JPH0380301B2 - - Google Patents

Info

Publication number
JPH0380301B2
JPH0380301B2 JP7290283A JP7290283A JPH0380301B2 JP H0380301 B2 JPH0380301 B2 JP H0380301B2 JP 7290283 A JP7290283 A JP 7290283A JP 7290283 A JP7290283 A JP 7290283A JP H0380301 B2 JPH0380301 B2 JP H0380301B2
Authority
JP
Japan
Prior art keywords
radiation
resist
sensitivity
aldehyde
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7290283A
Other languages
Japanese (ja)
Other versions
JPS59198448A (en
Inventor
Koichi Hatada
Yoshio Okamoto
Tatsuki Kitayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7290283A priority Critical patent/JPS59198448A/en
Publication of JPS59198448A publication Critical patent/JPS59198448A/en
Publication of JPH0380301B2 publication Critical patent/JPH0380301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は半導体素子、磁気バブルメモリ素子、
集積回路等の製造に必要な微細パターン形成に好
適な電子線、X線、イオンビーム等の放射線に高
い感応性を示す放射線感応性有機高分子材料に関
する。 〔発明の背景〕 従来、半導体素子、磁気バブルメモリ素子、集
積回路等の電子部品を製造するためのパターン形
成法としては、紫外線または可視光線に感応する
フオトレジストを利用する方法が幅広く実用化さ
れている。 近年、半導体素子等の高密度化、高集積化をは
かる目的で、1μm以下の幅のパターンを形成す
る方法が要求されている。 しかし、前記の光を使用する方法では、その光
の固有な性質である回折、散乱および干渉等によ
り、1μm以下の幅のパターンを精度よく形成す
ることは極めて困難であり、同時に歩留りの低下
も著しく、紫外線または可視光線を使用する方法
は、1μm以下の幅のパターンを形成する方法と
しては不適であつた。 これに対処して、前記のフオトリソグラフイに
代つて、電子線、X線、イオンビーム等の高エネ
ルギーな放射線を用いるリソグラフイ技術が開
発、研究され、これに伴なつて上記放射線に対し
て感応性を有する材料が、種々検討されている。 なかでも、放射線の照射によつて高分子鎖の切
断反応を誘起して、その被照射部分が現像液に可
溶性となり、パターンを形成するポシ形放射線感
応性有機高分子材料、たとえば、ポリ(メタクリ
ル酸メチル)、ポリー(1−ブテンスルホン)等
は、放射線の照射によつて架橋反応を誘起して、
その被照射部分が現像液に不溶性となり、パター
ンを形成するネガ形放射線感応性有機高分子材料
に比して、高解像性のパターンを生成せしめ、微
細加工用レジスト材料として極めて好都合であ
る。 しかし、前記の材料をはじめとしてポジ形放射
線感応性有機高分子材料はネガ形材料に比し、そ
の感度が1/10〜1/1000と低く、その結果、パター
ン形成に要する時間が長くなり、生産性の点で実
用性に乏しいものであつた。 また、半導体素子等の製造を考えてみると、数
回にわたるレジスト工程が使用される。各レジス
ト工程においては、レジストの塗布、乾燥、光あ
るいは放射線の照射、および現像を必要とし、一
般的な湿式処理の現像では数10分を要する。レジ
ストの現像後、次の処理工程にウエハを移動する
時間を含めると、一層の時間がかかり、半導体工
業においては迅速な現像処理および湿式溶剤をほ
とんど使用しない処理方法に対する強い要望があ
つた。 〔発明の目的〕 本発明の目的は上記したような従来技術の欠点
をなくする、電子線、X線、イオンビーム等の高
エネルギーな放射線に対して高い感応性を有する
ポジ形放射線感応性有機高分子材料を提供するこ
とにあり、とくに放射線照射により被照射部分が
連鎖的に崩壊し、飛散することから、特別に現像
工程を用いなくてもパターン形成できることを特
徴とするポジ形放射線感応性有機高分子材料を提
供することにある。 〔発明の概要〕 上記の目的を達成するために、本発明者は放射
線感応性を有すると思われる有機高分子材料を
種々検討の結果、この種の材料として、4,4,
4−トリフエニルブタナール(以下、TPhBAと
略す。)と1種以上の脂肪族アルデヒドとの混合
物を相互に共重合させたアルデヒド系重合体を見
い出すに至つた。 すなわち、上記のようなポリエーテル型構造を
有するアルデヒド系重合変は、電子線、X線、イ
オンビーム等の高エネルギーな放射線の照射によ
つて高分子鎖が連鎖的に崩壊するために、極めて
高感度なポジ形レジスト材料として使用でき、か
つ又、被照射部分が放射線照射と同時に飛散する
ことから、特別に現像工程を用いなくてもパター
ン形成でき、そのために極めて製造プロセスが短
縮できる。自発現像型ポジ形レジスト材料である
という特徴を有している。 次に、本発明において使用する材料について説
明する。 一般に、脂肪族アルデヒドの単独重合体は結晶
性が高いために、多くの有機溶剤に対して難溶性
であり、レジスト材料として使用できない。本発
明者はアルデヒド重合体の溶解性を改善すること
によつて、レジスト材料として使用できる重合体
を得るべく鋭意研究を行なつた結果、TPhBAと
1種以上の脂肪族アルデヒドとの混合物をアニオ
ン重合させることにより得たアルデヒド共重合体
が放射線感応性有機高分子材料として使用できる
ことが見い出された。 本発明でTPhBAとの共重合に使用される脂肪
族アルデヒド単量体としては、一般式R−CHO
において、Rがアルキル基、ハロゲン化アルキル
基、アルアルキル基あるいはハロゲン化アルアル
キル基である様な脂肪族アルデヒド類より選ばれ
た1種以上のアルデヒド単量体であり、上記のア
ルキル基としては好ましくは炭素数1乃至8のも
のが良い。単量体混合物の割合をポリマー組成で
規制すると、共重合体中に含有される最大の成分
が99モル%を越えない組成範囲より選定される。 しかし、特に溶解性の高い共重合体を得るため
には、共重合体中に含有される最大の成分が95モ
ル%を越えないことが望ましい。 本発明の重合体を得る製造法については、とく
に限定されるものではないが、たとえば、エチル
マグネシウムブロマイド−(−)−Sparteineを触
媒とするアニオン重合法などがあげられる。 なお、触媒添加量には限定はないが、アルデヒ
ド単量体混合物に対し、0.1〜5モル%の割合で
加えるのが適当である。 なお、アニオン重合を行なうに当つては、重合
媒体は必ずしも用いる必要がないが、必要とする
場合は、トルエンなどの炭化水素系の溶剤を使用
するのが良い。 また、重合は0℃乃至−120℃の範囲で行なう
ことが出来るが、通常は−50℃乃至−100℃の温
度範囲で行なうことが好ましい。 本発明の放射線感応性有機高分子材料を半導体
素子等のパターンを形成するために使用する場合
には、例えば、クロロホルム、トルエン等の汎用
の有機溶媒に溶解させたものが使用され、通常は
スピン塗布法、浸漬塗布法によつて素子基板に被
覆される。 塗布後、適当な温度条件でプリベークしたの
