JPH0380053A - Method for heating food - Google Patents

Method for heating food

Info

Publication number
JPH0380053A
JPH0380053A JP1214539A JP21453989A JPH0380053A JP H0380053 A JPH0380053 A JP H0380053A JP 1214539 A JP1214539 A JP 1214539A JP 21453989 A JP21453989 A JP 21453989A JP H0380053 A JPH0380053 A JP H0380053A
Authority
JP
Japan
Prior art keywords
solid
food
heating
vegetable
foods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1214539A
Other languages
Japanese (ja)
Other versions
JPH0645B2 (en
Inventor
Hideo Kurashima
秀夫 倉島
Hiromi Andou
安藤 ひろ美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21453989A priority Critical patent/JPH0645B2/en
Publication of JPH0380053A publication Critical patent/JPH0380053A/en
Publication of JPH0645B2 publication Critical patent/JPH0645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To subject a solid food such as fruit, vegetable or meat or solid solution mixed food such as fruit-containing syrup to cooking and sterilization treatment by directly applying electricity to vegetable solid food having heat history and subjecting the food to resist heating. CONSTITUTION:A vegetable solid food having heat history of about >=40 deg.C is subjected to resist heating using a conductive liquid, preferably having dielectric constant not higher than that of the food as a medium.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、果実、疏菜、畜肉、魚肉等の固状食品や、果
実人ジシロップ、ビー7シチユー等の固液混合食品の通
電による、調理又は殺菌処理等のための加熱方法に関す
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the application of electricity to solid foods such as fruits, canola, livestock meat, and fish meat, as well as solid-liquid mixed foods such as fruit syrup and Bee 7 stew. This invention relates to heating methods for cooking, sterilization, etc.

(従来の技術) 固状訟よび/捷たは液状の食品に通電して抵抗加熱する
ことによジ調理もしくは殺菌処理を行なう技術が提案さ
れている(例えば特開昭61−132138号公報、%
開昭61−12270号公報)。このような通電方式の
食品加熱法は、ジュール熱による内部加熱を行なうので
、通常の熱伝導による外部加熱法にくらべて、加熱時間
が比較的短かく、食品の風味等の品質の加熱劣化が起す
難いという利点を有する。
(Prior Art) Techniques have been proposed in which solid and/or liquid foods are subjected to electrical heating and resistance heating to perform cooking or sterilization treatment (for example, Japanese Patent Laid-Open No. 132138/1983, %
Publication No. 61-12270). This current-type food heating method performs internal heating using Joule heat, so the heating time is relatively short compared to external heating methods using normal heat conduction, and food quality such as flavor deteriorates due to heating. It has the advantage of being difficult to cause.

しかしながら生の植物性固状食品に通電加熱を適用する
場合は、一般に液状食品や動物性固状食品に比べて加熱
時間が長くなり易く、また不均一加熱を生じ易い。
However, when electrical heating is applied to raw vegetable solid foods, the heating time is generally longer than that for liquid foods or animal solid foods, and uneven heating is more likely to occur.

その対策として、特開昭60−251851号公報には
、大豆等の穀物を含塩液中に数日間浸して塩分を均等に
滲透せしめるという前処理を行なってから通電加熱する
方法が提案されている。このような前処理は長時間を要
するため生産性が低く、また塩分の滲透のため食品の種
類によっては本来の味覚を変えるという問題を生ずる。
As a countermeasure to this problem, Japanese Patent Application Laid-Open No. 60-251851 proposes a method in which grains such as soybeans are pretreated by soaking them in a salt-containing solution for several days to allow the salt to seep out evenly, and then heating with electricity. There is. Such pretreatment requires a long time, resulting in low productivity, and also causes the problem that the original taste of some foods may change due to the permeation of salt.

(発明が解決しようとする課題) 本発明は、食品本来の味覚を実質的に変えることなく、
比較的高い加熱速度で、均一な加熱が可能な植物性固状
食品又は固液混合食品の通電加熱法を提供することを目
的とする。
(Problems to be Solved by the Invention) The present invention solves the problem without substantially changing the original taste of food.
It is an object of the present invention to provide an electrical heating method for vegetable solid foods or solid-liquid mixed foods that can be heated uniformly at a relatively high heating rate.

