて収縮してその接
続部などを密着状態で被覆することができる熱収
縮管を用いることが行なわれている。このような
熱収縮管には各種の合成樹脂が用いられている
が、最近では架橋ポリエチレンなどの架橋型合成
樹脂を使用することが多い。Conventional technology Traditionally, corrosion protection and heat insulation have been used for the joints of lining steel pipes in oil, gas, water, and chemical plants, and the joints of protective steel pipes for power cables and communication cables, by shrinking them when heated. Heat-shrinkable tubes that can tightly cover connecting parts and the like are being used. Various synthetic resins are used for such heat-shrinkable tubes, but recently cross-linked synthetic resins such as cross-linked polyethylene are often used.
ところで架橋型熱収縮管を連続的に製造する方
法としては、特公昭47−19356号公報記載の方法
が知られている。この方法は、管壁に多数の貫通
小孔を形成したアルミニウム管等の金属管上に未
架橋の樹脂コンパウンドを押出被覆した後、その
被覆された管を架橋室、膨張室および冷却室に連
続的に通過させ、架橋室において架橋した後、前
記膨張室において管の内外圧を制御して金属管上
の樹脂チユーブを膨張させて、その膨張状態のま
ま冷却室で冷却させ、巻取る方法である。 By the way, as a method for continuously manufacturing cross-linked heat-shrinkable tubes, a method described in Japanese Patent Publication No. 19356/1983 is known. In this method, an uncrosslinked resin compound is extruded and coated on a metal tube such as an aluminum tube with many small through holes formed in the tube wall, and then the coated tube is connected to a crosslinking chamber, an expansion chamber, and a cooling chamber. After crosslinking in the crosslinking chamber, the resin tube on the metal tube is expanded by controlling the internal and external pressure of the tube in the expansion chamber, and the resin tube is cooled in the expanded state in a cooling chamber and then rolled up. be.
発明が解決すべき問題点
前述の従来方法は、金属管をコアとして用いて
その金属管上に樹脂を押出被覆するものであるか
ら、最終的に金属管を抜き取る必要があり、その
ため作業性が低くならざるを得ず、また金属管を
用いるために高コストとなり、さらには金属管を
内挿したまま巻取ることが実際上は困難であるこ
とが多く、したがつてこの方法は非現実的であつ
て実際に架橋型熱収縮管の連続的な製造に適用す
ることは困難であつた。Problems to be Solved by the Invention The above-mentioned conventional method uses a metal tube as a core and coats the metal tube with resin by extrusion, so it is necessary to remove the metal tube at the end, which reduces workability. In addition, the use of a metal tube increases the cost, and furthermore, it is often difficult in practice to wind the metal tube with the metal tube inserted, so this method is unrealistic. However, it has been difficult to actually apply it to the continuous production of cross-linked heat-shrinkable tubes.
一方、一般の架橋型樹脂からなる管を製造する
ために、未架橋の樹脂を管状に押出してこれを架
橋筒内で連続的に加熱架橋する場合、架橋筒とし
てはその内壁面がステンレス鋼等の金属で構成さ
れたものを用いるのが通常であるが、その場合押
出された管の樹脂が架橋筒内面に焼付き易く、そ
こで一般には押出された管と架橋筒内面との間の
摩擦を軽減して樹脂の焼付きを防止することを目
的として、その間に潤滑油を供給することが行な
われているが、ある種の潤滑油ではその潤滑油中
に含まれている成分が樹脂中の架橋剤と反応して
潤滑効果が得られなくなつたり、あるいは潤滑油
中の成分が樹脂を劣化させたりすることがあると
いう問題があつた。また潤滑油を用いる場合、架
橋筒の内面の全面に潤滑油が充分に行き渡らず、
いわゆる油切れを起こして焼付きが発生してしま
うこともあり、さらには潤滑油の管理も必要とな
るから、潤滑油を用いずに架橋時の焼付きを防止
し得る方法が強く望まれている。 On the other hand, when extruding uncrosslinked resin into a tube shape and continuously heating and crosslinking it in a crosslinking cylinder in order to manufacture a pipe made of general crosslinked resin, the crosslinking cylinder has an inner wall surface made of stainless steel, etc. However, in this case, the resin of the extruded tube is likely to seize on the inner surface of the cross-linked tube, so it is generally necessary to reduce the friction between the extruded tube and the inner surface of the cross-linked tube. In order to reduce the risk of resin seizure, lubricating oil is supplied during this period, but with some types of lubricating oil, the components contained in the lubricating oil may There have been problems in that the lubricating effect may no longer be obtained due to reaction with the crosslinking agent, or the components in the lubricating oil may deteriorate the resin. Also, when lubricating oil is used, the lubricating oil is not sufficiently distributed over the entire inner surface of the bridge cylinder.
