JPH0380172B2 - - Google Patents

Info

Publication number
JPH0380172B2
JPH0380172B2 JP16094384A JP16094384A JPH0380172B2 JP H0380172 B2 JPH0380172 B2 JP H0380172B2 JP 16094384 A JP16094384 A JP 16094384A JP 16094384 A JP16094384 A JP 16094384A JP H0380172 B2 JPH0380172 B2 JP H0380172B2
Authority
JP
Japan
Prior art keywords
solid acid
polymer
polysilane
organosilicon
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16094384A
Other languages
Japanese (ja)
Other versions
JPS6140324A (en
Inventor
Yoshio Nishizeki
Shuichi Shibuya
Kyotaka Terajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP16094384A priority Critical patent/JPS6140324A/en
Publication of JPS6140324A publication Critical patent/JPS6140324A/en
Publication of JPH0380172B2 publication Critical patent/JPH0380172B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はケイ素と炭素とを主たる骨格成分とす
る有機ケイ素重合体の製造方法に関する。 〔従来の技術〕 最近ケイ素−炭素結合を主たる骨格成分とする
有機ケイ素重合体は炭化ケイ素を主成分とするセ
ラミツクス製造用前駆体として有用であることが
見出されている。 従来ケイ素と炭素を主たる骨格とする有機ケイ
素重合体、例えば
[Industrial Application Field] The present invention relates to a method for producing an organosilicon polymer whose main skeleton components are silicon and carbon. [Prior Art] Recently, it has been discovered that organosilicon polymers having silicon-carbon bonds as a main skeleton component are useful as precursors for producing ceramics having silicon carbide as a main component. Conventionally, organosilicon polymers whose main skeletons are silicon and carbon, e.g.

【式】(R及びR′は 各々水素原子、低級アルキル基又はフエニル基を
示す。以下同様とする。を主たる骨格成分とする
ポリカルボシランはR4-xSiClx(1≦X≦3)で
示される有機クロロシラン類やSiR4で示される
有機ケイ素化合物の熱分解によつて得られること
はすでによく知られているが、これらの熱分解は
700℃の高温を要し、SiやSiC等無機化合物や溶
剤に不溶の高分子化合物が生成し、目的とするセ
ラミツクスの前駆体に有用な有機ケイ素重合体の
収率が低い欠点を有している。さらに有機クロロ
シランの熱分解からのポリカルボシランは側鎖に
塩素基を残し、これをセラミツクス前駆体として
用いる場合、その焼成工程に於て塩素ガスが発生
し、焼成装置の腐触や環境汚染等問題があり、工
業的原料としては不満足なものである。 また、有機クロロシラン類を金属ナトリウムと
反応させて
[Formula] (R and R' each represent a hydrogen atom, a lower alkyl group, or a phenyl group. The same shall apply hereinafter.) The polycarbosilane whose main skeleton component is R 4-x SiClx (1≦X≦3) It is already well known that they can be obtained by thermal decomposition of organochlorosilanes shown below and organosilicon compounds shown as SiR4 , but these thermal decompositions are
It requires a high temperature of 700°C, produces inorganic compounds such as Si and SiC, and polymeric compounds that are insoluble in solvents, and has the disadvantage that the yield of organosilicon polymers useful as precursors for the target ceramics is low. There is. Furthermore, polycarbosilane produced by thermal decomposition of organic chlorosilane leaves chlorine groups in its side chains, and when this is used as a ceramic precursor, chlorine gas is generated during the firing process, causing corrosion of firing equipment and environmental pollution. It has problems and is unsatisfactory as an industrial raw material. In addition, organic chlorosilanes can be reacted with metallic sodium.