ち、所望のパターンに放射線を照射すると、被照
射部分が連鎖的に崩壊して、飛散し、ポジ形のレ
ジストパターンが現像工程をほどこすことなしに
得ることができる。 なお、必要とする場合は、クロロホルム−イソ
プロピルアルコール系有機溶媒などを用いて湿式
現像しても差しつかえない。 また、本発明のアルデヒド系重合体は放射線に
対して高い感応性を示すが、光に対しても感応性
を有しており、感光性材料としても使用できる。 〔発明の実施例〕 以下に本発明を合成例および実施例につき、具
体的に説明する。 合成例 1 4,4,4−トリフエニルブタナールの合成は
下記のようにして行なつた。 還流冷却器と滴下ロートをそなえた500mlの三
つ口フラスコに、窒素気流下でNaBH43.4g、
4,4,4−トリフエニル−1−ブテン74gおよ
びテトラヒドロフラン190mlを加えた。これに25
℃で撹拌しながら、BF3・O(C2H5221gを2時
間かけて滴下した。滴下後さらに6時間撹拌を続
けた。つづいて、反応混合物に水20ml、3N−
NaOH水溶液33ml、30%H2O2水溶液33mlの順で
加えた。水層をNaClで飽和して有機層を分離さ
せ、この層を飽和食塩水で洗浄した。MgSO4
乾燥後、溶媒を留去し、粗生成物を得た。これを
ヘキサンで再結晶し、4,4,4−トリフエニル
ブタノール32g(収率40%)を得た。融点:113
〜116℃。 3の三つ口フラスコに無水ピリジン128gと
無水塩化メチレン2.1を加え、これに酸化クロ
ム()82gを室温で溶解させた。これに上記の
反応で得た4,4,4−トリフエニルブタナール
41gを塩化メチレン145mlに溶かした溶液を加え、
20分間撹拌した。次に、有機層を分離し、これを
5%NaOH水溶液500ml、5%塩酸500ml、5%
NaHCO3水溶液500ml、飽和食塩水の順で洗浄
し、MgSO4で乾燥した。溶媒を留去して得られ
た粗生成物をヘキサンより繰り返し再結晶して、
4,4,4−トリフエニルブタナール14g(収率
34%)を得た。融点:106〜107℃。 元素分析(C22H20O): 計算値 C 87.96%,H 6.71% 実測値 C 87.94%,H 6.75% 赤外線吸収スペクトル(ヌジヨール法): 1722cm-1 C=O 2720cm-1
[Field of Application of the Invention] The present invention relates to semiconductor devices, magnetic bubble memory devices,
The present invention relates to a radiation-sensitive organic polymer material that is highly sensitive to radiation such as electron beams, X-rays, and ion beams and is suitable for forming fine patterns necessary for manufacturing integrated circuits. [Background of the Invention] Conventionally, methods using photoresists sensitive to ultraviolet or visible light have been widely put into practical use as pattern forming methods for manufacturing electronic components such as semiconductor devices, magnetic bubble memory devices, and integrated circuits. ing. In recent years, for the purpose of increasing the density and integration of semiconductor devices, there has been a demand for a method for forming patterns with a width of 1 μm or less. However, with the above-mentioned method using light, it is extremely difficult to accurately form patterns with a width of 1 μm or less due to the inherent properties of the light, such as diffraction, scattering, and interference, and at the same time, the yield may decrease. Significantly, methods using ultraviolet light or visible light are unsuitable for forming patterns with a width of 1 μm or less. In order to deal with this, lithography techniques using high-energy radiation such as electron beams, Various sensitive materials have been studied. Among these, positive-type radiation-sensitive organic polymer materials, such as poly( Methyl methacrylate), poly(1-butenesulfone), etc. induce a crosslinking reaction by irradiation with radiation,
The irradiated portion becomes insoluble in the developer, and it can generate patterns with higher resolution than negative radiation-sensitive organic polymer materials that form patterns, making it extremely advantageous as a resist material for microfabrication. However, the sensitivity of positive-tone radiation-sensitive organic polymer materials, including the above-mentioned materials, is 1/10 to 1/1000 lower than that of negative-tone materials, and as a result, the time required for pattern formation is longer. It was impractical in terms of productivity. Furthermore, when considering the manufacture of semiconductor devices and the like, several resist steps are used. Each resist process requires resist coating, drying, irradiation with light or radiation, and