JPH0380424B2 - - Google Patents

Info

Publication number
JPH0380424B2
JPH0380424B2 JP59129783A JP12978384A JPH0380424B2 JP H0380424 B2 JPH0380424 B2 JP H0380424B2 JP 59129783 A JP59129783 A JP 59129783A JP 12978384 A JP12978384 A JP 12978384A JP H0380424 B2 JPH0380424 B2 JP H0380424B2
Authority
JP
Japan
Prior art keywords
layer
vinylidene fluoride
resin
film
fluoride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59129783A
Other languages
Japanese (ja)
Other versions
JPS618350A (en
Inventor
Hisamitsu Kakyama
Masataro Sazuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP12978384A priority Critical patent/JPS618350A/en
Publication of JPS618350A publication Critical patent/JPS618350A/en
Publication of JPH0380424B2 publication Critical patent/JPH0380424B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、耐候性、耐汚染性及び耐溶剤性に優
れ、かつ、プラスチツク、ゴムその他の基材との
接着性の改良されたフツ化ビニリデン樹脂系複合
フイルムに関するものであり、更に詳しくは、フ
ツ化ビニリデン樹脂層と、フツ化ビニリデン樹脂
とメタクリル酸エステル系樹脂との混合物よりな
る層、およびメタクリル酸エステル系樹脂層とか
ら構成されたフツ化ビニリデン樹脂系多層フイル
ムに関するものである。 (従来の技術) 近年屋内外装用部材の表面保護フイルムとして
ポリ塩化ビニル系、ポリメタクリル酸エステル
系、およびポリフツ素系フイルム等が各種塗料と
ともに使用されている。 これら保護フイルムの用途は、壁紙やエレベー
ター、車輛等の内装用のほか屋根材、壁材、雨ど
い、ガレージの屋根、サンルーム、農業用資材、
看板、標識、ラベル、窓ガラス用等その優れた耐
候性等を生かして多岐にわたつている。 ところで前記した3種類の素材をベースとした
保護フイルムは、それぞれその価格、特性等によ
つて、いろいろな用途に使いわけされているが、
価格面では前者ほど安価であり、一方特性面では
後者ほど耐候性が優れている。 またこれら保護フイルムの貼り合わせの対象基
材は、ポリ塩化ビニル、ポリカーボネート、ポリ
メタクリル酸メチル、アクリロニトリル−ブタジ
エン−スチレン共重合体、FRP等のプラスチツ
ク基材の他、EPDM、CSMその他のゴム基材、
アルミニウム箔、鋼板等の金属のほか、合板、ガ
ラス等と幅広い。 (発明が解決しようとする問題点) しかしこれら3種類の素材フイルムの中で、ポ
リフツ素系フイルムは、前記耐候性のほか耐汚染
性、強度面で2者よりもはるかに優れた性能を有
する反面、基材との接着性に劣るという欠点を有
する。 したがつてポリ塩化ビニル系およびポリメタク
リル酸エステル系フイルムでは用途によつて熱接
着方式を採用しているのに対して、ポリフツ素系
フイルムではすべて接着剤を使用した接着方式と
なり、この点でも価格的に高価となり、そのすぐ
れた耐候性や耐汚染性を十分生かしきれず、この
熱接着性の付与の改良が強く要望されているのが
現状である。 本発明は、フツ化ビニリデン樹脂からなるフイ
ルムの接着性を改良したものであり、フツ化ビニ
リデン樹脂層と、フツ化ビニリデン樹脂とメタク
リル酸エステル系樹脂との混合物よりなる層、お
よびメタクリル酸エステル系樹脂層とから構成さ
れた多層フイルムを用いる事により、耐候性、耐
汚染性及び耐溶剤性に優れ、被接着基材との接着
性も良好なフツ化ビニリデン樹脂系多層フイルム
を提供するものである。 (問題を解決するための手段) 本発明は、フツ化ビニリデン樹脂を成分とする
A層と、フツ化ビニリデン樹脂85〜25重量部とメ
タクリル酸エステル系樹脂15〜75重量部とを成分
とするB層、およびメタクリル酸エステル系樹脂
を成分とするC層とから構成されたことを特徴と
するフツ化ビニリデン樹脂系多層フイルムであ
る。 本発明で使用するフツ化ビニリデン樹脂とは、
フツ化ビニリデンのホモポリマー、又はフツ化ビ
ニリデンと共重合可能な単量体との共重合体をい
う。共重合可能な単量体としては、例えばフツ化
ビニル、四フツ化エチレン、三フツ化塩化エチレ
ンなどがある。 次にメタクリル酸エステル系樹脂とは、メタク
リル酸メチルのホモポリマーの他メタクリル酸メ
チルと共重合可能な単量体との共重合体をいう。
共重合可能な単量体としては、メタクリル酸ブチ
ル、メタクリル酸エチルの他アクリル酸エステル
類等がある。 次にフツ化ビニリデン樹脂とメタクリル酸エス
テル系樹脂との混合物を成分とするB層(以下B
層という)に使用する原料としては、上記フツ化
ビニリデン樹脂とメタクリル酸エステル系樹脂を
一定比率でブレンドしたもの、又は更にそのブレ
ンドしたものをあらかじめ、押出成形機等を使用
して溶融ペレツト化したものを用いる事ができ
る。 そして、このB層に使用するフツ化ビニリデン
樹脂とメタクリル酸エステル系樹脂の混合比は、
85〜25重量部/15〜75重量部であり、これはフツ
化ビニリデン樹脂が85重量部を超えると、メタク
リル酸エステル系樹脂を成分とするC層(以下C
層という)との接着性が不十分となり、一方逆に
フツ化ビニリデン樹脂が25重量部未満になると、
フツ化ビニリデン樹脂を成分とするA層(以下A
層という)との接着性が不十分となるためであ
る。 なおA層、B層、C層および層全体のフイルム
厚さは、特に規定されないが、保護フイルムとし
て使用する場合には、A層は3〜100μ、B層は
2〜50μ、C層は5〜200μ層全体としては10〜
350μ程度が好ましい。しかし耐溶剤性を必要と
