JPH0380119A - Electrode of cell - Google Patents

Electrode of cell

Info

Publication number
JPH0380119A
JPH0380119A JP1214089A JP21408989A JPH0380119A JP H0380119 A JPH0380119 A JP H0380119A JP 1214089 A JP1214089 A JP 1214089A JP 21408989 A JP21408989 A JP 21408989A JP H0380119 A JPH0380119 A JP H0380119A
Authority
JP
Japan
Prior art keywords
copper
molybdenum sulfide
precursor
sulfide
copper molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1214089A
Other languages
Japanese (ja)
Inventor
Takao Tanaka
隆夫 田中
Yukihiro Yoda
與田 幸廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1214089A priority Critical patent/JPH0380119A/en
Publication of JPH0380119A publication Critical patent/JPH0380119A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an electrode of a cell using mass-producible copper molybdenum sulfide at a low cost by reducing a solid precursor obtd. from ammonium thiomolybdate and copper halide under heating and using produced copper molybdenum sulfide as a base. CONSTITUTION:Ammonium thiomolybdate and copper halide are mixed and brought into a reaction in an org. solvent to form a precursor and the org. solvent as a medium is removed by evaporation. The resulting solid precursor is reduced under heating in an atmosphere of gaseous hydrogen to produce copper molybdenum sulfide and an electrode of a cell based on the sulfide is obtd. The copper molybdenum sulfide means copper molybdenum sulfide having so-called chevrel phase and is a compd. represented by the formula (where x is 1.5-4 and y is 0-0.4). Ammonium tetrathiomolybdate is preferably used as the ammonium thiomolybdate because oxygen is prevented from entering the product.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は電池電極に関するものである。更に詳しくは、
チオモリブデン酸アンモニウム塩とハロゲン化銅とを混
合・反応させて前駆体とし、該前駆体を還元して製造さ
れた、銅モリブデン硫化物を使用することを特徴とする
電池電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to battery electrodes. For more details,
The present invention relates to a battery electrode characterized in that it uses copper molybdenum sulfide produced by mixing and reacting ammonium thiomolybdate and copper halide to obtain a precursor and reducing the precursor.

〔従来の技術及び発明が解決しようとする課題〕一般式
がMXMO6Sll (ただしMは金属)で表わされる
シェブレル相化合物は、1971年にシェブレル等によ
って合成された大きなオーブンチャンネルを持った三次
元化合物で、Mo6SBクラスターの隙間に、第三成分
の金属Mが入り込んだ構造となっている。
[Prior art and problems to be solved by the invention] Chevrel phase compounds, whose general formula is MXMO6Sll (where M is a metal), are three-dimensional compounds with large oven channels synthesized by Chevrel et al. in 1971. , has a structure in which the third component metal M enters the gaps between the Mo6SB clusters.

このシェブレル相化合物は、超伝導に対して特異的な性
質を示し、金属MがCuである銅モリブデン硫化物は、
超伝導転移点が比較的高いので注目されている。また、
銅モリブデン硫化物はMoa5aクラスターの間隙に入
った銅イオンが極めて動きやすという性質を持っている
ことから二次電池の電極材料としても注目されている。
This Chevrel phase compound shows specific properties for superconductivity, and copper molybdenum sulfide in which the metal M is Cu,
It is attracting attention because it has a relatively high superconducting transition point. Also,
Copper molybdenum sulfide is attracting attention as an electrode material for secondary batteries because it has the property that copper ions that enter the gaps between Moa5a clusters are extremely mobile.

銅モリブデン硫化物の一般的製造方法としては、ガラス
製または石英製の封管中で、単体金属または/及び金属
硫化物と単体硫黄とを直接反応させる方法があり、例え
ば、(a)硫化銅、二硫化モリブデン、単体硫黄の各粉
末を石英製の封管に真空封入し、1000”Cで100
時間加熱する方法 [井上徹、電気化学、5481.2
 (1986) ) 、(b)金属銅、金属モリブデン
、単体硫黄の各粉末を石英製の封管に直空↑・1人し、
これを400°〔:で−晩加熱、次に1000°Cで2
日間加熱、その後1100°Cて30間加え、!5する
方法(K、Y、Cheun(Het、al、;Mat、
Res、Bull、、151717 (1980) )
 、(C)硫化銅、二硫化モリブデン、金属モリブデン
を石英製の封管に真空3:4人し、これを400°Cで
−・晩加熱、次に1000°Cで21]問加熱した後、
内容物を取り出して粉砕し、これを再度石英製の封管に
真空J、1人し+000°Cで31−1 +;;同■り
1′)、ゾづる方法[S、Yamamoto et、a
l、;Mat、Res、Bull、、181.31.1
 (1983) ] 、(d)金属銅、金属モリブデン
、車体硫黄の各粉末を石英製の封管に真空封入し、これ
を4〜6時間毎に振盪しながら440°Cで48時間加
熱し、次に1000’Cで24時間加熱する方法(,1
,Mizusaki et、al、; 5olid 5
tate Tonics、土工293 (1984))
などが報告されている。
A general method for producing copper molybdenum sulfide is to directly react an elemental metal or/and metal sulfide with elemental sulfur in a sealed tube made of glass or quartz.For example, (a) copper sulfide , molybdenum disulfide, and elemental sulfur were vacuum-sealed in a sealed quartz tube and heated at 1000"C for 100%
Time heating method [Toru Inoue, Electrochemistry, 5481.2
(1986) ), (b) Powders of metallic copper, metallic molybdenum, and elemental sulfur were directly blown into a sealed quartz tube by one person.
Heat this at 400° overnight, then at 1000°C for 2 hours.
Heated for 1 day, then heated to 1100°C for 30 minutes. 5 methods (K, Y, Cheun (Het, al,; Mat,
Res, Bull, 151717 (1980))
(C) Copper sulfide, molybdenum disulfide, and metal molybdenum were placed in a sealed quartz tube under vacuum for 3 to 4 hours, heated at 400°C overnight, and then heated at 1000°C for 21 hours. ,
The contents were taken out and crushed, and this was placed in a sealed quartz tube again under vacuum J for one person at +000°C using the crushing method [S, Yamamoto et al.
l,;Mat,Res,Bull,,181.31.1
(1983) ], (d) Each powder of metallic copper, metallic molybdenum, and car body sulfur was vacuum sealed in a sealed quartz tube, and heated at 440°C for 48 hours while shaking every 4 to 6 hours. Next, heating at 1000'C for 24 hours (,1
, Mizusaki et, al.; 5olid 5
tate Tonics, Earthworks 293 (1984))
etc. have been reported.