development, and development using a typical wet process takes several tens of minutes. After developing the resist, the time required to move the wafer to the next processing step is even more time-consuming, and there has been a strong desire in the semiconductor industry for rapid development processing and processing methods that use little wet solvents. [Object of the Invention] The object of the present invention is to eliminate the drawbacks of the prior art as described above, and to provide a positive radiation-sensitive organic material having high sensitivity to high-energy radiation such as electron beams, X-rays, and ion beams. The object of the present invention is to provide a polymeric material with positive radiation sensitivity, which is characterized by the fact that when irradiated with radiation, the irradiated part disintegrates and scatters in a chain, so that a pattern can be formed without a special development process. Our objective is to provide organic polymer materials. [Summary of the Invention] In order to achieve the above object, the present inventor has studied various organic polymer materials that are thought to have radiation sensitivity, and has found 4, 4,
We have now discovered an aldehyde-based polymer in which a mixture of 4-triphenylbutanal (hereinafter abbreviated as TPhBA) and one or more aliphatic aldehydes is copolymerized with each other. In other words, the aldehyde-based polymerization modification having a polyether type structure as described above is extremely difficult because the polymer chains are chain-disintegrated by irradiation with high-energy radiation such as electron beams, X-rays, and ion beams. It can be used as a highly sensitive positive resist material, and since the irradiated area is scattered at the same time as the radiation is irradiated, patterns can be formed without using a special development process, and the manufacturing process can therefore be extremely shortened. It is characterized by being a self-imaging positive resist material. Next, materials used in the present invention will be explained. Generally, homopolymers of aliphatic aldehydes have high crystallinity and are poorly soluble in many organic solvents, so they cannot be used as resist materials. The present inventor conducted intensive research to obtain a polymer that can be used as a resist material by improving the solubility of aldehyde polymers. It has been found that aldehyde copolymers obtained by polymerization can be used as radiation-sensitive organic polymer materials. The aliphatic aldehyde monomer used in the copolymerization with TPhBA in the present invention has the general formula R-CHO
, R is one or more aldehyde monomers selected from aliphatic aldehydes such as an alkyl group, a halogenated alkyl group, an aralkyl group, or a halogenated aralkyl group, and the above alkyl group is Preferably, it has 1 to 8 carbon atoms. When the proportion of the monomer mixture is regulated by the polymer composition, it is selected from a composition range in which the largest component contained in the copolymer does not exceed 99 mol%. However, in order to obtain a copolymer with particularly high solubility, it is desirable that the largest component contained in the copolymer does not exceed 95 mol%. The method for producing the polymer of the present invention is not particularly limited, but includes, for example, an