Seizing may occur due to so-called oil shortage, and lubricating oil must also be managed, so there is a strong desire for a method that can prevent seizing during crosslinking without using lubricating oil. There is.
この発明は以上の事情を背景としてなされたも
ので、上述の金属管をコアとして用いた場合のよ
うな諸問題を招くことなく、実際に架橋型熱収縮
管を低コスト、高作業性で連続的に製造すること
ができ、しかも特に潤滑油を用いずに架橋筒内に
おける樹脂の焼付きを防止することができる方法
を提供することを目的とするものである。 This invention was made against the background of the above circumstances, and it is possible to produce cross-linked heat-shrinkable tubes continuously at low cost and with high workability, without causing the problems described above when using metal tubes as cores. The object of the present invention is to provide a method that can be manufactured in a cost-effective manner and that can prevent the resin from seizing inside the crosslinked cylinder without particularly using lubricating oil.
問題点を解決するための手段
この発明の架橋型熱収縮管の連続製造方法は、
架橋型熱収縮管の素材となる未架橋の樹脂を、押
出用ダイスとマンドレルとの間から内面に樹脂と
の離形性が大でかつ摩擦係数の小なる物質からな
る内張層が形成された架橋筒内へ中空管状に連続
的に押出し、かつ押出された管の内面側に圧力流
体を連続的に吹込み、さらに押出された管を架橋
筒の出口からテーパー状に拡大する内面を有する
拡径ダイス内へ連続的に導き、続いてその拡径ダ
イスの拡大端部から冷却筒内へ連続的に導くこと
を特徴とするものである。Means for Solving the Problems The continuous manufacturing method for crosslinked heat-shrinkable tubes of the present invention includes:
A lining layer made of a material with high mold releasability from the resin and a low coefficient of friction is formed on the inner surface of the uncrosslinked resin, which is the material of the crosslinked heat shrinkable tube, between the extrusion die and the mandrel. The pipe is continuously extruded into a hollow tube shape into a cross-linked tube, and pressure fluid is continuously blown into the inner surface of the extruded tube, and the extruded tube has an inner surface that expands in a tapered shape from the outlet of the cross-linked tube. It is characterized in that it is continuously guided into a diameter-expanding die, and then continuously guided into a cooling cylinder from the enlarged end of the diameter-expanding die.
作 用
架橋型熱収縮管の素材となる未架橋の樹脂は、
押出用ダイスとマンドレルとの間から架橋筒内へ
中空管状に連続的に押出されて、その架橋筒内で
連続的に加熱架橋され、続いてその架橋された管
は架橋筒からテーパー状に拡大する内面を有する
拡径ダイス内に連続的に導かれ、さらにその拡径
ダイスの拡大端部から冷却筒内へ連続的に導かれ
る。ここで、押出された管の内面側には圧力流体
が吹込まれるから、架橋筒体で架橋された管は未
だ低温とならないうちに拡径ダイス内において流
体圧力によつて拡径ダイスのテーパー状に拡大す
る内面に沿つて拡径され、続いてその拡径された
状態で冷却筒内において連続的に冷却されて、熱
収縮管が得られる。Function The uncrosslinked resin that is the material for crosslinked heat-shrinkable tubes is
A hollow tube is continuously extruded from between the extrusion die and the mandrel into the crosslinking cylinder, and is continuously heated and crosslinked within the crosslinking cylinder, and then the crosslinked tube expands from the crosslinking cylinder into a tapered shape. It is continuously guided into a diameter-expanding die having an inner surface, and then continuously guided into a cooling cylinder from the enlarged end of the diameter-expanding die. Here, since pressure fluid is blown into the inner surface of the extruded pipe, the pipe crosslinked with the crosslinked cylinder is moved into the diameter expansion die by the fluid pressure in the diameter expansion die before it reaches a low temperature. The diameter is expanded along the inner surface which expands in shape, and then the expanded diameter is continuously cooled in a cooling cylinder to obtain a heat-shrinkable tube.