従って、電池電極としての特性評価も、」二重の方法に
よって得られたものに限られていた。
Therefore, evaluation of properties as a battery electrode has been limited to those obtained by two-way methods.

しかしながら、これらの方法は製造に長時間を要し、か
つ何れも石英製の封管を反応容器として使用するが、加
熱の過程で石英製の封管内が米反応単体硫黄の華気圧に
より加圧状態となるため、処理温度までの賓温速度が太
きすぎると封f(、が破裂するという危険があり、小さ
ずぎると製造に更に時間がかかるという問題があった。
However, these methods require a long time to manufacture, and they all use a sealed quartz tube as a reaction vessel, but during the heating process, the inside of the sealed quartz tube is pressurized by the atmospheric pressure of the reacting elemental sulfur. If the heating speed to the processing temperature is too high, there is a risk that the seal will burst, and if it is too small, it will take more time to manufacture.

また、このような封管の破裂を防止するため封管の容積
は高々、100〜500m1程度が限度で、従って大量
生産が困難である。更には、石英製の封管はその都度破
壊して内容物を取り出さなければならない。
Further, in order to prevent the sealed tube from bursting, the volume of the sealed tube is limited to about 100 to 500 m1 at most, making mass production difficult. Furthermore, the quartz sealed tube must be broken each time to take out the contents.

従って、これらのことより、製造コスI・が非常に高く
なるという問題があった。
Therefore, due to these factors, there is a problem in that the manufacturing cost I. is extremely high.

更に、金属銅、金属モリブデン及び単体硫黄の各粉末を
、石英製の封管中で500〜700’Cの温度で6〜2
4時間加熱して前駆体硫化物とし、この前駆体硫化物を
粉砕した後、再度石英製の封管中で900〜]100’
Cの温度で24〜120時間加熱するという方法もある
(本発明者等が先に出願した特願昭63−179164
号記載の方法)。
Further, each powder of metallic copper, metallic molybdenum, and elemental sulfur was heated for 6 to 2 hours at a temperature of 500 to 700'C in a sealed quartz tube.
After heating for 4 hours to form a precursor sulfide and pulverizing the precursor sulfide, the mixture was heated again in a sealed quartz tube to a temperature of 900 to 100'.
There is also a method of heating for 24 to 120 hours at a temperature of
(method described in issue).

しかしながら、この方法も活栓石英製の封管を使用する
方法であるので、銅モリブデン硫化物の製造中に封管が
破裂するという問題は回避できるものの、製造にある程
度の長時間が必要であり、また、封管をその都度破壊し
て内容物を取り出さなければならず大量生産が困難であ
り、コスI・が高くなるという問題は解消されていない
However, this method also uses a sealed tube made of stopcock quartz, so although the problem of the sealed tube bursting during the production of copper molybdenum sulfide can be avoided, it requires a certain amount of time for production. Furthermore, the problems of high cost I and difficulty in mass production since the sealed tube must be broken each time to take out the contents have not been solved.

従って、これらの製造方法で得られた、銅モリブデン硫
化物を電池電極として用いて商品化することは、生産量
及びコストの面で小史上不可能であった。
Therefore, commercializing copper molybdenum sulfide obtained by these manufacturing methods as a battery electrode has been impossible in the past in terms of production volume and cost.

〔課題を解決するための手段] 本発明者等は上記の問題点を解消し、低コストで大量生
産の可能な銅モリブデン硫化物を用いた、電池電極を製
造すべく鋭意検討を重ねた結果、チオモリブデン酸アン
モニウム塩とハロゲン化銅を有機溶媒中で混合・反応さ
せて前駆体を製造し、媒体である有機溶媒を蒸発 留去
して得られた該前駆体固体を、水素ガス雰囲気中で加熱
、還元する方法であれば、通常の化学プロセスであるの
で大量生産が可能であり、石英主・j管のような特殊な
反応装置も使用しないので製造コストも安くなり、更に
、この方法で製造した銅モリブデン硫化物を用いて製作
した電池電極も、通常の石英封管を用いて製造したもの
と同等の性能を示すことを見出し、本発明を完成するに
至ったものである。
[Means for Solving the Problems] The inventors of the present invention solved the above-mentioned problems and as a result of intensive studies to manufacture battery electrodes using copper molybdenum sulfide that can be mass-produced at low cost. A precursor is produced by mixing and reacting thiomolybdate ammonium salt and copper halide in an organic solvent, and the precursor solid obtained by evaporating the organic solvent as a medium is heated in a hydrogen gas atmosphere. If the method involves heating and reducing, it is a normal chemical process and can be mass-produced, and since it does not require special reaction equipment such as quartz mains and J-tubes, the manufacturing cost is also low. It was discovered that battery electrodes manufactured using the copper molybdenum sulfide manufactured in 1997 showed the same performance as those manufactured using ordinary quartz sealed tubes, and this led to the completion of the present invention.

即ち、本発明はチオモリブデン酸アンモニウム塩とハロ
ゲン化銅を有機溶媒中で混合・反応させて前駆体を生成
させ、媒体である有機溶媒を蒸発・留去して得られた該
前駆体固体を、水素ガス雰囲気中で加熱・還元して製造
された銅モリブデン硫化物を使用することを特徴とする
電池電極に関する。
That is, the present invention involves mixing and reacting thiomolybdate ammonium salt and copper halide in an organic solvent to produce a precursor, and then evaporating and distilling off the organic solvent as a medium to obtain the precursor solid. , relates to a battery electrode characterized in that it uses copper molybdenum sulfide produced by heating and reducing in a hydrogen gas atmosphere.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

本発明を更に詳細に説明する。 The present invention will be explained in more detail.

本発明でいう銅モリブデン硫化物とは、いわゆるシェブ
レル相銅モリブデン硫化物のことを意味し、−形式Cu
xMobSe−y (x=1..5−4、y= O〜0
.4)で表される化合物のことをいう。
The copper molybdenum sulfide used in the present invention refers to the so-called Chevrel phase copper molybdenum sulfide, which has the form Cu
xMobSe-y (x=1..5-4, y=O~0
.. Refers to the compound represented by 4).