【式】(n>10の整数を示す)骨 格のポリシランとし、これを熱分解させて
[Formula] A polysilane with a skeleton (indicating an integer of n>10), which is thermally decomposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、前述の従来法の欠点を解決し、常圧
に於いて低い温度で短時間の加熱によつて高重合
度のケイ素−炭素結合を主たる骨格とする有機ケ
イ素化合物を高収率で製造する方法を提供せんと
するものである。 〔問題を解決するための手段〕 本発明はポリシランを固体酸濃度が0.2m
mol/g以上で且つ10Åから200Åの範囲の細孔
径を持つ固体酸触媒存在下で350〜500℃に加熱す
ることから成るケイ素−炭素結合を主たる骨格成
分とする有機ケイ素重合体の製造方法である。 本発明の原料として使用するポリシランは種々
のポリシランが使用でき、一般的に
The present invention solves the above-mentioned drawbacks of the conventional method, and produces organosilicon compounds whose main skeleton is a silicon-carbon bond with a high degree of polymerization in a high yield by heating at a low temperature at normal pressure for a short time. The purpose is to provide a manufacturing method. [Means for solving the problem] The present invention uses polysilane with a solid acid concentration of 0.2 m
A method for producing an organosilicon polymer having silicon-carbon bonds as a main skeleton component, which comprises heating to 350 to 500°C in the presence of a solid acid catalyst having a pore size of mol/g or more and a pore size in the range of 10 Å to 200 Å. be. Various polysilanes can be used as the raw material for the present invention, and generally