そして特にこの発明の方法では、架橋筒の内面
に樹脂との離形状が大で摩擦係数の小さい物質か
らなる内張層が形成されているから、架橋筒体に
押出された管の樹脂が架橋筒内面に焼付くことが
防止される。すなわち、架橋型樹脂からなる管を
連続製造する場合、架橋筒内面が金属であれば樹
脂が架橋筒内面との間で焼付きを生じ易く、また
特にこの発明の方法のように押出された間の内面
側に圧力流体を吹込んでいる場合、押出された管
が架橋筒内面に押し付けられる結果、押出された
管の外面と架橋筒内面との間の摩擦抵抗が大きく
なつて焼付きが生じ易くなる傾向にあり、そのた
め押出された管の円滑な移動が困難となつて連続
製造に支障を来たすおそれがあるが、架橋筒内面
に前述のような内張層を形成しておくことによ
り、樹脂が架橋筒内面に焼付くことが防止され
て、押出された管が円滑に移動し、架橋された熱
収縮管を支障なく連続製造することができるので
ある。そしてこのように架橋筒内面の内張層によ
つて架橋筒内での焼付きが防止されることから、
特に焼付き防止のための潤滑油を用いる必要がな
くなり、潤滑油を用いた場合の不都合、すなわち
例えば潤滑油の成分が架橋剤と反応したり油切れ
によつて焼付きが発生したりする不都合を解消し
得るのである。 In particular, in the method of the present invention, since a lining layer made of a material that has a high degree of deformation from the resin and a small coefficient of friction is formed on the inner surface of the crosslinked tube, the resin of the tube extruded into the crosslinked tube is crosslinked. Seizure on the inner surface of the cylinder is prevented. That is, when continuously manufacturing a pipe made of cross-linked resin, if the inner surface of the cross-linked cylinder is metal, the resin tends to seize with the inner surface of the cross-linked cylinder, and especially during extrusion as in the method of this invention, When pressure fluid is injected into the inner surface of the pipe, the extruded tube is pressed against the inner surface of the bridged cylinder, which increases the frictional resistance between the outer surface of the extruded tube and the inner surface of the bridged cylinder, which tends to cause seizure. This tends to make it difficult for the extruded tube to move smoothly, which may impede continuous production. is prevented from sticking to the inner surface of the crosslinked cylinder, the extruded tube moves smoothly, and crosslinked heat-shrinkable tubes can be continuously manufactured without any problems. Since the lining layer on the inner surface of the cross-linked cylinder prevents seizure inside the cross-linked cylinder,
In particular, there is no need to use lubricating oil to prevent seizure, and there are disadvantages when using lubricating oil, such as seizure occurring due to the components of the lubricating oil reacting with the crosslinking agent or running out of oil. can be resolved.
実施例
第1図および第2図にこの発明の製造方法を実
施するための装置の一例を示す。Embodiment FIGS. 1 and 2 show an example of an apparatus for carrying out the manufacturing method of the present invention.
先ず第1図および第2図に示される装置につい
て説明すれば、軸線が垂直となるように配設され
た全体として円筒状をなす押出用ダイス1の内側
にはマンドレル2が同心状に設けられており、押
出用ダイス1とマンドレル2との間の下部には連
続環状の押出口3が形成されている。その押出口
3は樹脂通路4を介して図示しない押出機に連絡
され、その押出機からの押出圧力によつて未架橋
の樹脂15が中空管状に成形された状態で押出さ
れるようになつている。またマンドレル2には、
前記押出口3から押出された樹脂からなる管5の
内面側に外部から圧力流体を供給するための圧力
流体供給路6が軸方向に沿つて貫通形成されてい
る。 First, to explain the apparatus shown in FIGS. 1 and 2, a mandrel 2 is provided concentrically inside an extrusion die 1 having a cylindrical shape as a whole and arranged so that its axis is perpendicular. A continuous annular extrusion port 3 is formed in the lower part between the extrusion die 1 and the mandrel 2. The extrusion port 3 is connected to an extruder (not shown) via a resin passage 4, and the uncrosslinked resin 15 is extruded into a hollow tube shape by the extrusion pressure from the extruder. There is. In addition, mandrel 2 has
A pressure fluid supply path 6 for supplying pressure fluid from the outside is formed through the inner surface of the tube 5 made of resin extruded from the extrusion port 3 along the axial direction.