本発明でいう「前駆体」とは、チオモリブデン酸アンモ
ニウム塩とハロゲン化銅を有a溶媒中で混合・反応させ
た後、有機溶媒を蒸発・留去して得られる固体生成物で
ある。
The "precursor" as used in the present invention is a solid product obtained by mixing and reacting thiomolybdate ammonium salt and copper halide in an aqueous solvent, and then evaporating and distilling off the organic solvent.

本発明において使用されるチオモリブデン酸アンモニウ
ム塩は、モリブデン酸アンモニウム中の酸素原子を硫黄
原子で置換した各種の塩であり、例えば、ジオクツジチ
オモリブデン酸アン−ニウム、テI・ラオクソトリヂオ
シモリブデン酸アンモニウム、テトラチオモリブデン酸
アンモニウム等があるが、酸素の混入が防げるという点
でう一トラチオモリブデン酸アンモニウムが好ましい。
The ammonium thiomolybdate salt used in the present invention is a variety of salts in which the oxygen atom in ammonium molybdate is replaced with a sulfur atom, such as ammonium dioctudithiomolybdate, The. Among them, ammonium osimolybdate, ammonium tetrathiomolybdate, etc. are preferred, and ammonium tetrathiomolybdate is preferable because it prevents the contamination of oxygen.

ハロゲン化銅としては弗化第一・銅、弗化第二銅、塩化
第一銅、塩化第二銅、臭化第一銅、臭化第二銅、沃化第
一銅、沃化第二銅が使用可能であるが、塩化第二銅が入
手し易く廉価でもあるので好ましい。
Copper halides include cuprous fluoride, cupric fluoride, cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, and cupric iodide. Although copper can be used, cupric chloride is preferred because it is readily available and inexpensive.

本発明においてはチオモリブデン酸アンモニウム塩とハ
ロゲン化銅との割合iJ、容器への仕込めモル比てCu
/Mo=0.25〜0.67の範囲となるようにする。
In the present invention, the ratio iJ of thiomolybdate ammonium salt and copper halide, the molar ratio charged to the container, Cu
/Mo=0.25 to 0.67.

本発明で使用する有機溶媒は、前記のチオモリブデン酸
アンモニウム塩及びハロゲン化銅の少なくとも何れか一
方を溶解し得るものであるが、これらの有機溶媒はアル
コール類、ケI・ン類、エステル類、ニトリル類、ア旦
ド類、ハロゲン化炭化水素類、アミノアルコール類等か
ら選ばれる。これを更に具体的に述べると、アルコール
類としてはメタノール、エタノール、ブタノール等、ケ
トン類としてはアセトン、メチルエチルケトン等、エス
テル類としては蟻酸エチル、酢酸エチル等、ニトリル類
としてはアセトニ1〜リル等、アミド類としてはアセI
・アミド、ジエチルホルムアミド等、ハロゲン化炭化水
素類としては1〜リクロロエチレン、トリクロロエタン
等、71ノアルコール類としてはエタノールアミン等が
挙げられる。尚、これらの有機溶媒は単独で使用しても
よく、2種類以上を混合して使用してもよい。
The organic solvent used in the present invention is one that can dissolve at least one of the above-mentioned thiomolybdate ammonium salt and copper halide, but these organic solvents may be alcohols, carbons, esters, etc. , nitriles, adands, halogenated hydrocarbons, amino alcohols, etc. To describe this more specifically, alcohols include methanol, ethanol, butanol, etc., ketones include acetone, methyl ethyl ketone, etc., esters include ethyl formate, ethyl acetate, etc., and nitriles include acetonyl-1-lyl, etc. As an amide, ace I
- Examples of halogenated hydrocarbons such as amide and diethylformamide include 1-lichloroethylene and trichloroethane, and examples of 71-noalcohols include ethanolamine. Incidentally, these organic solvents may be used alone or in combination of two or more.

有機溶媒の使用量は、チオモリブデン酸アンモニウム塩
とハロゲン化銅の何れかが溶解する量であれば特に限定
はないが、必要以」二の使用量は経済的でなく、従って
有機溶媒100 mQ当たり、チオモリブデン酸アンモ
ニウム塩が2g以上、ハロゲン化銅が1g以上となる量
が好ましい。
The amount of organic solvent used is not particularly limited as long as it dissolves either ammonium thiomolybdate salt or copper halide, but it is not economical to use more than 100 mQ of organic solvent. Preferably, the amount of thiomolybdate ammonium salt is 2 g or more and the copper halide is 1 g or more.

また、有機溶媒中でチオモリブデン酸アンモニウム塩と
ハロゲン化銅を混合・反応させるに当たっては、その各
々を予め有機溶媒に分散・溶解させた後、両者を混合し
てもよく、また有機溶媒中にチオモリブデン酸アンモニ
ウム塩とハロゲン化銅を添加する方法を用いてもよい。
In addition, when mixing and reacting thiomolybdate ammonium salt and copper halide in an organic solvent, each of them may be dispersed and dissolved in the organic solvent in advance, and then both may be mixed. A method of adding thiomolybdate ammonium salt and copper halide may also be used.

本発明では、有a溶媒はそのまま使用しても差支えない
が、前以って窒素ガスを吹き込み、溶存酸素を除去して
おくと好ましい。
In the present invention, the aqueous solvent may be used as is, but it is preferable to blow nitrogen gas in advance to remove dissolved oxygen.

かくして容器に仕込まれたチオモリブデン酸アンモニウ
ム塩、ハロゲン化銅、有機溶媒の混合液は、そのまま加
熱、攪拌してもかまわないが酸化を防止するため、容器
に仕込まれたチオモリブデン酸アンモニウム塩及びハロ
ゲン化銅を含むイfa溶媒中に窒素ガスを吹き込みなが
ら、または容器の気相部に窒素ガスを流通さ−uながら
加熱・撹拌してチオモリブデン酸アンモニウム塩とハロ
ゲン化銅を混合・反応させてもかまわない。
The mixed solution of ammonium thiomolybdate, copper halide, and organic solvent charged in the container can be heated and stirred as is, but in order to prevent oxidation, the ammonium thiomolybdate and Thiomolybdate ammonium salt and copper halide are mixed and reacted by heating and stirring while blowing nitrogen gas into the Ifa solvent containing copper halide or while flowing nitrogen gas through the gas phase of the container. It doesn't matter.