(課題を解決するための手段) 本発明は、約40℃以上の加温履歴を有する植物性固状
食品に直接通電して、該植物性固状食品を抵抗加熱する
ことを特徴とするとする植物性固状食品の加熱方法(以
下第1発明とよぶ)を提供するものである。
(Means for Solving the Problems) The present invention is characterized in that electrical current is directly applied to a vegetable solid food having a heating history of about 40° C. or higher to resistance-heat the vegetable solid food. The present invention provides a method for heating a solid vegetable food (hereinafter referred to as the first invention).

さらに本発明は、約40℃以上の加温履歴を有する植物
性固状食品を、導電率が該植物性固状食品のそれ以下で
ある導電性液体を媒体として抵抗加熱することを特徴と
する植物性固状食品の加熱方法(以下第2発明とよぶ)
を提供するものである。
Furthermore, the present invention is characterized in that a solid vegetable food having a heating history of about 40° C. or higher is resistance heated using a conductive liquid having a conductivity lower than that of the solid vegetable food as a medium. Method for heating vegetable solid food (hereinafter referred to as the second invention)
It provides:

次に本発明は、液状食品、および約40℃以上の加温履
歴を有する植物性固状食品よシなる固液混合食品を、該
液状食品を媒体として抵抗加熱することを特徴とする固
液混合食品の加熱方法(以下第3発明とよぶ)を提供す
るものである。
Next, the present invention provides a solid-liquid product characterized in that a liquid food and a solid-liquid mixed food such as a vegetable solid food having a heating history of about 40° C. or higher are resistance-heated using the liquid food as a medium. The present invention provides a method for heating a mixed food (hereinafter referred to as the third invention).

また本発明は、動物性固状食品、および約40℃以上の
加温履歴を有する植物性固状食品を接触させた状態で、
両固状食品に直接通電して両固状食品を抵抗加熱するこ
とを特徴とする固状食品の加熱方法(以下第4発明とよ
ぶ)を提供するものである。この場合動物性固状食品は
生でもよく、また加熱履歴を有するものであってもよい
。次の第5発明卦よび第6発明の場合も同様である。
In addition, the present invention provides a method in which an animal solid food and a vegetable solid food having a heating history of about 40°C or more are brought into contact with each other,
A method for heating a solid food (hereinafter referred to as the fourth invention) is provided, which is characterized in that both solid foods are resistance-heated by directly applying electricity to both solid foods. In this case, the animal solid food may be raw or may have a history of heating. The same applies to the following fifth and sixth inventions.

さらに本発明は、動物性固状食品、および約400以上
の加温履歴を有する植物性固状食品を。
Furthermore, the present invention provides solid animal foods and solid vegetable foods having a heating history of about 400 or more.

導電率が該動物性固状食品および該植物性固状食品のそ
れら以下である導電性液体を媒体として抵抗加熱するこ
とを特徴とする固状食品の加熱方法(以下第5発明とよ
ぶ)を提供するものである。
A method for heating a solid food (hereinafter referred to as the fifth invention) characterized by resistance heating using a conductive liquid having a conductivity lower than that of the animal solid food and the vegetable solid food as a medium. This is what we provide.

次に本発明は液状食品、動物性固状食品、および約40
℃以上の加温履歴を有する植物性固状食品よシなる固液
混合食品を、該液状食品を媒体として抵抗加熱すること
を特徴とする固液混合食品(5) の加熱方法(以下第6発明とよぶ)を提供するものであ
る。
Next, the present invention provides liquid foods, solid animal foods, and about 40
A method for heating a solid-liquid mixed food (5) (hereinafter referred to as 6th invention).

ここに約40℃以上の加温履歴とは、植物性固状食品の
中心部近傍を含む全体が約40℃以上ヒ(好捷しくは3
8℃以上)の加温履歴を有することをいう。抵抗加熱直
前の温度は室温であってもよい。
Here, a heating history of approximately 40°C or higher means that the entire solid vegetable food, including the vicinity of the center, has been heated to approximately 40°C or higher (preferably 30°C or higher).
8℃ or higher). The temperature immediately before resistance heating may be room temperature.