【式】で 示される骨格を有するポリシランであり、これら
のポリシランは公知の方法例えばR4-xSiClxの有
機クロロシラン化合物、例えばジメチルジクロロ
シラン、ジフエニルジクロロシラン、メチルフエ
ニルクロロシラン、などを金属ナトリウムで脱塩
素、縮合させることにより得られる。 本発明の特徴である固体酸触媒は、大きな分子
径の高分子化合物を吸着でき、なおかつ比表面積
を大ならしめるべく、10Å以上200Å以下の細孔
構造を必要とし、これは、略比表面積400〜100
m2/gに相当する。なおかつ固体酸としての物性
を示し500℃迄の耐熱性を有するもの、例えばモ
ンモリナイト系粘土である酸性白度等を化学的に
活性化させた活性白土、パラモンモリナイト系鉱
物であるセピオライトやアタパルジヤイトを熱処
理したもの、10〜200Åの細孔構造を持つ活性炭
にリン酸化合物を含浸させたもの等がある。 本発明の方法で使用する固体酸触媒の量は、目
的とする重合物の分子量にも依るが、ポリシラン
に対し3重量%以下ではその効果は小さく、また
20重量%以上ではその効果が変らないばかりか、
むしろ加えた触媒に目的とする重合物が吸着して
損失するので、3重量%から20重量%が望まし
い。又、固体酸濃度は固体酸触媒の重量に対し、
0.2〜1.0mmol/gであり、0.2mmol/g以下で
は効果が表われず又1.0mmol/g以上では、添
加量に応じた効果の増加は期待できない。 本発明の反応温度は目的とする化合物の重合
度、固体酸触媒の種類及び量に依存するが、350
℃以下では原料ポリシランの熱分解が不充分であ
り、又500゜以上ではポリシランの無機物への熱分
解が大となる為350℃〜500℃が望ましい。 本発明で用いられる反応装置は原料ポリシラン
と粉末状固体酸触媒を混合、撹拌させがら加熱出
来るものなら、どの様な種類のものでも良く、工
業的には常圧で操作出来る様、窒素、アルゴン等
不活性ガスを導入し、反応途中に発生する揮発性
の低分子量を凝縮させ反応容器に循環出来るもの
が望ましい。 本発明で製造される有機ケイ素重合物は、反応
に使用した固体酸触媒とポリシランの熱分解によ
つて生じたSi、SiC等の有機溶剤不溶物との混合
物として得られ、一度トルエンやキシレン等の有
機溶剤に溶解後、過により不溶物を除去し、溶
剤を揮発することにより精製される。さらに望む
なら、混合溶剤を使用した分取や減圧蒸留によ
り、重合度別に分離することが出来る。 実施例 1 平均分子量約2000のポリジメチルシラン300g
を100mesh以下に粉砕した。酸性白土を硫酸で処
理し500℃で加熱脱着し平均細孔径50Å、比表面
積200m3/g、固体酸濃度0.7mmol/gKOH当量
の活性白土を得た。撹拌機、還流冷却器、窒素ガ
ス導入及び液導入管を装着したステンレス製1
4つ口のフラスコからなる装置にこのポリジメチ
ルシランと活性白土(固体酸)とを仕込み、N2
気流中で350〜500℃で加熱し、生成物をトルエン
で溶解し、不溶解物を別後さらにトルエンを揮
発除去し、有機ケイ素重合体を得た。得られた有
機ケイ素重合体を蒸留分離し、高分子物と低分子
物とに分離した。この結果を第1表に示す。
These polysilanes have a skeleton represented by the formula: These polysilanes can be prepared by a known method such as R 4-x SiClx organic chlorosilane compounds such as dimethyldichlorosilane, diphenyldichlorosilane, methylphenylchlorosilane, etc. It can be obtained by dechlorination and condensation. The solid acid catalyst, which is a feature of the present invention, is capable of adsorbing macromolecular compounds with large molecular diameters, and requires a pore structure of 10 Å to 200 Å in order to increase the specific surface area. ~100
m 2 /g. In addition, materials that exhibit physical properties as solid acids and have heat resistance up to 500℃, such as activated clay that is chemically activated acidic whiteness of montmorinite clay, and sepiolite and attapulgiaite that are paramontmorinite minerals, can be heat treated. There are activated carbons with pores of 10 to 200 Å impregnated with phosphoric acid compounds. The amount of solid acid catalyst used in the method of the present invention depends on the molecular weight of the target polymer, but if it is less than 3% by weight based on the polysilane, the effect will be small.
If it exceeds 20% by weight, the effect will not change,
Rather, the target polymer is adsorbed to the added catalyst and lost, so a range of 3% to 20% by weight is desirable. In addition, the solid acid concentration is relative to the weight of the solid acid catalyst,
The amount is 0.2 to 1.0 mmol/g, and if it is less than 0.2 mmol/g, no effect will be exhibited, and if it is more than 1.0 mmol/g, no increase in effect depending on the amount added can be expected. The reaction temperature of the present invention depends on the degree of polymerization of the target compound and the type and amount of the solid acid catalyst;
If the temperature is below .degree. C., the thermal decomposition of the raw material polysilane will be insufficient, and if the temperature is above 500.degree., the polysilane will be thermally decomposed into inorganic substances to a large extent. The reactor used in the present invention may be of any type as long as it is capable of mixing raw material polysilane and powdered solid acid catalyst and heating them while stirring. It is desirable to be able to introduce an inert gas such as the like, condense the volatile low molecular weight generated during the reaction, and circulate it to the reaction vessel. The organosilicon polymer produced in the present invention is obtained as a mixture of the solid acid catalyst used in the reaction and organic solvent insoluble substances such as Si and SiC produced by thermal decomposition of polysilane, and once it is processed using toluene, xylene, etc. After dissolving in an organic solvent, insoluble matter is removed by filtration, and the solvent is evaporated to purify. Furthermore, if desired, the polymerization degree can be separated by fractionation using a mixed solvent or distillation under reduced pressure. Example 1 300g of polydimethylsilane with an average molecular weight of about 2000
was crushed to less than 100 mesh. Acid clay was treated with sulfuric acid and desorbed by heating at 500°C to obtain activated clay having an average pore diameter of 50 Å, a specific surface area of 200 m 3 /g, and a solid acid concentration of 0.7 mmol/g KOH equivalent. Stainless steel 1 equipped with a stirrer, reflux condenser, nitrogen gas introduction and liquid introduction tubes
This polydimethylsilane and activated clay (solid acid) were charged into a device consisting of a four-necked flask, and N 2
The product was heated at 350 to 500° C. in a gas stream, the product was dissolved in toluene, the insoluble materials were separated, and the toluene was further removed by volatilization to obtain an organosilicon polymer. The obtained organosilicon polymer was separated by distillation to separate it into high molecular weight substances and low molecular weight substances. The results are shown in Table 1.