混合・反応温度については特に限定はないが、常温〜有
機溶媒の沸点以下の温度で実施される。
There are no particular limitations on the mixing/reaction temperature, but the mixing/reaction temperature is carried out at room temperature to a temperature below the boiling point of the organic solvent.

従って、容器は還流冷却器を具備したものが好ましく、
混合・反応中に蒸発した有機溶媒は、この還流冷却器で
凝縮されて容器にリザイクルされる。
Therefore, it is preferable that the container is equipped with a reflux condenser.
The organic solvent evaporated during the mixing and reaction is condensed in this reflux condenser and recycled into the container.

混合・反応時間についても特に限定はないが、通常 0
.5〜10時間の間で適当に選べばよい。
There are no particular limitations on the mixing/reaction time, but it is usually 0.
.. You can choose an appropriate time between 5 and 10 hours.

混合・反応終了後の液は、次いでこれを加熱し媒体とし
て使用した有機溶媒を蒸発・留去する。
The liquid after the completion of the mixing and reaction is then heated to evaporate and distill off the organic solvent used as a medium.

該有機溶媒の蒸発・留去は、例えばロータリーエバポレ
ーター等を用いて減圧下で留去してもよいし、単に常圧
で留去してもよい。
The organic solvent may be evaporated or distilled off under reduced pressure using, for example, a rotary evaporator, or simply under normal pressure.

かくして得られた固形物からなる前駆体は、これを水素
ガス雰囲気中で加熱・還元することによりシェブレル相
の銅モリブデン硫化物が得られるのである。尚、この還
元用の水素ガスは必ずしも100%の水素ガスである必
要はなく、窒素ガス笠の不活性ガスで希釈した水素ガス
でもよい。
The thus obtained solid precursor is heated and reduced in a hydrogen gas atmosphere to obtain Chevrel phase copper molybdenum sulfide. Note that this hydrogen gas for reduction does not necessarily have to be 100% hydrogen gas, and may be hydrogen gas diluted with an inert gas such as a nitrogen gas cap.

還元方法としては、前駆体と水素ガスとを仕込んだ密閉
容器を加熱する回分方式、前駆体を加熱炉内に装入した
状態で、該加熱炉内に水素ガスを連続的に供給する半連
続方式、例えば流動床装置に前駆体と水素ガスを連続的
に供給する連続方式等が採用される。
Reduction methods include a batch method in which a closed container containing the precursor and hydrogen gas is heated, and a semi-continuous method in which hydrogen gas is continuously supplied into the heating furnace while the precursor is charged into the heating furnace. For example, a continuous method is employed in which a precursor and hydrogen gas are continuously supplied to a fluidized bed apparatus.

還元温度は800〜1500°Cの範囲で選択される。The reduction temperature is selected in the range of 800-1500°C.

還元温度が800°C未満では還元速度が弗素に遅くな
るので現実的でなく、逆に1500°Cを越える温度で
は装置の材質に制約が生ずるので、好ましくない。従っ
て還元温度は」二重温度範囲内で選択される。
If the reduction temperature is less than 800°C, the rate of reduction to fluorine will be slow, which is not practical, while if it exceeds 1500°C, there will be restrictions on the material of the device, which is not preferable. The reduction temperature is therefore selected within a dual temperature range.

還元時間については、設定した還元温度、還元ガス中の
水素の濃度、及び還元方法が半連続方式または連続方式
の場合には水素ガスの供給量の組合せで決められるため
、一元的には決められない。
The reduction time cannot be determined centrally because it is determined by a combination of the set reduction temperature, the concentration of hydrogen in the reducing gas, and the amount of hydrogen gas supplied if the reduction method is semi-continuous or continuous. do not have.

しかし、還元を行ない過ぎると得られた銅モリブデン硫
化物をX線回折装置で分析した際に、シェブレル相硫化
物のピーク以外に金属モリブデンのピークも現れるよう
になり、逆に還元不足の場合には、シェブレル相硫化物
のピークに二硫化モリブデンのピークが残るようになる
。従って、X線回折装置による分析結果より、金属モリ
ブデンや二硫化モリブデンを含まないための、@iJ!
時間等の還元条件を決定すればよい。
However, when the resulting copper molybdenum sulfide is analyzed using an X-ray diffraction device, a peak of metal molybdenum appears in addition to the peak of Chevrel phase sulfide, and conversely, when the reduction is insufficient, In this case, the molybdenum disulfide peak remains in the Chevrel phase sulfide peak. Therefore, from the analysis results using an X-ray diffraction device, @iJ!
What is necessary is to determine the return conditions such as time.

本発明でいう電池電極とは、電解質物質を介在して正極
と負極を形威し、放電もしくは充電させる目的で設けら
れた電子伝導体または半導体のことをいう。
The term "battery electrode" as used in the present invention refers to an electron conductor or a semiconductor provided for the purpose of forming a positive electrode and a negative electrode with an electrolyte material interposed therebetween for the purpose of discharging or charging the battery.

チオモリブデン酸アンモニウム塩とハロゲン化銅から製
造された、シェブレル相銅モリブデン硫化物を用いて電
池電極を形成するに当たっては、製造されたものを単独
で使用するか、もしくは、RbaCII++、]、CI
+iやに、 Rb1−、 Cu4]+、5C1s、s等
の固体電解質と混合したものを圧縮成型もしくは添加剤
を加えて成型ずればよい。
When forming a battery electrode using Chevrel phase copper molybdenum sulfide produced from ammonium thiomolybdate salt and copper halide, the produced product can be used alone, or RbaCII++, ], CI
+i, Rb1-, Cu4]+, 5C1s, s, etc. may be mixed with a solid electrolyte and then compressed or molded by adding additives.

シェブレル相銅モリブデン硫化物(以下、単に銅モリブ
デン硫化物という)と固体電解質と混合する混合割合に
ついては特に制限はないが、銅モリブデン硫化物の混合
割合は少なくとも10%以上にすることが好ましい。
There is no particular restriction on the mixing ratio of Chevrel phase copper molybdenum sulfide (hereinafter simply referred to as copper molybdenum sulfide) and the solid electrolyte, but it is preferable that the mixing ratio of copper molybdenum sulfide is at least 10% or more.