anionic polymerization method using ethylmagnesium bromide-(-)-Sparteine as a catalyst. Although there is no limit to the amount of catalyst added, it is appropriate to add the catalyst in an amount of 0.1 to 5 mol % based on the aldehyde monomer mixture. In carrying out anionic polymerization, it is not necessary to use a polymerization medium, but if necessary, it is preferable to use a hydrocarbon solvent such as toluene. The polymerization can be carried out at a temperature of 0°C to -120°C, but it is usually preferably carried out at a temperature of -50°C to -100°C. When the radiation-sensitive organic polymer material of the present invention is used to form patterns for semiconductor devices, etc., it is dissolved in a general-purpose organic solvent such as chloroform or toluene, and is usually spun. The element substrate is coated by a coating method or a dip coating method. After coating, pre-baking at appropriate temperature conditions, and then irradiating the desired pattern with radiation, the irradiated area collapses and scatters in a chain, creating a positive resist pattern without the need for a developing process. be able to. Note that, if necessary, wet development may be performed using a chloroform-isopropyl alcohol organic solvent. Further, the aldehyde polymer of the present invention exhibits high sensitivity to radiation, but also sensitivity to light, and can be used as a photosensitive material. [Examples of the Invention] The present invention will be specifically explained below with reference to synthesis examples and examples. Synthesis Example 1 4,4,4-triphenylbutanal was synthesized as follows. In a 500 ml three-necked flask equipped with a reflux condenser and a dropping funnel, 3.4 g of NaBH 4 was added under nitrogen flow.
74 g of 4,4,4-triphenyl-1-butene and 190 ml of tetrahydrofuran were added. 25 for this
While stirring at °C, 21 g of BF 3 .O(C 2 H 5 ) 2 was added dropwise over 2 hours. After the dropwise addition, stirring was continued for an additional 6 hours. Next, add 20 ml of water to the reaction mixture,
33 ml of NaOH aqueous solution and 33 ml of 30% H2O2 aqueous solution were added in this order. The aqueous layer was saturated with NaCl, the organic layer was separated, and this layer was washed with saturated brine. After drying with MgSO 4 , the solvent was distilled off to obtain a crude product. This was recrystallized from hexane to obtain 32 g (40% yield) of 4,4,4-triphenylbutanol. Melting point: 113
~116℃. 128 g of anhydrous pyridine and 2.1 g of anhydrous methylene chloride were added to the three-necked flask in Step 3, and 82 g of chromium oxide (2) was dissolved therein at room temperature. To this, 4,4,4-triphenylbutanal obtained in the above reaction
Add a solution of 41g dissolved in 145ml of methylene chloride,
Stir for 20 minutes. Next, the organic layer was separated and mixed with 500 ml of 5% NaOH aqueous solution, 500 ml of 5% hydrochloric acid, and 5%
It was washed successively with 500 ml of NaHCO 3 aqueous solution and saturated saline, and dried with MgSO 4 . The crude product obtained by distilling off the solvent was repeatedly recrystallized from hexane.
4,4,4-triphenylbutanal 14g (yield
34%). Melting point: 106-107℃. Elemental analysis (C 22 H 20 O): Calculated values C 87.96%, H 6.71% Actual values C 87.94%, H 6.75% Infrared absorption spectrum (Nujiol method): 1722 cm -1 C=O 2720 cm -1