前記押出口3の押出方向前方、すなわち第1図
の下方には、押出口3の外径すなわち押出用ダイ
スの内径と実質的に相等しい内径を有する架橋筒
7が配設されており、この架橋筒7には加熱架橋
のための温度を確保するためのヒータ8が設けら
れている。そして架橋筒7の内面には、第2図に
詳細に示すように、樹脂との離型性が大でかつ摩
擦抵抗の小なる物質からなる内張層9が形成され
ている。この内張層9の物質としては、PTFE
(ポリテトラフルオロエチレン;商品名テフロン)
などのフツ素樹脂やセラミツクなどが用いられ
る。またこの内張層9Aの形成方法は、前記のフ
ツ素樹脂等をコーテイングしたりあるいは予め内
張層を別に成形しておいてこれをインサートして
も良い。 A bridging cylinder 7 having an inner diameter substantially equal to the outer diameter of the extrusion outlet 3, that is, the inner diameter of the extrusion die, is disposed in front of the extrusion outlet 3 in the extrusion direction, that is, at the bottom in FIG. The crosslinking tube 7 is provided with a heater 8 for ensuring a temperature for thermal crosslinking. As shown in detail in FIG. 2, on the inner surface of the bridge tube 7 is formed a lining layer 9 made of a material that has high mold releasability from resin and low frictional resistance. The material of this lining layer 9 is PTFE.
(Polytetrafluoroethylene; trade name Teflon)
Fluorine resins such as , ceramics, etc. are used. Further, the lining layer 9A may be formed by coating with the above-mentioned fluororesin or the like, or by separately molding the lining layer in advance and inserting it.
前記架橋筒7の下方には、下方へ向つて径がテ
ーパー状に拡大する内面10Aを有する拡径ダイ
ス10が、架橋筒7に連結された状態で配設され
ている。この拡径ダイス10の内面にも、第2図
に詳細に示すように前述の内張層9が形成されて
いる。その拡径ダイス10の下端(拡大端)に
は、その拡径ダイス10の拡大端の内径と相等し
い内径を有する冷却筒11が、拡径ダイス10の
拡大端に連結された状態で配設されている。なお
この冷却筒11は水冷もしくは空冷構造とされて
いる。 A diameter-expanding die 10 having an inner surface 10A whose diameter tapers downwardly is disposed below the bridge tube 7 and connected to the bridge tube 7. The above-mentioned lining layer 9 is also formed on the inner surface of this diameter-expanding die 10, as shown in detail in FIG. A cooling cylinder 11 having an inner diameter equal to the inner diameter of the enlarged end of the diameter-expanding die 10 is disposed at the lower end (enlarged end) of the diameter-expanding die 10 in a state connected to the enlarged end of the diameter-expanding die 10. has been done. Note that this cooling cylinder 11 has a water-cooled or air-cooled structure.
さらに冷却筒11の下方には、冷却筒11から
下方へ垂下する管5の断面形状を偏平に変形させ
る方向へ案内するためのガイド12が設けられて
おり、かつそのガイド12の下側には、ガイド1
2により偏平に変形された管5をさらに両側から
圧接するための一対の圧接ローラ13が配設され
ている。なおその圧接ローラ13の下方もしくは
側方には図示しない巻取ローラが設けられてい
る。 Furthermore, a guide 12 is provided below the cooling cylinder 11 for guiding the tube 5 hanging downward from the cooling cylinder 11 in a direction that flattens the cross-sectional shape. , guide 1
A pair of pressing rollers 13 are provided for further pressing the tube 5, which has been flattened by the tube 2, from both sides. Note that a winding roller (not shown) is provided below or to the side of the pressure roller 13.