【表】 * 原料ポリシランからの収率
なお、No.3の有機ケイ素重合体の数平均分子量
1360の重合体のIRスペクトルは第1図に示すご
とく、2950、2900、1400cm-1にC−Hに基づく吸
収が、2100cm-1にSi−Hに基づく吸収が、1350、
1020cm-1にSi−CH2−Siに基づく吸収が見られ
る。また250nmにおける紫外吸光係数が14/g
cmを示し、Si−Si結合を多く残していることが
示唆される。 実施例 2 平均分子量2000のポリジメチルシラン300gを
100mesh以下に粉砕後、該ジメチルシランと、
500℃で焼成し活性化した13×18Åの層格子隙間
と200Åのマクロ細径構造を持ち、比表面積170
m2/g、固体酸濃度0.6mmol/gKOH当量のア
タパルジヤイト30gとを共に実施例1と同じ装置
で450℃で10時間加熱後、実施例1と同様に処理
し、有機ケイ素重合体を得た。結果を第2表に示
す。
[Table] * Yield from raw material polysilane Number average molecular weight of No. 3 organosilicon polymer
As shown in Figure 1, the IR spectrum of the 1360 polymer shows absorption based on C-H at 2950, 2900, and 1400 cm-1 , absorption based on Si-H at 2100 cm-1 , 1350,
Absorption based on Si-CH 2 -Si is seen at 1020 cm-1 . Also, the ultraviolet extinction coefficient at 250nm is 14/g.
cm, suggesting that many Si-Si bonds remain. Example 2 300g of polydimethylsilane with an average molecular weight of 2000
After pulverizing to 100mesh or less, the dimethylsilane and
It has a layer lattice gap of 13 x 18 Å and a macroscopic diameter structure of 200 Å, activated by firing at 500℃, and a specific surface area of 170.
m 2 /g and 30 g of attapulgite having a solid acid concentration of 0.6 mmol/g KOH equivalent were heated together at 450°C for 10 hours in the same apparatus as in Example 1, and then treated in the same manner as in Example 1 to obtain an organosilicon polymer. . The results are shown in Table 2.

【表】 *原料ポリシランからの収率
比較例 1 実施例1と同様のポリジメチルシラン300gを
但し、活性白土を使用することなく、実施例1と
同様の装置に仕込み、撹拌しながら窒素気流中、
常圧下500℃で所定時間加熱後冷却し、実施例1
と同様に処理し有機ケイ素重合体を得た。この結
果を第3表に示す。
[Table] * Comparative example of yield from raw material polysilane 1 300 g of the same polydimethylsilane as in Example 1, but without using activated clay, was charged into the same apparatus as in Example 1, and heated in a nitrogen stream while stirring. ,
Example 1
An organosilicon polymer was obtained in the same manner as above. The results are shown in Table 3.

【表】 * 原料ポリシランからの収率
比較例 2 実施例1と同じポリジメチルシラン300gを細
孔径7Å、比表面積670m2/g、固体酸濃度0.34
mmol/gKOH当量の粉末状Y型ゼオライト30
gと共に実施例1と同じ装置に仕込み、N2気流
下、加熱温度500℃で90時間加熱後、実施例1と
同様に処理し数平均分子量500の重合体180g(収
率60%)、及び数平均分子量980の重合体105g
(35%)を得た。 実施例1と同じポリジメチルシラン300gと15
〜150Åを主体とする細孔径をもち、固体酸濃度
0.05mmol/gKOH当量の活性炭30gとを、実施
例1と同じ装置に仕込みN2気流下、450゜で12時
間加熱後冷却し、実施例1と同様に処理し重合体
179g(収率59.7%)を得た。この重合体100gを
さらに内温250℃、10mmHgで低揮発物を除去す
ると数平均分子量1340の重合体53g(収率31.6
%)が得られた。
[Table] * Comparative example of yield from raw material polysilane 2 300 g of the same polydimethylsilane as in Example 1 was prepared with a pore diameter of 7 Å, a specific surface area of 670 m 2 /g, and a solid acid concentration of 0.34.
Powdered Y-type zeolite with mmol/g KOH equivalent 30
After heating for 90 hours at a heating temperature of 500°C under a N 2 stream, the polymer was treated in the same manner as in Example 1 to obtain 180 g of a polymer with a number average molecular weight of 500 (yield 60%). 105g of polymer with a number average molecular weight of 980
(35%). 300 g of the same polydimethylsilane as in Example 1 and 15
Pore diameter is mainly ~150Å, solid acid concentration
30 g of activated carbon with an equivalent amount of 0.05 mmol/g KOH was charged into the same apparatus as in Example 1, heated at 450° for 12 hours under a N 2 stream, cooled, and treated in the same manner as in Example 1 to form a polymer.
179g (yield 59.7%) was obtained. When 100 g of this polymer was further removed to remove low volatile matter at an internal temperature of 250°C and 10 mmHg, 53 g of polymer with a number average molecular weight of 1340 was obtained (yield: 31.6
%)was gotten.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により得られた有機ケイ
素重合体のIR吸収スペクトル(KBr錠剤法)で
ある。
FIG. 1 is an IR absorption spectrum (KBr tablet method) of an organosilicon polymer obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリシランを固体酸濃度が0.2mmol/g以
上で且つ10〜200Åの細孔径をもつ固体酸触媒の
存在下で、350〜500℃に加熱することを特徴とす
るケイ素−炭素結合を主たる骨格成分とする有機
ケイ素重合体の製造方法。
1. Polysilane is heated to 350 to 500°C in the presence of a solid acid catalyst with a solid acid concentration of 0.2 mmol/g or more and a pore diameter of 10 to 200 Å.The main skeleton component is a silicon-carbon bond. A method for producing an organosilicon polymer.
JP16094384A 1984-07-31 1984-07-31 Production of organosilicon polymer Granted JPS6140324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16094384A JPS6140324A (en) 1984-07-31 1984-07-31 Production of organosilicon polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16094384A JPS6140324A (en) 1984-07-31 1984-07-31 Production of organosilicon polymer