銅モリブデン硫化物の単独もしくは、銅モリブデン硫化
物と固体電解質混合物の成型は添加剤及び溶剤を加えて
、例えばドクターブレード法にてシートを作るか、もし
くは通常の加圧成型機を用い、数10kg/cm2〜数
t/cm”の圧力で成型を行なえば良い。またこの場合
、後述の添加剤を適当量加えても良い。
To mold copper molybdenum sulfide alone or a mixture of copper molybdenum sulfide and a solid electrolyte, add additives and a solvent and make a sheet using, for example, a doctor blade method, or use a normal pressure molding machine to form a sheet of several tens of kg. The molding may be carried out at a pressure of 1/cm2 to several t/cm. In this case, an appropriate amount of the additives described below may be added.

本発明では、上記成型を行なう場合に使用する添加剤と
しては、ポリイソプレン、SBR,NBR,ウレタンゴ
ム、クロロプレンゴム、ポリエステル系ゴム、エピクロ
ルヒドリン系ゴム、シリコーンゴム、ポリスチレン、ポ
リ塩化ビニール、エチレン酢酸エチル共重合体、ポリエ
ステル、エポキシ樹脂、フェノール樹脂及びこれらの混
合物が用いられる。
In the present invention, additives used in the above molding include polyisoprene, SBR, NBR, urethane rubber, chloroprene rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, polystyrene, polyvinyl chloride, ethylene ethyl acetate. Copolymers, polyesters, epoxy resins, phenolic resins and mixtures thereof are used.

上記、添加剤を添加する割合は、特に制限ばないが、導
電性の面から30%以内とすることが好ましい。また電
極の導電性を増す目的でカーボンブランクやグラファイ
ト等の導電性物質を添加することもできる。
The proportion of the additives mentioned above is not particularly limited, but from the viewpoint of conductivity it is preferably within 30%. Furthermore, a conductive substance such as carbon blank or graphite may be added for the purpose of increasing the conductivity of the electrode.

カーボンブランクやグラファイトの添加する割合につい
ても特に制限はない。しかし電極の成型性及び性能を考
慮すれば5〜60%が好適である。
There is no particular restriction on the proportion of carbon blank or graphite added. However, in consideration of the moldability and performance of the electrode, 5 to 60% is suitable.

〔実施例] 以下、実施例にて本発明を更に具体的に説明するが、本
発明はその要旨に変更がない限り、これらの実施例に制
約されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist thereof remains unchanged.

実施例1 撹拌機、ガス吹込み管、還流コンデンサーを備えた内容
積11の四つ目フラスコに、アセトニトリル500 m
lとテトラチオモリブデン酸アンモニウム16gを仕込
み、窒素ガスを吹き込みながら撹拌してテ]・ラチオモ
リブデン酸アンモニウムを溶解した。
Example 1 500 m of acetonitrile was added to a fourth flask with an internal volume of 11 equipped with a stirrer, a gas blowing tube, and a reflux condenser.
1 and 16 g of ammonium tetrathiomolybdate were charged, and the mixture was stirred while blowing nitrogen gas to dissolve the ammonium tetrathiomolybdate.

次に別のフラスコにアセトニトリルを400 ml仕込
み、窒素ガスを吹き込みつつ撹拌し、これに塩化第二銅
を2.76g添加して溶解した液を調整し、これを上記
の四つ目フラスコに添加した(仕込みモル比Cu/Mo
=0.33)。
Next, put 400 ml of acetonitrile in another flask, stir while blowing nitrogen gas, add 2.76 g of cupric chloride to prepare a dissolved solution, and add this to the fourth flask mentioned above. (Preparation molar ratio Cu/Mo
=0.33).

しかる後、四つ目フラスコ内に窒素ガスを吹込めながら
還流温度まで昇温し、該温度で6時間撹拌して反応させ
た。反応終了後、反応液を常温まで冷却した後、ロータ
リーエバボレークーに仕込み、真空ポンプで吸引して減
圧の状態で加熱して、アセトニトリルを完全に華発・留
去し、固体生成物からなる前駆体を18.4IXi’;
jた。尚、前駆体の収率はモリブデン基準で98%であ
った。
Thereafter, the temperature was raised to reflux temperature while blowing nitrogen gas into the fourth flask, and the mixture was stirred at this temperature for 6 hours to react. After the reaction is complete, the reaction solution is cooled to room temperature, charged into a rotary evaporator, sucked with a vacuum pump, and heated under reduced pressure to completely evaporate and distill off acetonitrile, resulting in a solid product. 18.4IXi' of the precursor;
It was. Note that the yield of the precursor was 98% based on molybdenum.

(前駆体の還元) 上記で得られた前駆体の6gをアル≧ナホ〜1・に入れ
、これを管状炉に装入したのち該管状炉に窒素ガスを流
通した状態で加熱し、1000°Cまで昇温した。昇温
後は該温度を保持しながら、流通ガスを窒素ガスから窒
素ガスと水素ガスの混合ガス(水素ガス濃度50容量%
)に切り替えて、前駆体を4時間還元した。
(Reduction of Precursor) 6 g of the precursor obtained above was placed in an Al ≧ Na~1. The temperature was raised to C. After raising the temperature, while maintaining the temperature, the circulating gas is changed from nitrogen gas to a mixed gas of nitrogen gas and hydrogen gas (hydrogen gas concentration 50% by volume).
) and reduced the precursor for 4 hours.

還元終了後は流通ガスを再び窒素ガスに切り替えて、常
温まで冷却した。冷却後アルミナボー1・内の内容物を
取り出したところ、3.08gの生成物が得られた。こ
の生成物をX線回折装置にて分析したところ、第1図に
示すX線回折図が得られ、同図から単一のシェブレル相
化合物が生成していることが確認された。また、このX
線回折図は、後記する参考例1 (従来の封管法による
銅:[リブデン硫化物の製造)で得られた生成物のX線
回折図と同一であった。尚、還元時の収率は97%であ
り、全収率は95%であった(何れもモリブデン基準)
After the reduction was completed, the circulating gas was switched to nitrogen gas again, and the reactor was cooled to room temperature. After cooling, the contents of the alumina bowl 1 were taken out, and 3.08 g of product was obtained. When this product was analyzed using an X-ray diffractometer, the X-ray diffraction diagram shown in FIG. 1 was obtained, and it was confirmed from the diagram that a single Chevrel phase compound was produced. Also, this
The ray diffraction diagram was the same as the X-ray diffraction diagram of the product obtained in Reference Example 1 (copper by conventional sealed tube method: production of liveden sulfide), which will be described later. The yield upon reduction was 97%, and the total yield was 95% (all based on molybdenum).
.