【式】 1H NMRスペクトル(CDCl3): δ=2.33(2H,CH2−CO−) 2.96(2H,[Formula] 1 H NMR spectrum (CDCl 3 ): δ = 2.33 (2H, CH 2 −CO−) 2.96 (2H,

【式】) 7.21(15H、フエニル) 9.55(1H、CHO) 合成例 2 C2H5MgBr−(−)−Sparteine錯体の合成は下
記のようにして行なつた。 20mlの三方コツク付反応管に窒素気流下で乾燥
トルエン1.5ml、C2H5MgBrのエーテル溶液
(1.5mol/)0.53ml、(−)−Sparteineのトルエ
ン溶液(1.02mol/)0.95mlを窒温で加え、
C2H5MgBr−(−)−Sparteine錯体を調製した。 合成例 3 重合は三方コツク付重合管を用いて行なつた。
すなわち、約100ml容のシリンダー状重合管に窒
素気流下で、4,4,4−トリフエニルブタナー
ル(TPhBA)1.3mmolとn−ブタナール(BA)
11.7mmolとトルエン3mlを加える。モノマー溶
液が入つた上記重合管をドライアイス−アセトン
浴で−78℃に冷却し、容器を激しく動かしなが
ら、0.26mmolのC2H5MgBr−(−)−Sparteine
錯体を徐々に滴下した。触媒を加えた後、−78℃
で24時間重合させた。重合後、重合混合物を触媒
と等モルのHClを含むメタノールで処理した後、
生成ポリマーをメタノール中で1日間浸漬してか
ら別し、メタノールで数回洗浄し、真空乾燥し
てアルデヒド共重合体を収率51%で得た。共重合
体中のTPhBA含量を元素分析により求めた所、
9モル%であつた。 合成例 4〜7 合成例3と同様にして、TPhBAと各種アルデ
ヒドモノマとの共重合を行なつた。その結果をま
とめて第1表に示す。
[Formula]) 7.21 (15H, phenyl) 9.55 (1H, CHO) Synthesis example 2 C 2 H 5 MgBr-(-)-Sparteine complex was synthesized as follows. Add 1.5 ml of dry toluene, 0.53 ml of an ether solution of C 2 H 5 MgBr (1.5 mol/), and 0.95 ml of a toluene solution of (-)-Sparteine (1.02 mol/) to a 20 ml reaction tube with a three-way tank under nitrogen flow. Add warm;
A C2H5MgBr -(-)-Sparteine complex was prepared. Synthesis Example 3 Polymerization was carried out using a polymerization tube with a three-way socket.
That is, 1.3 mmol of 4,4,4-triphenylbutanal (TPhBA) and n-butanal (BA) were placed in a cylindrical polymerization tube with a volume of approximately 100 ml under a nitrogen stream.
Add 11.7 mmol and 3 ml of toluene. The above polymerization tube containing the monomer solution was cooled to -78°C in a dry ice-acetone bath, and while stirring the container vigorously, 0.26 mmol of C 2 H 5 MgBr-(-)-Sparteine was added.
The complex was gradually added dropwise. -78℃ after adding catalyst
Polymerization was carried out for 24 hours. After polymerization, the polymerization mixture was treated with methanol containing HCl equimolar to the catalyst;
The resulting polymer was soaked in methanol for one day, separated, washed several times with methanol, and dried under vacuum to obtain an aldehyde copolymer with a yield of 51%. When the TPhBA content in the copolymer was determined by elemental analysis,
It was 9 mol%. Synthesis Examples 4 to 7 In the same manner as in Synthesis Example 3, TPhBA and various aldehyde monomers were copolymerized. The results are summarized in Table 1.