する用途等では、この限りではなくA層の厚さだ
けで、数mmでも使用できる。 一方A層、B層およびC層の少なくとも一層に
遮光性を付与し基材の耐候性を向上させる目的で
使用することも可能でその場合の遮光性付与の方
法は、少なくとも一層に酸化チタン、タルク、炭
酸カルシウム、カーボンブラツク、ベンガラの他
調合された無機顔料を含む充填剤、着色剤を練り
込む事により達成出来る。 また透明フイルムの状態で基材の耐候性をさら
に向上(特に紫外線の遮断が目的)させる方法と
しては、A層、B層およびC層の少なくとも一層
にベンゾトリアゾール系、ベンゾフエノン系、サ
リチル酸誘導体等の紫外線吸収剤を練り込む方法
が採用される。この際ラジカル捕捉剤や酸化防止
剤を併用すると更に効果がある。 次に製造方法について述べる。本発明による多
層フイルムは、3層より構成され、溶融押出成形
法により製造される。 溶融押出成形には、一般の単軸押出機のほか2
軸押出機も使用されるが、複数の層を一体に結合
する方法としては次の方法がある。 まず複数の押出成形機を利用して樹脂を溶融状
態で接着せしめて多層とするT−ダイ使用共押出
成形法には、マルチマニホールドダイと称し、複
数の樹脂層をシートの状態にした後接触接着する
方法と、フイードブロツクダイと称し、複数の樹
脂を接着後シート状に拡げる方法とがある。また
インフレーシヨン成形法と称し、丸型ダイを使用
する方法でも多層フイルムが成形出来る。 次に押出ラミネート法と称し、一体に結合すべ
き層のうち、一方の層をあらかじめフイルム状に
成形しておき、他層を押出成形しながら熱もしく
は接着剤(一般には前もつて接着剤を塗布してお
く)で圧着結合する方法も採用出来る。 なお両層ともあらかじめフイルム状に成形した
のち、熱もしくは接着剤を使用して一体化する方
法もあるが、工程、コスト上先の方法に較べて不
利であり、また薄いフイルムの場合接着が技術的
にもむずかしい。 次に、A層、B層またはC層の少なくとも一層
に遮光性を付与するためには、2〜30重量%程度
の顔料の添加が必要であり、押出機等を使用して
樹脂と顔料を溶融混練する方法でもよいが、一般
には顔料の分散が十分でなく、高速回転かつ高せ
ん断混練機例えば神戸製鋼所のFCM型混練機を
使用すると顔料の分散が非常によくなり、表面状
態の優れた遮光層用の原料を提供する事が出来
る。 (実施例) なおこれからフツ化ビニリデン樹脂をPVDF、
メタクリル酸メチル樹脂をPMMAと略して説明
する。 フツ化ビニリデン系樹脂は、ペンウオルト社
製、商品名カイナー740(以下K−740と略す)、一
方メタクリル酸エステル系樹脂は、三菱レイヨン
(株)社製、商品名アクリペツトMD(PMMAで
以下MDと略す)および同社製、商品名ハイペツ
トHBE(アクリル系ゴムを含むメタクリル酸メチ
ル樹脂で以下HBEと略す)を使用した。またB
層に使用するPVDF/PMMA一定比率混合品は、
K−740とMDまたはHBEを一定比率でブレンド
後、30m/mφ異方向回転2軸押出機で溶融、再
ペレツト化して用いた。 実施例 1 A層用原料としてK−740を、B層用原料とし
てK−740とMDより得たPVDF/PMMA=80/
20品を、一方C層用原料としてHBEを用い、40
mmφ押出機3台およびフイードブロツクダイ、更
に幅450mmスリツト幅0.3mmのコートハンガータイ
プT−ダイを使用して3層共押出成形を行なつ
た。なおT−ダイに最も接近する引取ロールは水
冷した。 得られた3層フイルムの厚さは、24μであり、
各押出機の押出量比より計算すると、各層の厚さ
はそれぞれA層10μ、B層6μ、C層8μであつた。
また、この3層フイルムの特性を評価した結果、
第1表に示すように耐候性、耐汚染性、耐溶剤性
に優れ、かつ熱接着性にも優れていた。 実施例 2 A層用原料は、K−740、B層用原料は、K−
740とMDより得たPVDF/PMMA=50/50品
を、一方C層用原料にMDを用い、実施例1の設
備を使用して同様に3層フイルムの共押出成形を
行なつた。 得られた3層フイルムの構成および特性を第1
表に示す。 実施例 3 A層用原料はK−740、B層用原料はK−740と
MDより得たPVDF/PMMA=30/70品を、一
方C層原料にHBEを用い実施例1の設備を用い
て同様に3層共押出成形を行なつた。 得られた3層フイルムの構成および特性を第1
表に示す。 実施例 4 A層用原料はK−740、B層用原料は、K−740
とHBEより得たPVDF/ゴム入りPMMA=60/
40品を、一方C層用原料として、MD100重量部
に酸化チタン20重量部をあらかじめ溶融混練して
おいた遮光性MDを用い、実施例1の設備を用い
て、同様に3層共押出成形を行なつた。 得られた3層フイルムの構成および特性を第1
表に示す。 比較例 1 K−740とMDより得たPVDF/PMMA=50/
50品を用い、65mmφ押出機、幅330mm、スリツト
0.5mmのTダイを使用して単層フイルムを成形し
た。得られたフイルムの特性を第2表に示す。 比較例 2 K−740とMDより得たPVDF/PMMA=70/
30品を用い、比較例1と同じ設備で単層フイルム
を成形した。フイルムの特性を第2表に示す。 比較例 3〜4 市販品メタクリル酸エステル系樹脂フイルムお
よび市販フツ素系樹脂フイルムの特性を評価し
た。結果を第2表に示す。
(Field of Industrial Application) The present invention relates to a vinylidene fluoride resin composite film that has excellent weather resistance, stain resistance, and solvent resistance, and has improved adhesiveness to plastics, rubber, and other base materials. More specifically, it is a vinylidene fluoride resin multilayer film composed of a vinylidene fluoride resin layer, a layer made of a mixture of a vinylidene fluoride resin and a methacrylic ester