(固体電解質の製造) J、EIectrochem、Soc、1261654
(1979)に述べられたTakahashi らの方
法にもとすき、純度99.9%のCuCl、純度99.
9%のCul、純度99.9%の1lbclを十分に乾
燥したあと、各々9.0g、13.3g、4.9gを秤
量し、ガラス製封管に真空封入した。
(Production of solid electrolyte) J, EIectrochem, Soc, 1261654
(1979), using CuCl with a purity of 99.9% and CuCl with a purity of 99.9%.
After sufficiently drying 1 lbcl of 9% Cul and 99.9% purity, 9.0 g, 13.3 g, and 4.9 g of each were weighed and vacuum-sealed in a glass sealed tube.

加熱方法としては、200℃で17時間反応を行ない、
その後130°Cでアニールを行ない固体電解質Rb4
Cu+ 617CI + 3を製造した。
As a heating method, the reaction was carried out at 200°C for 17 hours,
After that, annealing is performed at 130°C to form a solid electrolyte Rb4.
Cu+ 617CI + 3 was produced.

(電池の形成) 前駆体を還元して得られた銅モリブデン硫化物2gと 
(固体電解質の製造)で得られたRb4Cu+617c
L32gを混合した後、SBR(日本台底ゴム製JSI
?−1500)を1,5%含有したトルエン溶液4gを
乳鉢中で十分に練合わせて、テフロン板上にアプリケー
タを用いて塗布した。
(Formation of battery) 2 g of copper molybdenum sulfide obtained by reducing the precursor and
(Production of solid electrolyte) Rb4Cu+617c obtained in
After mixing 32 g of L.
? -1500) was thoroughly kneaded in a mortar and applied onto a Teflon plate using an applicator.

塗布後トルエンを乾燥し、厚さ約100μmのシート状
電極を作った。該シートから直径13mmの円板を切り
取り電極円板とした。
After coating, the toluene was dried to produce a sheet-like electrode with a thickness of about 100 μm. A disk with a diameter of 13 mm was cut out from the sheet and used as an electrode disk.

つぎに、固体電解質0.7gを500kg/cm2の圧
力で加圧成型して、直径13mmの固体電解質円板を作
った。2枚の電極で電解質を挾み集電体にグラファイト
シートをもちいた方を正極、lPl箔を用いた方を負極
とした。
Next, 0.7 g of the solid electrolyte was press-molded at a pressure of 500 kg/cm 2 to produce a solid electrolyte disk with a diameter of 13 mm. The electrolyte was sandwiched between two electrodes, and the one using a graphite sheet as a current collector was used as the positive electrode, and the one using lPl foil was used as the negative electrode.

(電池電極性能の測定) 上記(電池の猛威)で製造した、電池に正極の銅シェブ
レル中の銅量が062となるまで充電した後、100μ
への定電流で放電し、放電特性を調べた。300mVま
で放電した際の正極容量を測定した結果、24.6m/
lhr/gであり、参考例1の石英封管法で製造した、
銅モリブデン硫化物を使用して製造した電極の場合の、
25.0mAhr/gとほぼ同等の良好な電池電極特性
を示した。
(Measurement of battery electrode performance) After charging the battery produced in the above (battery turbulence) until the amount of copper in the copper chevret of the positive electrode reached 0.62 μm,
The discharge characteristics were investigated by discharging at a constant current. As a result of measuring the positive electrode capacity when discharging to 300mV, it was 24.6m/
lhr/g, manufactured by the quartz sealed tube method of Reference Example 1,
For electrodes manufactured using copper molybdenum sulfide,
It showed good battery electrode characteristics that were approximately equal to 25.0 mAh/g.

なお電池性能は、北斗電工■製電池充放電試験装置+1
J−201B型を用いて測定した。
The battery performance is determined by Hokuto Denko's battery charge/discharge test device +1.
Measurement was performed using J-201B model.

参考例1 金属銅として純度99.7%、粒度50メンシコーパス
の電解銅粉末を13.3 g、純度99.9%、粒度5
0メツシユバスの金属モリブデン粉末を6Ω、Og、純
度が99.9%、粒度50メツシユバスの単体硫黄粉末
26.1gをそれぞれ秤量し、これを混合した。(モル
比Cu:Mo:S =2:6:7.8) 石英容器として、外径34mm、内径28mmの石英管
より製作した内容積150m1の封管に、上記混合物を
装入し、次いで、この封管をヒーターで60°Cの温度
に加熱した状態で、封管内の空気を真空ポンプで] T
orr以下の圧力に真空排気し融封した。
Reference Example 1 13.3 g of electrolytic copper powder with a purity of 99.7% and a particle size of 50 particles as metallic copper, a purity of 99.9% and a particle size of 5
26.1 g of elemental sulfur powder having a particle size of 6 Ω, Og, and a purity of 99.9% and a particle size of 50 mesh were weighed and mixed. (Molar ratio Cu:Mo:S = 2:6:7.8) The above mixture was charged into a sealed quartz container with an internal volume of 150 m1 made from a quartz tube with an outer diameter of 34 mm and an inner diameter of 28 mm, and then, While heating this sealed tube to a temperature of 60°C with a heater, air inside the sealed tube is pumped out using a vacuum pump] T
It was evacuated to a pressure of orr or less and melt-sealed.

この封管を電気炉内にて20°C/hの昇温速度で60
0°Cまで昇温し、この温度で12時間反胞、さ−Uて
前駆体硫化物を製造した。反応終了後は封管を自然放冷
して内容物を取り出し、この前駆体硫化物を全量115
メツシユバスとなるように乳鉢で粉砕した。
This sealed tube was heated to 60°C in an electric furnace at a heating rate of 20°C/h.
The temperature was raised to 0°C and incubated at this temperature for 12 hours to produce a precursor sulfide. After the reaction is complete, the sealed tube is allowed to cool naturally, the contents are taken out, and the total amount of this precursor sulfide is reduced to 115
It was crushed in a mortar to become Metsuyubas.