以上の装置を用いて架橋型熱収縮管、例えば架
橋ポリエチレンからなる熱収縮管を製造する方法
について次に説明する。 Next, a method for manufacturing a crosslinked heat-shrinkable tube, for example a heat-shrinkable tube made of crosslinked polyethylene, using the above-described apparatus will be described.
図示しない押出機で混練されて押出された未架
橋の樹脂15は、樹脂通路4を経て押出用ダイス
1とマンドレル2との間の押出口3から架橋筒7
内へ連続的に中空管状に押出される。その押出さ
れた管5の内面側には、圧力流体供給路6から好
ましくは不活性ガスなどからなる圧力流体が吹込
まれる。 The uncrosslinked resin 15 kneaded and extruded by an extruder (not shown) passes through a resin passage 4 from an extrusion port 3 between an extrusion die 1 and a mandrel 2 to a crosslinking tube 7.
It is continuously extruded into a hollow tube. Pressure fluid, preferably made of inert gas, is blown into the inner surface of the extruded tube 5 from the pressure fluid supply path 6.
前述のようにして架橋筒7内に押出された未架
橋の樹脂からなる管5は、自重や圧接ローラ13
の引取り回転力さらには図示しない巻取機の巻取
力等によつて架橋筒7内を下降し、その間加熱架
橋が施される。この時、前記圧力流体の加圧力に
よつて管5は架橋筒7の内面に圧接されるが、前
述のように架橋筒7の内面には、フツ素樹脂の如
く樹脂との離型性が大でかつ摩擦係数の小なる物
質からなる内張層9が形成されているから、管5
はその樹脂が架橋筒7の内面に焼付くことなく、
円滑に下降する。 The tube 5 made of uncrosslinked resin extruded into the crosslinking cylinder 7 as described above is not affected by its own weight or the pressure roller 13.
The material is lowered in the crosslinking tube 7 by the take-up rotational force of the winder and the winding force of a winder (not shown), during which heating crosslinking is performed. At this time, the tube 5 is pressed against the inner surface of the bridging tube 7 by the pressurizing force of the pressure fluid, but as mentioned above, the inner surface of the bridging tube 7 does not have mold releasability from the resin, such as fluororesin. Since the lining layer 9 is made of a material that is large and has a small coefficient of friction, the pipe 5
The resin will not burn onto the inner surface of the bridge tube 7,
Descend smoothly.
架橋された管5は続いて拡径ダイス10を通過
するが、この通過時には未だ高温となつているた
め、前述の圧力流体による加圧力によつて拡径ダ
イス10の内面10Aに沿つて展伸されて、拡径
される。この拡径ダイス10の部分は、架橋筒7
とは異なり加熱が行なわれていないので、管5の
樹脂が拡径ダイス10の内面に焼付く恐れは殆ど
ないが、完全とは言い難いので、万一の焼付きの
発生に備えて本実施例の装置では、拡径ダイス1
0の内面にも前記架橋筒7の内面に形成したのと
同様の内張層9を形成している。続いてその拡径
された管は冷却筒体11内で室温近くまで冷却さ
れ、熱収縮管となる。この後には、ガイド12に
よつて管5は偏平に変形され、さらに圧接ローラ
13により両側から圧接されて畳まれた状態とな
り、図示しない巻取機によつて巻取られる。なお
ここで管5が圧接ローラ13により圧接されるこ
とによつて管5の内部空間がガスシールされるこ
とから、前述のような圧力流体による加圧力が管
5の拡径のために有効に作用するのである。 The cross-linked pipe 5 then passes through the diameter-expanding die 10, but since it is still at a high temperature during this passage, it is expanded along the inner surface 10A of the diameter-expanding die 10 by the pressurizing force of the pressurized fluid mentioned above. and the diameter is expanded. The portion of this diameter expanding die 10 is the bridging tube 7
Unlike the above, heating is not performed, so there is almost no risk that the resin in the tube 5 will seize on the inner surface of the diameter expanding die 10, but it cannot be said to be perfect, so this implementation was carried out in preparation for the unlikely occurrence of seizing. In the example device, the diameter expanding die 1
A lining layer 9 similar to that formed on the inner surface of the bridge tube 7 is also formed on the inner surface of the bridge tube 7. Subsequently, the diameter-expanded tube is cooled to near room temperature within the cooling cylinder 11, and becomes a heat-shrinkable tube. After this, the tube 5 is deformed into a flat shape by the guide 12, and then pressed from both sides by the pressure rollers 13 into a folded state, and then wound up by a winder (not shown). Note that here, since the internal space of the tube 5 is gas-sealed by pressing the tube 5 with the pressure roller 13, the pressurizing force by the pressure fluid as described above is effective for expanding the diameter of the tube 5. It works.