【表】 実施例 1 会成例3で得た4,4,4−トリフエニルブタ
ナール(TPhBA)とn−ブタナール(BA)と
の共重合体をクロロホルムに溶解させ、1重量%
のレジスト溶液を作成した。 つづいて、上記レジスト溶液をシリコンウエハ
に塗布し、80℃、20分間プリベークして、3.5μm
厚の高分子被膜を形成させた。 これを電子線照射装置内に入れて、真空中加速
電圧20KVの電子線によつて、場所的に照射量の
異なる照射を行なつた。 その結果、被照射部分が現像処理をほどこすこ
となしに膜べりし、種々の異なる照射量で照射し
た箇所について、薄膜段差計を用いて残存高分子
被膜を測定し、残存膜厚(規格化)を電子線照射
量(クローン/cm2)に対してプロツトし、感電子
線特性を表わす第1図を得た。 これより残膜率が零となる最小照射量を求めた
所、1.7×10-6クローン/cm2であり、極めて高感
度なポジ形レジストであることが確認された。 たとえば、代表的なポジ形レジストであるポリ
メタクリル酸メチルの電子線感度は1×10-4クロ
ーン/cm2であり、本発明のポリ形レジスト材料は
ポリメタクリル酸メチルに比し、約2桁高い感度
を示すことが確認された。 実施例 2 合成例3で得たTPhBAとBAとの共重合体を
クロロホルムに溶解させ、1重量%のレジスト溶
液を作成した。 つづいて、上記レジスト溶液をシリコンウエハ
上に塗布し、80℃、20分間プリベークして、2.3μ
m厚の高分子被膜を形成させた。 これを軟X線発生装置内に入れて、真空下
10Kwの回転水冷式モリブデンターゲートから発
生する波長5.4Åの軟X線を照射し、残存膜厚
(規格化)と軟X線照射量(mJ/cm2)との関係
を求めた。被照射部分が現像処理をはどこすこと
なしに膜べりしたが、照射量を多くしても約30%
の残膜が認められた。照射後膜厚が一定となる最
小照射量を感度と定義し、求めた所380mJ/cm2
であり、代表的なポジ形レジストであるポリメタ
クリル酸メチル(軟X線感度:2000mJ/cm2より
約1桁高い軟X線感応性を有することが確認され
た。 実施例 3〜6 合成例4〜7で得たアルデヒド共重合体をクロ
ロホルムに溶解させ、約0.5重量%のレジスト溶
液を作成した。 つづいて、上記レジスト溶液をシリコンウエハ
上に塗布し、80℃、20分間プリベークして約2μ
m厚の高分子被膜を形成させた。 次いで、加速電圧20KVの電子線を照射して、
電子線感度を求めた。それらの結果をまとめて第
2表に示すが、いずれも放射線に対する感応性が
高く、高感度なポジ形レジストであることが確認
された。
[Table] Example 1 The copolymer of 4,4,4-triphenylbutanal (TPhBA) and n-butanal (BA) obtained in Preparation Example 3 was dissolved in chloroform, and 1% by weight of the copolymer was dissolved in chloroform.
A resist solution was prepared. Next, the above resist solution was applied to a silicon wafer and prebaked at 80°C for 20 minutes to form a 3.5 μm film.
A thick polymer film was formed. This was placed in an electron beam irradiation device and irradiated with an electron beam in vacuum at an acceleration voltage of 20 KV, with different doses depending on the location. As a result, the film of the irradiated area was removed without any development treatment, and the remaining polymer film was measured using a thin-film step meter in areas irradiated with various different doses, and the remaining film thickness (normalized ) was plotted against the electron beam irradiation dose (clones/cm 2 ) to obtain Figure 1, which shows the electron beam sensitivity characteristics. From this, the minimum irradiation dose at which the residual film rate would be zero was determined to be 1.7×10 -6 clones/cm 2 , confirming that it is an extremely sensitive positive resist. For example, the electron beam sensitivity of polymethyl methacrylate, which is a typical positive resist, is 1 × 10 -4 clones/cm 2 , and the polyurethane resist material of the present invention has a sensitivity of about two orders of magnitude compared to polymethyl methacrylate. It was confirmed that it exhibits high sensitivity. Example 2 The copolymer of TPhBA and BA obtained in Synthesis Example 3 was dissolved in chloroform to prepare a 1% by weight resist solution. Next, the above resist solution was applied onto a silicon wafer, prebaked at 80°C for 20 minutes, and a 2.3μ
A polymer film with a thickness of m was formed. This is placed inside a soft X-ray generator and placed under vacuum.
Soft X-rays with a wavelength of 5.4 Å generated from a 10 Kw rotary water-cooled molybdenum targate were irradiated, and the relationship between the residual film thickness (normalized) and the soft X-ray irradiation amount (mJ/cm 2 ) was determined. The film on the irradiated area peeled off without any development, but even with a high irradiation dose, the film was removed by about 30%.
A residual film was observed. Sensitivity is defined as the minimum irradiation dose at which the film thickness remains constant after irradiation, and was found to be 380mJ/cm 2
It was confirmed that polymethyl methacrylate (soft X-ray sensitivity: 2000 mJ/cm 2 ), which is a typical positive resist, has a soft X-ray sensitivity that is approximately one order of magnitude higher than that of a typical positive resist. Examples 3 to 6 Synthesis Examples The aldehyde copolymer obtained in steps 4 to 7 was dissolved in chloroform to prepare a resist solution of approximately 0.5% by weight.The above resist solution was then applied onto a silicon wafer and prebaked at 80°C for 20 minutes to form a resist solution of approximately 0.5% by weight. 2μ
A polymer film with a thickness of m was formed. Next, an electron beam with an accelerating voltage of 20KV is irradiated,
The electron beam sensitivity was determined. The results are summarized in Table 2, and it was confirmed that all of the resists had high sensitivity to radiation and were highly sensitive positive resists.