resin, and a methacrylic ester resin layer. It is related to. (Prior Art) In recent years, polyvinyl chloride-based, polymethacrylate-based, polyfluorine-based films, and the like have been used together with various paints as surface protection films for interior and exterior members. These protective films are used for wallpaper, elevators, vehicle interiors, roofing materials, wall materials, rain gutters, garage roofs, sunrooms, agricultural materials, etc.
It is used in a wide variety of applications, such as signboards, signs, labels, and window glass, due to its excellent weather resistance. By the way, protective films based on the three types of materials mentioned above are used for various purposes depending on their price, characteristics, etc.
In terms of price, the former is cheaper, while in terms of characteristics, the latter has better weather resistance. The target substrates for lamination of these protective films include plastic substrates such as polyvinyl chloride, polycarbonate, polymethyl methacrylate, acrylonitrile-butadiene-styrene copolymer, FRP, etc., as well as rubber substrates such as EPDM, CSM, etc. ,
In addition to metals such as aluminum foil and steel plates, there is a wide range of materials such as plywood and glass. (Problem to be solved by the invention) However, among these three types of material films, polyfluorine-based films have far superior performance than the two in terms of weather resistance, stain resistance, and strength. On the other hand, it has the disadvantage of poor adhesion to the base material. Therefore, while polyvinyl chloride and polymethacrylic acid ester films use a thermal adhesive method depending on the application, all polyfluorine films use an adhesive method, and in this respect as well. At present, it is expensive and its excellent weather resistance and stain resistance cannot be fully utilized, and there is a strong demand for improvement in imparting this thermal adhesive property. The present invention improves the adhesion of a film made of vinylidene fluoride resin, and includes a vinylidene fluoride resin layer, a layer made of a mixture of vinylidene fluoride resin and methacrylic acid ester resin, and a layer made of a mixture of vinylidene fluoride resin and methacrylic acid ester resin. By using a multilayer film composed of a resin layer, we provide a vinylidene fluoride resin multilayer film that has excellent weather resistance, stain resistance, and solvent resistance, and also has good adhesion to the adhered substrate. be. (Means for solving the problem) The present invention has an A layer containing vinylidene fluoride resin as a component, 85 to 25 parts by weight of vinylidene fluoride resin, and 15 to 75 parts by weight of methacrylic acid ester resin. This is a vinylidene fluoride resin multilayer film characterized by being composed of a B layer and a C layer containing a methacrylic acid ester resin as a component. The vinylidene fluoride resin used in the present invention is