次いでこの粉砕した前駆体硫化物を、前駆体硫化物の製
造に使用したものと同一の石英前装の封管に装入した後
、この封管をヒーターで60°Cの温度に加熱した状態
で、封管内の空気を真空ポンプで]、Torr以下の圧
力に真空排気し融封した。
Next, this pulverized precursor sulfide was charged into a sealed tube with the same quartz front as that used for producing the precursor sulfide, and this sealed tube was heated to a temperature of 60 ° C with a heater. Then, the air in the sealed tube was evacuated to a pressure of Torr or less using a vacuum pump, and the tube was fused and sealed.

この封管を電気炉内にて100’C/hの昇温速度で1
000’Cまで昇温し、この温度で24時間反応さ一已
た。
This sealed tube was placed in an electric furnace at a heating rate of 100'C/h.
The temperature was raised to 000'C, and the reaction was continued at this temperature for 24 hours.

反応終了後は封管を自然放冷して内容物を取り出しX線
回折装置で分析したところ第2図に示すX線回折が得ら
れ、同図から単一のシェブレル相銅モリブデン硫化物が
生成していることが確認された。
After the reaction was completed, the sealed tube was allowed to cool naturally, and the contents were taken out and analyzed using an X-ray diffraction device. It was confirmed that

実施例2〜4 実施例1で使用した装置を使用し第1表に示す条件で、
実施例1と同様にして前駆体の製造及び還元を行なって
、銅モリブデン硫化物を得た。
Examples 2 to 4 Using the equipment used in Example 1, under the conditions shown in Table 1,
A precursor was produced and reduced in the same manner as in Example 1 to obtain copper molybdenum sulfide.

即ち、実施例1で使用した四つ目フラスコに、第1表に
示す種類の有ja、?′4媒各500mRとテトラヂオ
モリブデン酸アンモニウム各16gを仕込み、窒素ガス
を吹き込めつつ撹拌した。
That is, in the fourth flask used in Example 1, there were the types shown in Table 1. 500 mR each of 4 medium and 16 g each of ammonium tetradiomolybdate were charged and stirred while blowing nitrogen gas.

次に別のフラスコに第1表に示す種類の有機溶媒を各4
00成仕込み、窒素ガスを吹き込みながら撹拌し、これ
に第1表に示す種類のハロゲン化銅を第1表に示ず量添
加した液を調整し、これを上記の四つ目フラスコに添加
した。
Next, in separate flasks, add 4 quarts each of the types of organic solvents shown in Table 1.
00 was prepared, stirred while blowing nitrogen gas, and added copper halide of the type shown in Table 1 in the amount shown in Table 1 to prepare a solution, which was added to the fourth flask mentioned above. .

しかる後、四つ目フラスコ内に窒素ガスを吹込みながら
撹拌して、第1表に示す温度及び時間で混合を行なった
。混合終了後は液を常温まで冷却した。
Thereafter, the mixture was stirred while blowing nitrogen gas into the fourth flask, and mixing was carried out at the temperature and time shown in Table 1. After the mixing was completed, the liquid was cooled to room temperature.

次いでこの反応液をロータリーエバポレーターに仕込み
、真空ポンプで吸引して減圧の状態で加熱して、有機溶
媒を完全に蒸発・留去し、第1表に示ず容量の固体生成
物からなる前駆体を得た。
Next, this reaction solution is charged into a rotary evaporator, sucked with a vacuum pump, and heated under reduced pressure to completely evaporate and distill off the organic solvent. I got it.

上記で得られた前駆体の各6gを実施例1と同様にアル
ミナボートに入れ、これを管状炉に装入したのち議管状
炉に窒素ガスを流通した状態で、第1表に示す各還元温
度まで昇温した。昇温後は第1表に示す濃度の水素ガス
を使用し、第1表に示す条件で前駆体の還元を行なって
第1表に示ず容量の生成物を得た。
6 g of each of the precursors obtained above was put into an alumina boat in the same manner as in Example 1, and then charged into a tube furnace. The temperature was raised to After raising the temperature, the precursor was reduced under the conditions shown in Table 1 using hydrogen gas at the concentration shown in Table 1 to obtain a product with a volume not shown in Table 1.

この各生成物を実施例1と同様にX線回折装置にて分析
したところ、実施例1と同様のX線回折図であり、単一
のシュブレル相の銅モリブデン硫化物と同定される。
When each of these products was analyzed using an X-ray diffraction apparatus in the same manner as in Example 1, the X-ray diffraction pattern was similar to that in Example 1, and it was identified as copper molybdenum sulfide in a single Chevrel phase.

(電池の形成) 実施例1の(電池の形成)で製造した条件で、第1表に
示す実施例2及び3で製造した銅モリブデン硫化物より
電極を成型した。つぎに、実施例1(電池電極の性能の
測定)の測定条件で放電特性を調べた結果、第1表に示
す如く、参考例1の銅モリブデン硫化物を使用して製造
した電極の場合とほぼ同等と良好な結果を得た。
(Battery Formation) Electrodes were molded from the copper molybdenum sulfide produced in Examples 2 and 3 shown in Table 1 under the conditions produced in Example 1 (Battery Formation). Next, as a result of examining the discharge characteristics under the measurement conditions of Example 1 (measurement of battery electrode performance), as shown in Table 1, the electrode manufactured using the copper molybdenum sulfide of Reference Example 1 and Almost the same good results were obtained.

C発明の効果〕 以上詳細に説明したように、本発明の電池電極は、有機
溶媒中でモリブデン酸アンモニウム塩とハロゲン化銅を
混合・反応させて前駆体を得、該前駆体を水素ガス雰囲
気で還元して、得られた銅モリブデン硫化物を使用する
ことにより製造したものである。
C Effects of the Invention] As explained in detail above, the battery electrode of the present invention is produced by mixing and reacting ammonium molybdate salt with copper halide in an organic solvent to obtain a precursor, and then exposing the precursor to a hydrogen gas atmosphere. It was produced by using the copper molybdenum sulfide obtained by reducing the copper molybdenum sulfide.