加温温度の上限は抵抗加熱温度よシ低く、従って製品に
よって求められる抵抗加熱温度によって制約されるが、
通常は約80℃以下、よシ好ましくは60℃以下の温度
であう1本発明の目的達成可能の範囲に訃いて可及的低
いことが生産的および経済的に望ましい。
The upper limit of the heating temperature is lower than the resistance heating temperature, so it is limited by the resistance heating temperature required by the product.
Generally, the temperature is about 80° C. or less, more preferably 60° C. or less, and it is desirable for productivity and economy to keep the temperature as low as possible within the range of achieving the object of the present invention.

本明細書にち・いて、固状食品の導電率は、次の方法に
よって測定された値を指魯する。
In this specification, the electrical conductivity of solid food refers to the value measured by the following method.

2〜4 cm X 2〜4 cm X 2〜4 cmに
切断された25℃の食品サンプルの両端に、第2図に示
すように白金電極板(12)を接触させ、4端子法のイ
ンピーダンス測定器で50Hz、1ボルトの電圧を印加
して測定した。
As shown in Figure 2, platinum electrode plates (12) were brought into contact with both ends of a 25°C food sample cut into 2-4 cm x 2-4 cm x 2-4 cm, and the impedance was measured using the 4-terminal method. The measurement was performed by applying a voltage of 50 Hz and 1 volt using a device.

(6) (作用) 生の植物性固状食品を通電加熱する場合、加熱速度が比
較的遅く、かつ不均一加熱を生じ易いのは、生の状態で
は細胞内で水分が高分子と結合して導電性の低い結合水
となっていること、比較的導電性の低い、セルロー幽を
主成分とする細胞壁という通電障壁があること、また細
胞間に空気の気泡があることなどのため、イオンが移動
し難いので、導電率が全体として小さく、かつ部分的な
組織差のため導電率が部分的に異なるためと推測される
(6) (Function) When raw solid plant foods are heated with electricity, the heating rate is relatively slow and uneven heating tends to occur because water in the raw state combines with polymers within the cells. Due to the fact that the ions are bound water with low conductivity, there is an electrical conduction barrier such as the cell wall, which is mainly composed of cellulose, which has relatively low conductivity, and there are air bubbles between the cells. It is assumed that this is because the conductivity is small as a whole because it is difficult to move, and the conductivity differs locally due to local structural differences.

生の植物性固状食品を約40℃以上に加温すると、結合
水が遊離し、また細胞間の空気が膨張して細胞と細胞を
押し開き細胞壁を傷つけ、導電性の比較的大きい細胞液
が細胞間隙に流れ出て空気を排除することなどによると
推察されるが、全体としてイオンが流れ易くなって導電
率が上昇しく例えば0.1 mS/L:nlから5mS
/mに)、渣た部分的な組織差も減少して導電率の部分
差も減少する、そのため第1発明の場合植物性固状食品
を比較的大きい加熱速度で、比較的均一に通電加熱する
ことが可能になるものと考えられる。動物性固状食品は
植物性固状食品と細胞構造等が異なるため、前記のよう
な問題が起り難い。
When raw solid plant food is heated to about 40°C or higher, bound water is liberated and the air between cells expands, pushing the cells apart and damaging the cell walls, causing relatively large electrically conductive cell fluids to form. It is presumed that this is due to the flow of air into the intercellular spaces and the exclusion of air, but overall the ions become easier to flow and the conductivity increases, for example from 0.1 mS/L:nl to 5mS.
/m), the local structure difference in the residue is reduced, and the local difference in conductivity is also reduced. Therefore, in the case of the first invention, the vegetable solid food is heated with electricity relatively uniformly at a relatively high heating rate. It is thought that it will be possible to do so. Animal solid foods have a different cell structure from plant solid foods, so the above-mentioned problems are less likely to occur.