It refers to a homopolymer of vinylidene fluoride or a copolymer of vinylidene fluoride and a copolymerizable monomer. Examples of copolymerizable monomers include vinyl fluoride, tetrafluoroethylene, and trifluorochloroethylene. Next, the methacrylic acid ester resin refers to a copolymer of a homopolymer of methyl methacrylate and a monomer copolymerizable with methyl methacrylate.
Copolymerizable monomers include butyl methacrylate, ethyl methacrylate, and acrylic esters. Next, layer B (hereinafter referred to as B layer) is composed of a mixture of vinylidene fluoride resin and methacrylic acid ester resin.
The raw material used for the layer is a blend of the above-mentioned vinylidene fluoride resin and methacrylic acid ester resin at a certain ratio, or a blend thereof is melted into pellets using an extrusion molding machine or the like. You can use things. The mixing ratio of vinylidene fluoride resin and methacrylic acid ester resin used for this B layer is as follows:
85 to 25 parts by weight/15 to 75 parts by weight, which means that if the vinylidene fluoride resin exceeds 85 parts by weight, the C layer (hereinafter referred to as C layer) containing methacrylic acid ester resin as a component
On the other hand, if the amount of vinylidene fluoride resin is less than 25 parts by weight,
A layer (hereinafter referred to as A layer) containing vinylidene fluoride resin as a component
This is because the adhesion between the two layers becomes insufficient. Note that the film thicknesses of layer A, layer B, layer C, and the entire layer are not particularly specified, but when used as a protective film, layer A is 3 to 100μ, layer B is 2 to 50μ, and layer C is 5μ. ~200μ layer as a whole is 10~
Approximately 350μ is preferable. However, in applications requiring solvent resistance, this is not the case, and even a layer A of several mm thick can be used. On the other hand, it is also possible to use it for the purpose of improving the weather resistance of the base material by imparting light-shielding properties to at least one of the A, B, and C layers. This can be achieved by incorporating fillers and colorants containing talc, calcium carbonate, carbon black, red iron, and other inorganic pigments. In addition, as a method to further improve the weather resistance of the substrate in the form of a transparent film (particularly for the purpose of blocking ultraviolet rays), it is possible to add benzotriazole, benzophenone, salicylic acid derivatives, etc. to at least one of the A, B, and C layers. A method of kneading ultraviolet absorbers is adopted. At this time, it is even more effective to use a radical scavenger or an antioxidant in combination. Next, the manufacturing method will be described. The multilayer film according to the present invention is composed of three layers and is manufactured by melt extrusion. For melt extrusion molding, in addition to a general single-screw extruder, two