なお図示の実施例では内張層9を、架橋筒7の
内面のみならず拡径ダイス10の内面にも形成し
ているが、これは上述のように拡径ダイス10の
内面での万一の樹脂の焼付きに備えたものであ
り、それ故、拡径ダイス10の内面の内張層9の
形成はこの発明における必須の構成要件ではない
ものである。 In the illustrated embodiment, the lining layer 9 is formed not only on the inner surface of the bridging tube 7 but also on the inner surface of the diameter-expanding die 10; Therefore, the formation of the lining layer 9 on the inner surface of the diameter-expanding die 10 is not an essential component of the present invention.
発明の効果
この発明の方法によれば、架橋型樹脂からなる
熱収縮管を、特に潤滑油を用いることなく架橋筒
内での焼付き発生を防止しつつ、円滑に連続製造
することができ、したがつて特に長尺の熱収縮管
を連続製造するに最適であり、また上述のように
潤滑油を使用しなくて済むため、潤滑油中の成分
と架橋剤との反応により樹脂が劣化したり、焼付
き防止効果が失われたりすることもなく、さらに
は油切れによつて焼付きを生じてしまうおそれも
ない。さらにこの発明の方法は、従来の金属管上
に押出被覆する方法と異なり、最終的に金属管を
抜き取る必要もないため、作業性も良好でかつコ
ストも低廉であり、したがつて実際に量産的規模
で架橋型熱収縮管の製造に適用することができ
る。Effects of the Invention According to the method of the present invention, heat-shrinkable tubes made of cross-linked resin can be smoothly and continuously manufactured while preventing seizure within the cross-linked cylinder without particularly using lubricating oil. Therefore, it is especially suitable for the continuous production of long heat-shrinkable tubes, and as mentioned above, it does not require the use of lubricating oil, which prevents the resin from degrading due to the reaction between the components in the lubricating oil and the crosslinking agent. There is no possibility that the anti-seizure effect will be lost, and there is no risk of seizing occurring due to lack of oil. Furthermore, unlike the conventional extrusion coating method on metal tubes, the method of the present invention does not require the final extraction of the metal tubes, so it is easy to work with and has low costs, making it suitable for mass production. It can be applied to the production of cross-linked heat shrinkable tubes on a large scale.
第1図はこの発明の方法を実施する装置の一例
を示す略解的な縦断面図、第2図は第1図の要部
を拡大して示す縦断面図である。
1……押出用ダイス、2……マンドレル、3…
…押出口、5……押出された管、6……圧力流体
供給路、7……架橋筒、9……内張層、10……
拡径ダイス、11……冷却筒。
FIG. 1 is a schematic vertical cross-sectional view showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a vertical cross-sectional view showing an enlarged main part of FIG. 1...Extrusion die, 2...Mandrel, 3...
... Extrusion port, 5 ... Extruded pipe, 6 ... Pressure fluid supply path, 7 ... Crosslinked cylinder, 9 ... Lining layer, 10 ...
Expanding die, 11...cooling cylinder.