しかも、石英製の封管を使用する従来の製造方法のよう
な危険性は全くなく、大量生産に適する製造方法で台底
した銅モリブデン硫化物を用いて製造した電極であって
も、実施例及び参考例が示す如く、製品の品質は従来の
封管を使用する方法で台底した、銅モリブデン硫化物を
用いて製造した電極と同等の性能であるので、二次電池
の電極として好適に使用されるのである。
Moreover, there is no danger of the conventional manufacturing method using sealed quartz tubes, and even if the electrode is manufactured using copper molybdenum sulfide using a manufacturing method suitable for mass production, As shown in the reference examples, the quality of the product is equivalent to that of an electrode manufactured using copper molybdenum sulfide, which was achieved using a conventional method using a sealed tube, so it is suitable as an electrode for secondary batteries. It is used.

本発明は以上のように種々の大きな効果があり、特に大
量生産が可能な銅モリブデン硫化物を用いるため、安価
な電池電極を大量に提供出来るので、本発明の産業上に
果たす役割は極めて大なるものがある。
The present invention has various great effects as described above, and in particular, since it uses copper molybdenum sulfide which can be mass-produced, it is possible to provide a large quantity of inexpensive battery electrodes, so the role of the present invention in industry is extremely important. There is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた、本発明の銅モリブデン硫
化物のX線回折図であり、第2図は参考例1(従来の封
管法)で得られた、銅モリブデン硫化物のX線回折図で
ある。
Figure 1 is an X-ray diffraction diagram of copper molybdenum sulfide of the present invention obtained in Example 1, and Figure 2 is an X-ray diffraction diagram of copper molybdenum sulfide obtained in Reference Example 1 (conventional sealing method). It is an X-ray diffraction diagram of.

Claims (1)

【特許請求の範囲】[Claims] 1)チオモリブデン酸アンモニウム塩とハロゲン化銅を
有機溶媒中で混合・反応させて前駆体を生成させ、媒体
である有機溶媒を蒸発・留去して得られた該前駆体固体
を、水素ガス雰囲気中で加熱・還元して製造された、銅
モリブデン硫化物を主体として成る電池電極。
1) A precursor is produced by mixing and reacting thiomolybdate ammonium salt and copper halide in an organic solvent, and the precursor solid obtained by evaporating and distilling off the organic solvent as a medium is heated with hydrogen gas. A battery electrode made mainly of copper molybdenum sulfide, manufactured by heating and reducing in an atmosphere.
JP1214089A 1989-08-22 1989-08-22 Electrode of cell Pending JPH0380119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214089A JPH0380119A (en) 1989-08-22 1989-08-22 Electrode of cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214089A JPH0380119A (en) 1989-08-22 1989-08-22 Electrode of cell

Publications (1)

Publication Number Publication Date
JPH0380119A true JPH0380119A (en) 1991-04-04

Family

ID=16650047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214089A Pending JPH0380119A (en) 1989-08-22 1989-08-22 Electrode of cell

Country Status (1)

Country Link
JP (1) JPH0380119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513851A (en) * 2003-10-24 2007-05-31 インフィニューム インターナショナル リミテッド Method for producing ammonium molybdate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513851A (en) * 2003-10-24 2007-05-31 インフィニューム インターナショナル リミテッド Method for producing ammonium molybdate
JP4713485B2 (en) * 2003-10-24 2011-06-29 インフィニューム インターナショナル リミテッド Method for producing ammonium molybdate

Similar Documents

Publication Publication Date Title
Chen et al. Scalable 2D mesoporous silicon nanosheets for high‐performance lithium‐ion battery anode
Wang et al. Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries
He et al. MoSe2@ CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium‐oxygen batteries
Zhang et al. Core–shell CoSe2/WSe2 heterostructures@ carbon in porous carbon nanosheets as advanced anode for sodium ion batteries
Foley et al. Copper sulfide (CuxS) nanowire‐in‐carbon composites formed from direct sulfurization of the metal‐organic framework HKUST‐1 and their use as li‐ion battery cathodes
Xiong et al. Rapid synthesis of various electrocatalysts on Ni foam using a universal and facile induction heating method for efficient water splitting
Ma et al. Porous carbon-coated CuCo 2 O 4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries
Zou et al. Facile synthesis of sandwiched Zn 2 GeO 4–graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries
Wu et al. Zn–Fe–ZIF-derived porous ZnFe2O4/C@ NCNT nanocomposites as anodes for lithium-ion batteries
Kang et al. High interfacial storage capability of porous NiMn 2 O 4/C hierarchical tremella-like nanostructures as the lithium ion battery anode
Wang et al. Decreasing the overpotential of aprotic Li‐CO2 batteries with the in‐plane alloy structure in ultrathin 2D Ru‐based nanosheets
Pang et al. Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials
Jiang et al. Fe2VO4 nanoparticles anchored on ordered mesoporous carbon with pseudocapacitive behaviors for efficient sodium storage
Han et al. Bimetallic Sulfide Co9S8/N‐C@ MoS2 Dodecahedral Heterogeneous Nanocages for Boosted Li/K Storage
CN108649190A (en) Vertical graphene with three-dimensional porous array structure/titanium niobium oxygen/sulphur carbon composite and its preparation method and application
Su et al. Preparation and electrochemical Li storage performance of MnO@ C nanorods consisting of ultra small MnO nanocrystals
Guo et al. Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries
CN108948365B (en) Method for preparing two-dimensional MOF (Metal organic framework) derivative sulfide by utilizing template method
Wang et al. NH4CoPO4· H2O microflowers and porous Co2P2O7 microflowers: effective electrochemical supercapacitor behavior in different alkaline electrolytes
CN110690419B (en) Transition metal chalcogenide composite material and preparation method and application thereof
Liu et al. In situ synthesis of MXene with tunable morphology by electrochemical etching of MAX phase prepared in molten salt
Liu et al. A new perspective of lanthanide metal–organic frameworks: tailoring Dy-BTC nanospheres for rechargeable Li–O 2 batteries
Dong et al. Metal-organic frameworks and their derivatives for Li–air batteries
CN107739053B (en) A kind of three-phase system molybdenum oxide MoO3/Mo4O11/MoO2Nano-electrode material and preparation method thereof
Chen et al. MOF-derived bimetal oxides NiO/NiCo 2 O 4 with different morphologies as anodes for high-performance lithium-ion battery