第2発明は、曲面状形状や小サイズ等のため、直接電極
板を接触可能な、対向する比較的広い平面状表面を有し
ない固状植物性食品に好tL<適用されるものである。
The second invention is preferably applied to solid vegetable foods that do not have relatively wide opposing planar surfaces that can be directly contacted with electrode plates due to their curved shape or small size.

すなわち電流は第1の電極板、−導電性液体一植物性固
状食品一導電性液体一第2の電極板を通って流れて、す
なわち導電性液体が媒体となって植物性固状食品を抵抗
加熱する。
That is, the current flows through the first electrode plate, - the conductive liquid - the solid vegetable food - the conductive liquid - the second electrode plate, i.e. the conductive liquid acts as a medium to transfer the solid vegetable food. Resistance heating.

このさい植物性固状食品の導電率は導電性液体のそれよ
シも高いので、植物性固状食品が導電性液体よシも速い
昇温速度で短時間に所定温度1で加熱される。導電性液
体は例えば0.1重量係程度の低濃度の食塩水でよいの
で、植物性固状食品の本来の味覚が変わる釦それが殆ん
どない。
At this time, since the electrical conductivity of the vegetable solid food is higher than that of the conductive liquid, the vegetable solid food is heated to the predetermined temperature 1 in a short time at a faster heating rate than the conductive liquid. Since the conductive liquid may be, for example, a saline solution with a low concentration of about 0.1 weight coefficient, there is almost no change in the original taste of the plant-based solid food.

第3発明の場合は、液体食品が媒体となって植物性固状
食品を抵抗加熱すると同時に、液状食品も抵抗加熱され
る。この場合も固液混合食品は加熱によって本来の味覚
が変わるかそれがない。
In the case of the third invention, the liquid food serves as a medium to resistance-heat the solid vegetable food, and at the same time, the liquid food is also resistance-heated. In this case as well, the original taste of solid-liquid mixed foods changes or does not change when heated.

動物性固状食品の導電率は、生の場合でも、加熱履歴を
有する場合でも、一般に約1〜10mFJcmであシ、
通常は加熱すると蛋白質の凝固や液汁の滲出等のため導
電率が若干低下する。約40℃以上の加温履歴を有する
植物性固状食品の導電率も一般に約1〜10 mS/C
rnであり、動物性固状食品のそれと同じオーダである
The electrical conductivity of solid animal foods, whether raw or heated, is generally about 1 to 10 mFJcm.
Normally, when heated, the electrical conductivity decreases slightly due to coagulation of proteins and exudation of liquid juice. The electrical conductivity of solid vegetable foods with a heating history of about 40°C or higher is generally about 1 to 10 mS/C.
rn, and is of the same order as that of animal solid foods.

従って第4発明のように、動物性固状食品、釦よび約4
0℃以上の加温履歴を有する植物性固状食品を互に接触
させ、好オしくは直列的に両固状食品に直接通電するこ
とによシ、両固状食品を同時に、比較的高い加熱速度で
均一に加熱することができる。
Therefore, as in the fourth invention, animal solid foods, buttons and about 4
By bringing plant-based solid foods that have a heating history of 0°C or higher into contact with each other and applying electricity directly to both solid foods, preferably in series, both solid foods can be heated at a relatively high temperature. It can be heated uniformly at a heating speed.

生の動物性固状食品の導電率が、約40℃の加温履歴を
有する植物性固状食品のそれよシも高く、その差が比較
的大きい場合、動物性固状食品に加熱履歴を与えて、そ
の導電率を前記植物性固状食品のそれに近づけた後、抵
抗加熱すると、加熱がよシ均一に行なわれる。
If the electrical conductivity of the raw animal solid food is higher than that of the vegetable solid food that has a heating history of about 40°C, and the difference is relatively large, then the animal solid food has a heating history of about 40°C. When the electrical conductivity of the solid food is brought close to that of the solid vegetable food and then subjected to resistance heating, the heating is more uniform.