【表】 〔発明の効果〕 以上の説明に明らかなように、本発明によれ
ば、電子線、X線等の放射線に対して高感度で、
照射後の現像処理をほどこすことなく、浮き彫り
構造体を製造でき、半導体素子等の製造に顕著な
効果を示す。
[Table] [Effects of the Invention] As is clear from the above explanation, according to the present invention, it is highly sensitive to radiation such as electron beams and X-rays,
Embossed structures can be manufactured without any development treatment after irradiation, and this method has a remarkable effect on the manufacture of semiconductor devices and the like.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の放射線感応性高分子材料の感電子
線特性を示す図である。
The figure shows the electron beam-sensitive characteristics of the radiation-sensitive polymer material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 4,4,4−トリフエニルブタナールと、一
般式R−CHO(但し、Rはアルキル基、ハロゲン
化アルキル基、アルアルキル基又はハロゲン化ア
ルアルキル基を表わす)で表わされる脂肪族アル
デヒド単量体より選ばれた1種以上のアルデヒド
単量体とを相互に共重合させたものからなること
を特徴とする放射線感応性有機高分子材料。
1 4,4,4-triphenylbutanal and an aliphatic aldehyde monomer represented by the general formula R-CHO (wherein R represents an alkyl group, a halogenated alkyl group, an aralkyl group, or a halogenated aralkyl group) A radiation-sensitive organic polymer material characterized in that it is made of a material copolymerized with one or more aldehyde monomers selected from the following.
JP7290283A 1983-04-27 1983-04-27 Radiation-sensitive organic high polymer material Granted JPS59198448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7290283A JPS59198448A (en) 1983-04-27 1983-04-27 Radiation-sensitive organic high polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7290283A JPS59198448A (en) 1983-04-27 1983-04-27 Radiation-sensitive organic high polymer material