Claims (1)
を、押出用ダイスとマンドレルとの間から内面に
樹脂との離形性が大でかつ摩擦係数の小なる物質
からなる内張層が形成された架橋筒内へ中空管状
に連続的に押出し、かつ押出された管の内面側に
圧力流体を連続的に吹込み、さらに押出された管
を架橋筒の出口からテーパー状に拡大する内面を
有する拡径ダイス内へ連続的に導き、続いてその
拡径ダイスの拡大端部から冷却筒内へ連続的に導
くことを特徴とする架橋型熱収縮管の連続製造方
法。1. A lining layer made of a material with high mold releasability from the resin and a low coefficient of friction is formed on the inner surface of the uncrosslinked resin, which is the material of the crosslinked heat-shrinkable tube, between the extrusion die and the mandrel. The extruded tube is continuously extruded into a hollow tube shape into the cross-linked tube, and pressure fluid is continuously blown into the inner surface of the extruded tube. 1. A continuous manufacturing method for a crosslinked heat-shrinkable tube, characterized by continuously guiding the tube into a diameter-expanding die having a diameter-expanding die, and then continuously guiding the tube from the enlarged end of the diameter-expanding die into a cooling cylinder.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165930A JPS6321128A (en) | 1986-07-15 | 1986-07-15 | Continuous manufacture of crosslinked heat-shrinkable tube |
DE3787329T DE3787329T2 (en) | 1986-07-11 | 1987-07-10 | Device for the continuous production of a heat-shrinkable cross-linked plastic tube. |
EP87306104A EP0252749B1 (en) | 1986-07-11 | 1987-07-10 | Apparatus for continuously producing heat-shrinkable crosslinked resin tube |
KR1019870007458A KR950004719B1 (en) | 1986-07-11 | 1987-07-11 | Apparatus for continuously producing heat-shrinkable crosslinked resin tube |
MYPI87000982A MY102870A (en) | 1986-07-11 | 1987-07-11 | Apparatus for continuously producing heat-shrinkable crosslinked resin tube. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165930A JPS6321128A (en) | 1986-07-15 | 1986-07-15 | Continuous manufacture of crosslinked heat-shrinkable tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6321128A JPS6321128A (en) | 1988-01-28 |
JPH0380611B2 true JPH0380611B2 (en) | 1991-12-25 |
Family
ID=15821711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61165930A Granted JPS6321128A (en) | 1986-07-11 | 1986-07-15 | Continuous manufacture of crosslinked heat-shrinkable tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6321128A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2841441B2 (en) * | 1989-03-27 | 1998-12-24 | 株式会社島津製作所 | Diffraction grating and manufacturing method thereof |
AU2002216306A1 (en) * | 2001-12-20 | 2003-07-09 | Thomas Edward Saunders | Apparatus and method for cooling an extruded strip of plastics material |
-
1986
- 1986-07-15 JP JP61165930A patent/JPS6321128A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6321128A (en) | 1988-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4846264A (en) | Composite pipe, process for producing the same, and heat pipe using the same | |
US3225129A (en) | Method of making memory re-shaped plastic tubes, especially fluorocarbon cylinder jackets | |
EP0918616B1 (en) | Heat-shrinkable uhmv polymer film, tubing, and roll covers | |
US4743329A (en) | Process for manufacturing of composite pipes | |
JPS60131233A (en) | Manufacture of composite pipe | |
US3776794A (en) | Reinforced flexible hose and method of manufacturing same | |
US3554999A (en) | Method of making a shrink device | |
AU659461B2 (en) | A method for joining spirally wound thermoplastic pipes together | |
JPH0380611B2 (en) | ||
US4793404A (en) | Composite pipe, process for producing the same, and heat pipe using of the same | |
EP0252749B1 (en) | Apparatus for continuously producing heat-shrinkable crosslinked resin tube | |
EP0176175A2 (en) | Manufacturing heat-shrinkable sleeve using solid core | |
JPH0351210B2 (en) | ||
US4840552A (en) | Apparatus for continuously producing heat-shrinkable crosslinked resin tube | |
JPH0351208B2 (en) | ||
JPH0351209B2 (en) | ||
JPS63319125A (en) | Continuous production equipment of crosslinking type heat-shrinkable tubing | |
US4817259A (en) | Composite pipe, process for producing the same, and heat pipe using the same | |
CS201523B2 (en) | Method of production of contractibile polyethylene pipes | |
JPH0529862Y2 (en) | ||
CA1315933C (en) | Manufacture of plastic jacketed steel pipe | |
JPS5854649B2 (en) | Method for manufacturing heat-shrinkable tube | |
JPH0636906Y2 (en) | Continuous molding equipment for heat shrinkable tubes | |
JPS6315729A (en) | Manufacture of heat-shrinkable tubing | |
JPH01114417A (en) | Device for manufacturing heat-shrinkable tube |