(9) 上記のように動物性固状食品と、約40℃以上の加温履
歴を有する植物性固状食品の導電率は同じオーダである
ので、第5発明訃よび第6発明の場合、両固状食品はほ
ぼ同じ加熱速度で、比較的迅速に、かつ均一に、それぞ
れ導電性液体および液状食品を媒体として抵抗加熱され
る。
(9) As mentioned above, the electrical conductivity of the animal solid food and the vegetable solid food that has a heating history of about 40°C or higher is on the same order, so in the case of the fifth invention and the sixth invention, Both solid foods are resistively heated at approximately the same heating rate, relatively quickly and uniformly through the conductive liquid and liquid food medium, respectively.

この場合も生の動物性固状食品の導電率が、約40℃の
加温履歴を有する植物性固状食品のそれようも高く、そ
の差が比較的大きいときは、動物性固状食品に加熱履歴
を与えて、両固状食品の導電率を接近させた状態で抵抗
加熱することによシ、よシ均一な加熱が可能となる。
In this case as well, if the electrical conductivity of the raw animal solid food is higher than that of the vegetable solid food that has a heating history of about 40°C, and the difference is relatively large, the animal solid food By giving a heating history and performing resistance heating in a state where the conductivities of both solid foods are close to each other, more uniform heating becomes possible.

(実施例) 第1発明は、1輪切ジ根菜(例えば人参、大根等の)等
のように、電極板を接触可能な対向する平面を有する植
物性固状食品に、例えば後記の第2図に示すような態様
で実施される。抵抗加熱の電流は交直流何れでもよいが
、通常は商用周波数の交流が好1しく用いられる。印加
電圧は植物性固状食品の導電率訃よび目標温度に応じて
定められ(10) る。
(Example) The first invention is a vegetable solid food having opposing flat surfaces that can be contacted with an electrode plate, such as one-round sliced root vegetables (for example, carrots, radish, etc.). It is carried out in the manner shown in the figure. The current for resistance heating may be either alternating current or direct current, but usually commercial frequency alternating current is preferably used. The applied voltage is determined depending on the conductivity of the vegetable solid food and the target temperature (10).

加温方法としては、マイクロ波照射による内部加温、又
は熱水中での加温、もしくは蒸気加温等が好ましい。
As a heating method, internal heating by microwave irradiation, heating in hot water, steam heating, etc. are preferable.

第1発明を、植物性固状食品の室温で長期保存のために
適用する場合は、当該食品のPHによって定する殺菌温
度(pH5,5〜7.0の低酸性食品の場合は約110
〜130℃)に無菌室内にある圧力容器中で、必要な殺
菌値(Fo)が得られる所定時間抵抗加熱した後、常法
により容器(例えば缶又は・ぐウチ等)に無菌充填・密
封を行なう。
When the first invention is applied to long-term storage of solid vegetable foods at room temperature, the sterilization temperature determined by the pH of the food (approximately 110
~130°C) in a pressure vessel in a sterile room for a predetermined period of time to obtain the required sterilization value (Fo), and then aseptically fill and seal the container (e.g., can or mouthpiece) using a conventional method. Let's do it.

第2発明は、果実(切断片を含む)、豆類、又は賽の目
状に切断された根菜等の、電極板が接触可能の比較的広
い面積の平面部を表面に有さない植物性固状食品に好1
しく適用される。導電性液体としては、衛生的に無害で
あることが必要であシ、かつ植物性固状食品の風味を損
ねるおそれのないものが好曾しい。通常は低濃度(例え
ば約0.01〜0.5重量%)の食塩水が好1しく用い
られる。
The second invention is a vegetable solid food that does not have a relatively wide flat surface that can be contacted by an electrode plate, such as fruits (including cut pieces), beans, or root vegetables cut into dice shapes. good 1
Applicable properly. The conductive liquid must be hygienically harmless and is preferably one that does not impair the flavor of the solid vegetable food. Usually, a saline solution with a low concentration (for example, about 0.01 to 0.5% by weight) is preferably used.