Publications (2)

Publication Number Publication Date
JPS59198448A JPS59198448A (en) 1984-11-10
JPH0380301B2 true JPH0380301B2 (en) 1991-12-24

Family

ID=13502736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7290283A Granted JPS59198448A (en) 1983-04-27 1983-04-27 Radiation-sensitive organic high polymer material

Country Status (1)

Country Link
JP (1) JPS59198448A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897336A (en) * 1986-04-11 1990-01-30 Chien James C W Self-developing radiation sensitive resist with amorphous polymer having haloalkyl substitution derived from cycic ether
US4936951A (en) * 1987-10-26 1990-06-26 Matsushita Electric Industrial Co., Ltd. Method of reducing proximity effect in electron beam resists

Also Published As

Publication number Publication date
JPS59198448A (en) 1984-11-10

Similar Documents

Publication Publication Date Title
KR100261224B1 (en) Si-containing polymers and chemically amplified resists comprising the same
KR100301354B1 (en) Resist Composition and Resist Pattern Formation Method
KR20000009572A (en) New polymer and photoresist composition therefrom
US5212047A (en) Resist material and process for use
EP0524246B1 (en) Resist material and process for use
DE4126409A1 (en) RADIATION-SENSITIVE MIXTURE WITH A POLYMERIC BINDING AGENT WITH UNITS OF (ALPHA) - (BETA) - UNSETTED CARBONIC ACIDS
JPH0380301B2 (en)
JPS5868743A (en) Radation sensitive organic polymer material
US4504646A (en) Positive type, radiation-sensitive organic polymer materials
JPH0756354A (en) Silicon-containing high molecular compound and resist material using the same
JPH0160812B2 (en)
JPH0380300B2 (en)
JPH061381B2 (en) Radiation-sensitive resin composition
JPH0146052B2 (en)
JPS61143746A (en) Novel high-energy ray sensitive material
JPH0237580B2 (en)
JPS6234908A (en) Alpha-methylstyrene polymer containing silicon and vinyl group, composition containing same and use thereof
JPS58219547A (en) Positive type radiation-sensitive organic high polymer material
JPS62254142A (en) Radiation sensitive organic high molecular material
JPH0158496B2 (en)
JPH01101311A (en) Silicon atom-containing ethylenic polymer, composition containing said polymer and method for use thereof
JPS62177005A (en) Styrene polymer containing silicon atom and pattern formation therewith
JPH0615585B2 (en) Silicon atom-containing ethylene polymer
JPH01101308A (en) Silicon atom-containing ethylenic polymer, composition containing said polymer and method for use thereof
JPS60119548A (en) Radiation sensitive organic polymer