Publications (2)

Publication Number Publication Date
JPS6140324A JPS6140324A (en) 1986-02-26
JPH0380172B2 true JPH0380172B2 (en) 1991-12-24

Family

ID=15725569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16094384A Granted JPS6140324A (en) 1984-07-31 1984-07-31 Production of organosilicon polymer

Country Status (1)

Country Link
JP (1) JPS6140324A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968803B1 (en) * 2008-06-24 2010-07-08 주식회사 티씨케이 Polycarbosilane and method of producing it

Also Published As

Publication number Publication date
JPS6140324A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
US4720532A (en) Organopolysilazane precursors to silicon nitride-rich mixed SiC/Si3 N4
US4639501A (en) Method for forming new preceramic polymers containing silicon
US4767876A (en) Method for converting organosilicon polymers containing SIH repeat units and organopolysilazane precursors to new and useful preceramic polymers and silicon nitride enriched ceramic materials
EP0075826B1 (en) Preparation of polysilazane polymers and the polymers therefrom
EP0217539A1 (en) Method for forming new preceramic polymers containing silicon
EP0023096A1 (en) Organometallic copolymers, process for their preparation, and shaped articles of an inorganic carbide obtained therefrom
JPH037221B2 (en)
JPH0647621B2 (en) Method for producing preceramic organosilazane polymer
JP2504688B2 (en) Method for producing polysilazane and polysilazane
JPH02167860A (en) Production of ceramic material
JPS6357454B2 (en)
EP0375994A1 (en) Process for preparing polycarbosilanes; polycarbosilanes obtained by this process
EP0304697A2 (en) Process for the preparation of preceramic metallopolysilanes and the polymers therefrom
CA1287432C (en) Preceramic polymers derived from cyclic silazanes and halogenated disilanes and a method for their preparation
JPS6149334B2 (en)
KR940007325B1 (en) Process for preparation of polysila methylrenosilane
EP0511568B1 (en) Polyorganosilazanes, process for their preparation and a process for making ceramic material
Boury et al. Stoichiometric silicon carbide from borate‐catalyzed polymethylsilane–polyvinylsilane formulations
JPH0380172B2 (en)
CN114621448B (en) Preparation method of silicon nitride precursor
JPS6158086B2 (en)
JPS6123932B2 (en)
CA1241973A (en) Ceramic materials from polycarbosilanes
EP0511567B1 (en) Polyorganosilazanes, process for their preparation and a process for making ceramic material
RU2130467C1 (en) Organosilicon polymers comprising metal clusters, and method of preparing thereof