Although a screw extruder may also be used, the following methods are available for bonding multiple layers together: First, the T-die coextrusion molding method, in which multiple extruders are used to bond resin in a molten state to form multiple layers, is called a multi-manifold die, and the resin layers are brought into a sheet state and then contacted. There are two methods: adhesion, and a method called feed block die, in which multiple resins are bonded and then spread into a sheet. Multilayer films can also be formed using a method called inflation molding, which uses a round die. This is called the extrusion lamination method, in which one of the layers to be bonded together is formed into a film in advance, and the other layer is extruded while being heated or glued (generally adhesive is applied in advance). It is also possible to use a method of crimping and bonding the material (pre-applied). There is also a method of forming both layers into films in advance and then integrating them using heat or adhesive, but this is disadvantageous in terms of process and cost compared to the previous method, and in the case of thin films, bonding is difficult. It's also difficult. Next, in order to impart light-shielding properties to at least one layer of layer A, layer B, or layer C, it is necessary to add about 2 to 30% by weight of pigment, and the resin and pigment are mixed using an extruder or the like. Melting and kneading may also be used, but in general, the dispersion of the pigment is not sufficient, and using a high-speed rotation, high-shear kneader, such as Kobe Steel's FCM type kneader, will result in very good pigment dispersion and an excellent surface condition. It is possible to provide raw materials for light-shielding layers. (Example) From now on, we will use vinylidene fluoride resin as PVDF,
Methyl methacrylate resin is abbreviated as PMMA. The vinylidene fluoride resin is manufactured by Pennwalt Co., Ltd. under the trade name Kynar 740 (hereinafter abbreviated as K-740), while the methacrylate ester resin is manufactured by Mitsubishi Rayon Co., Ltd. under the trade name Acrypet MD (PMMA, hereinafter referred to as MD). (abbreviated) and manufactured by the same company under the trade name Hypet HBE (methyl methacrylate resin containing acrylic rubber, hereinafter abbreviated as HBE) were used. Also B
The PVDF/PMMA constant ratio mixture used for the layer is