第2発明を、植物性固状食品の室温に訃ける長期保存の
ために適用する場合は、例えば第1図に示すような殺菌
加熱−無菌包装システムによって実施される。第1図に
かいて、lは食品タンク、2はポンプ、3は連続式通電
加熱槽、4は冷却器、5は無菌充填・密封装置、9は還
流パイプである。
When the second invention is applied to long-term storage of solid vegetable foods at room temperature, it is carried out using, for example, a sterilization heating-sterile packaging system as shown in FIG. In FIG. 1, l is a food tank, 2 is a pump, 3 is a continuous current heating tank, 4 is a cooler, 5 is an aseptic filling/sealing device, and 9 is a reflux pipe.

加熱槽3は例えば内面をセラミックダーチングされたス
テンレス鋼管ようなり、内面に対向する1対の電極板6
,6が配設されてかり、電極板6,6は図示されない導
線により交流電源(図示されない;例えば300ボルト
、50Hzの)に接続される。
The heating tank 3 is made of, for example, a stainless steel tube with ceramic darting on the inner surface, and has a pair of electrode plates 6 facing each other on the inner surface.
, 6 are arranged, and the electrode plates 6, 6 are connected to an alternating current power source (not shown; for example, 300 volts, 50 Hz) by conductors (not shown).

食品タンク1には約40℃以上の加温履歴を有する、す
なわち約40℃以上に加温後、例えば室温筐で冷却され
た植物性固状食品7および、導電率が固状食品7のそれ
以下である例えば室温の導電性液体8が収納されている
。固状食品7釦よび導電性液体8は、ポンプ2によって
食品タンク1から連続的に通電加熱槽3に供給され、加
熱槽3を通過中に電極板6よシフイードされる電流にょ
シ必要な殺菌値(Fo)が得られる時間(固形食品7に
対して例えば数分)、所定殺菌温度(固形食品7に対し
て例えば120℃)に抵抗加熱される。
The food tank 1 contains a vegetable solid food 7 that has a heating history of about 40°C or higher, that is, has been heated to about 40°C or higher and then cooled, for example, in a room temperature cabinet, and the solid food 7 has an electrical conductivity that is that of the solid food 7. For example, a conductive liquid 8 at room temperature is stored. The solid food 7 button and the conductive liquid 8 are continuously supplied from the food tank 1 to the energized heating tank 3 by the pump 2, and are sterilized by the current passed through the electrode plate 6 while passing through the heating tank 3. Resistance heating is carried out to a predetermined sterilization temperature (for example, 120° C. for solid food 7) for a time during which the value (Fo) is obtained (for example, several minutes for solid food 7).

次いで固状食品7卦よび導電性液体8は冷却器4で室温
近傍オで冷却され、導電性液体8は食品タンクIK還流
パイプ9を通って還流し、固状食品7は無菌充填・密封
装置5で缶詰等の包装品となる。
Next, the solid food 7 and the conductive liquid 8 are cooled to near room temperature in the cooler 4, the conductive liquid 8 is refluxed through the food tank IK reflux pipe 9, and the solid food 7 is transferred to the aseptic filling and sealing device. 5 for packaged products such as canned goods.

加熱槽3は密閉されているので1気圧よシも高く加圧可
能であり、従って固状食品7を例えば120℃に加熱殺
菌することが可能である。固状食品7と導電性液体8の
導電率が等しい場合t/i、両者の加熱温度はほぼ等し
いが、前者の導電率が後者のそれよりも高い場合は、後
者の加熱温度は前者のそれよジも低い。例えば前者が1
20℃の場合、後者は例えば約80℃となる。
Since the heating tank 3 is sealed, it can be pressurized as high as 1 atm, and therefore the solid food 7 can be heated and sterilized at, for example, 120°C. When the conductivity of the solid food 7 and the conductive liquid 8 are equal, t/i, the heating temperature of both is almost equal, but if the conductivity of the former is higher than that of the latter, the heating temperature of the latter is equal to that of the former. Yoji is also low. For example, the former is 1
At 20°C, the latter is, for example, about 80°C.