After blending K-740 and MD or HBE at a fixed ratio, the mixture was melted in a 30 m/mφ counter-rotating twin screw extruder and re-pelletized. Example 1 PVDF/PMMA obtained from MD with K-740 as the raw material for the A layer and K-740 as the raw material for the B layer = 80/
20 products, while using HBE as the raw material for the C layer, 40
Three-layer coextrusion molding was carried out using three mmφ extruders, a feed block die, and a coat hanger type T-die with a width of 450 mm and a slit width of 0.3 mm. Note that the take-up roll closest to the T-die was water-cooled. The thickness of the obtained three-layer film was 24μ,
Calculating from the extrusion rate ratio of each extruder, the thickness of each layer was 10 μm for A layer, 6 μm for B layer, and 8 μm for C layer.
In addition, as a result of evaluating the characteristics of this three-layer film,
As shown in Table 1, it had excellent weather resistance, stain resistance, solvent resistance, and thermal adhesion. Example 2 The raw material for the A layer is K-740, and the raw material for the B layer is K-
A PVDF/PMMA=50/50 product obtained from 740 and MD was coextruded into a three-layer film in the same manner using the equipment of Example 1, using MD as the raw material for the C layer. The structure and characteristics of the obtained three-layer film were
Shown in the table. Example 3 The raw material for the A layer is K-740, and the raw material for the B layer is K-740.
The PVDF/PMMA=30/70 product obtained by MD was subjected to three-layer coextrusion molding in the same manner as in Example 1 using HBE as the raw material for the C layer. The structure and characteristics of the obtained three-layer film were
Shown in the table. Example 4 Raw material for A layer is K-740, raw material for B layer is K-740
and PVDF/rubber-filled PMMA obtained from HBE = 60/
40 products were similarly 3-layer coextruded using the equipment of Example 1, using a light-shielding MD prepared by melting and kneading 100 parts by weight of MD and 20 parts by weight of titanium oxide as raw materials for the C layer. I did this. The structure and characteristics of the obtained three-layer film were
Shown in the table. Comparative example 1 PVDF/PMMA obtained from K-740 and MD = 50/
Using 50 products, 65mmφ extruder, width 330mm, slit
A single layer film was formed using a 0.5 mm T-die. The properties of the obtained film are shown in Table 2. Comparative Example 2 PVDF/PMMA=70/ obtained from K-740 and MD
A single-layer film was formed using the same equipment as in Comparative Example 1 using 30 products. The properties of the film are shown in Table 2. Comparative Examples 3 to 4 Characteristics of commercially available methacrylic acid ester resin films and commercially available fluorine resin films were evaluated. The results are shown in Table 2.

【表】【table】

【表】【table】

【表】 第1表および第2表の特性測定は、次の通りに
行なつた。 (1) フイルム厚さ:1/1000mm目盛のピーコツク厚
さ計を使用して測定。なお3層のうちのA、B
およびC層の各層さは各押出機の押出量比より
計算した。 (2) 耐候性 (イ)耐候促進試験JISA−1415 (ロ)黄色度測定 JISK−7103 黄変指数=暴露後の黄色度/初期黄
色度 (3) 耐汚染性(A層側) 1 試験方法 1 各フイルムに約1cm2程度マジツクでマー
クする 2 乾燥後ガーゼで30回こすり落す 3 残つたインキを肉眼で評価する 2 評価基準 1:完全に落ちる 2:落ちるがこすつたあとが薄く残る 3: 〃 〃 濃く残る 4: 一部落ちるが残るところもある(落ち
たところもあとが残る) 5:ほとんど落ちない (4) 耐溶剤性(A層側のみを浸漬) 1試験方法:室温にて各溶剤に2日間浸漬後肉
眼で評価した。 2評価基準○:変化なし ○△:わずかながらフイルム収縮 △:フイルム収縮 △〜×:フイルム収縮・膨潤 ×:フイルム溶解 (5) 熱接着性(B層側) 1 試験方法基材:テーブルクロス用軟質塩
ビシート200μ 接着ロールと条件 鏡面/シリコ
ンゴム100φ×350mm速度1m/
分 2 評価方法 25mm幅積層シートを20mm/分の
速度で180°剥離して強度測定 (発明の効果) 本発明のフツ化ビニリデン樹脂層、フツ化ビニ
リデン樹脂とメタクリル酸エステル系樹脂との混
合物よりなる層、およびメタクリル酸エステル系
樹脂から構成されるフツ化ビニリデン樹脂系多層
フイルムは、高い強・伸度を有し、かつフツ化ビ
ニリデン樹脂の特性である優れた長期耐候性を有
するばかりでなく、水性、油性インキ類や塵埃が
付着しても簡単に除去できる耐汚染性や耐溶剤性
にも優れている。一方接着層は、メタクリル酸エ
ステル系樹脂より構成されているので、接着剤を
使用する方法は云うまでもなく熱を使用する接着
性にも優れており、このためエレベーターや車輛
等の内装用のほか屋根材や壁材等の用塗に適用す
る事が出来る。
[Table] The characteristics measurements shown in Tables 1 and 2 were carried out as follows. (1) Film thickness: Measured using a Pico stock thickness gauge with 1/1000mm scale. Furthermore, A and B of the three layers
And the thickness of each layer of C layer was calculated from the extrusion amount ratio of each extruder. (2) Weather resistance (a) Accelerated weather resistance test JISA-1415 (b) Yellowness measurement JISK-7103 Yellowing index = Yellowness after exposure / Initial yellowness (3) Stain resistance (A layer side) 1 Test method 1 Mark approximately 1cm2 on each film with a magic marker 2 After drying, rub off with gauze 30 times 3 Evaluate the remaining ink with the naked eye 2 Evaluation criteria 1: Completely removed 2: Removed but leaves a thin trace of rubbing 3: 〃 〃 Remains darkly 4: Partially removed, but remains in some areas (marks remain even where it has fallen) 5: Hardly removed (4) Solvent resistance (Immerse only the A layer side) 1 Test method: Each at room temperature After being immersed in a solvent for 2 days, it was visually evaluated. 2 Evaluation criteria ○: No change ○△: Slight film shrinkage △: Film shrinkage △ to ×: Film shrinkage/swelling ×: Film dissolution (5) Thermal adhesiveness (B layer side) 1 Test method Base material: For table cloth Soft PVC sheet 200μ Adhesive roll and conditions Mirror surface/Silicone rubber 100φ×350mm Speed 1m/
Minutes 2 Evaluation method Strength measurement by peeling a 25 mm wide laminated sheet at 180° at a speed of 20 mm/min (effect of the invention) From the vinylidene fluoride resin layer of the present invention, a mixture of vinylidene fluoride resin and methacrylate ester resin The vinylidene fluoride resin multilayer film, which is composed of a methacrylic acid ester resin, has not only high strength and elongation, but also excellent long-term weather resistance, which is a characteristic of vinylidene fluoride resin. It also has excellent stain resistance and solvent resistance, allowing it to be easily removed even if water-based or oil-based ink or dust adheres to it. On the other hand, since the adhesive layer is composed of methacrylic acid ester resin, it has excellent adhesion properties not only using adhesives but also using heat. In addition, it can be applied to coating roofing materials, wall materials, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 フツ化ビニリデン樹脂を成分とするA層と、
フツ化ビニリデン樹脂85〜25重量部とメタクリル
酸エステル系樹脂15〜75重量部とを成分とするB
層、およびメタクリル酸エステル系樹脂を成分と
するC層とから構成されたフツ化ビニリデン樹脂
系多層フイルム。
1. A layer containing vinylidene fluoride resin as a component;
B containing 85 to 25 parts by weight of vinylidene fluoride resin and 15 to 75 parts by weight of methacrylic acid ester resin.
A vinylidene fluoride resin multilayer film comprising a C layer and a C layer containing a methacrylic acid ester resin as a component.
JP12978384A 1984-06-23 1984-06-23 Vinylidene fluoride resin group multilayer film Granted JPS618350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12978384A JPS618350A (en) 1984-06-23 1984-06-23 Vinylidene fluoride resin group multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12978384A JPS618350A (en) 1984-06-23 1984-06-23 Vinylidene fluoride resin group multilayer film

Publications (2)

Publication Number Publication Date
JPS618350A JPS618350A (en) 1986-01-16
JPH0380424B2 true JPH0380424B2 (en) 1991-12-24

Family

ID=15018111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12978384A Granted JPS618350A (en) 1984-06-23 1984-06-23 Vinylidene fluoride resin group multilayer film

Country Status (1)

Country Link
JP (1) JPS618350A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886689A (en) * 1986-08-29 1989-12-12 Ausimont, U.S.A., Inc. Matrix-matrix polyblend adhesives and method of bonding incompatible polymers
FR2659085B1 (en) * 1990-03-02 1992-05-15 Atochem COMPOSITION COEXTRUDABLE WITH VINYLIDENE POLYFLUORIDE ALLOWING THE ADHESION OF THE SAME WITH A NON-COMPATIBLE POLYMERIC RESIN - COMPOSITE OBTAINED WITH THIS COMPOSITION.
FR2731943B1 (en) * 1995-03-24 1997-07-18 Atochem Elf Sa COMPLEX MATERIAL WITH IMPROVED PROPERTIES CONSISTING OF VINYLIDENE POLYFLUORIDE AND A NON-COMPATIBLE THERMOPLASTIC
DE102004024429A1 (en) * 2004-05-14 2005-12-08 Röhm GmbH & Co. KG Shaped body containing a polymer blend of impact-modified poly (meth) acrylate and fluoropolymer
JP5474425B2 (en) * 2009-07-10 2014-04-16 電気化学工業株式会社 Vinylidene fluoride resin film and solar cell back surface protection sheet using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155381A (en) * 1974-11-12 1976-05-15 Kureha Chemical Ind Co Ltd SEKISOHORIMECHIRUMETAAKURIREETOBAN
JPS5159971A (en) * 1974-11-21 1976-05-25 Nippon Carbide Kogyo Kk TAIKOSEINOSUGURETAFUKUGOFUIRUMU
JPS5857954A (en) * 1981-10-02 1983-04-06 三井東圧化学株式会社 Plastic material for outdoor spread

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155381A (en) * 1974-11-12 1976-05-15 Kureha Chemical Ind Co Ltd SEKISOHORIMECHIRUMETAAKURIREETOBAN
JPS5159971A (en) * 1974-11-21 1976-05-25 Nippon Carbide Kogyo Kk TAIKOSEINOSUGURETAFUKUGOFUIRUMU
JPS5857954A (en) * 1981-10-02 1983-04-06 三井東圧化学株式会社 Plastic material for outdoor spread

Also Published As

Publication number Publication date
JPS618350A (en) 1986-01-16

Similar Documents

Publication Publication Date Title
JPH0611536B2 (en) Vinylidene fluoride resin-based composite film
US5132164A (en) Fluorine resin type weather-resistant film
EP1047556B1 (en) Decorative sheet material suitable for use as a flexible weatherable paint film or decal
CA2356338C (en) Methods for manufacturing films with a layer containing mixtures of fluoropolymers and polyacrylates
US5256472A (en) Fluorine resin type weather-resistant film
DE69423791T2 (en) Multi-layer film and process for its manufacture
JP2001171055A (en) Impact-resistant protective multi-layer film
CN104203574A (en) Co-extruded impact-modified PMMA film
JP4976762B2 (en) Vinylidene fluoride resin laminated film and method for producing the same
WO2013019766A2 (en) Graphic article
JPH0550566A (en) Production of vinylidene fluoride resin type composite film
JPH0680794A (en) Vinylidene fluoride resin film, its use and its production
JP4480834B2 (en) Vinylidene fluoride resin film
JPH0380424B2 (en)
JP4529100B2 (en) Surface protection film
JP2656804B2 (en) Fluoroplastic multilayer film
JP2618431B2 (en) Fluorine resin-based weatherproof film
JP2788756B2 (en) Fluororesin-based colored film and method for producing the same
JP2651374B2 (en) Vinylidene fluoride resin composite film
JPS60195146A (en) Composition for semirigid vinyl chloride resin moldings
JPH07195633A (en) Vinylidene fluoride resin type composite film
JP2002338706A (en) Vinylidene fluoride based resin film
CA2485050A1 (en) Plastisol coating containing reflective pigments, method of preparing coating on a substrate, and products with such coatings
JPH0790152A (en) Matted film of vinylidene fluoride resin
JP4266554B2 (en) Vinylidene fluoride resin laminated film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term