第3発明は、水煮たけのこ、果実シロップ漬等の、植物
性固状食品および液状食品(水煮たけのこの場合は、ク
エン酸等を適量添加された水が液体食品に当る)よシな
る固液混合食品に適用される。
The third invention relates to solid vegetable foods and liquid foods such as boiled bamboo shoots and fruit syrup pickles (in the case of boiled bamboo shoots, water to which an appropriate amount of citric acid, etc. has been added corresponds to the liquid food). Applies to liquid mixed foods.

(13) この場合も室温での長期保存のため適用する場合は、第
1図に示されるような殺菌加熱−無菌包装システムが好
捷しく採用される。但し冷却器から食品タンクへの還流
バイア″9は用いられない。
(13) In this case as well, when the product is used for long-term storage at room temperature, a sterilization heating-aseptic packaging system as shown in FIG. 1 is preferably employed. However, the reflux via "9" from the cooler to the food tank is not used.

この場合植物性固状食品釦よび液状食品が同時に通電加
熱されるが、両者の導電率が異なるため、加熱時間は同
じであるが、加熱後の両者の温度は異なる。従って通電
加熱によって固状食品耘よび液状食品が所定の殺菌値(
Fo)に達するような殺菌温度が得られる各食品の初期
温度(送入温度)を予め実験によシ求めておき、この各
初期温度に予備加熱された固状食品および液状食品を通
電加熱槽3に送入することが好ましい。
In this case, the vegetable solid food button and the liquid food are heated with electricity at the same time, but since the conductivity of both is different, the heating time is the same, but the temperature of both after heating is different. Therefore, by heating with electricity, solid foods and liquid foods can be heated to a predetermined sterilization value (
The initial temperature (feeding temperature) of each food that will give the sterilization temperature that reaches Fo) is determined in advance through experiments, and the solid food and liquid food preheated to this initial temperature are heated in an energized heating tank. It is preferable to send it at 3.

第4発明は、例えば輪切り根菜卦よびぶつ切す牛肉の組
合せ等の態様で第1発明の場合と同様にして実施される
The fourth invention is carried out in the same manner as the first invention, for example, by combining sliced root vegetables and cut beef into pieces.

第5発明は、例えば賽の目状に切断された根菜とぶつ切
シ豚肉の組合せ(両者Fi接触していても、互に離れて
いてもよい)等の態様で第2発明の場合と同様にして実
施される。
The fifth invention is the same as the second invention, for example, in a combination of diced root vegetables and chopped pork (both may be in contact with each other or may be separated from each other). Implemented.

(14) 第6発明は、ビーフシチューやビーフカレー等の食品(
この場合ルーが液状食品となる)に適用され、第3発明
の場合と同様にして実施される。
(14) The sixth invention provides foods such as beef stew and beef curry (
In this case, the roux becomes a liquid food), and is carried out in the same manner as in the third invention.

以下実験例について述べる。An experimental example will be described below.

実験例1 直径約35咽、長さ30wnの輪切ジ人参11の両端に
、第2図に示すように、白金チタニウム電極板12を接
触させ、100ボルト、50HzC+を源13より交流
電流を供給して人参11に直接通電した。そのさい長さ
方向中央部の中心部a、上方部b(表面よジの深さ5胴
)釦よび下方部C(表面ようの深さ25 mm )に熱
電対(図示されない)を挿入して各部の温度の通電時間
に伴なう変化を測定した。
Experimental Example 1 As shown in FIG. 2, platinum titanium electrode plates 12 were brought into contact with both ends of a sliced ginseng 11 having a diameter of approximately 35 mm and a length of 30 wn, and an alternating current of 100 volts and 50 Hz C+ was supplied from a source 13. Then, electricity was applied directly to Carrot 11. At that time, insert thermocouples (not shown) into the center part A of the central part in the length direction, the button in the upper part B (depth 5 mm from the surface), and the lower part C (depth 25 mm from the surface). Changes in the temperature of each part with the energization time were measured.

約100℃の熱水中で3分間、中心部aの温度が40℃
に達する(熱電対で確認した)寸で加温し、その後室温
1で放冷された人参(以下加温人参とよぶ)と、生人参
についての測定結果をそれぞれ、第3図(a) kよび
(b)に示す。なに加温人参の場合の通電量は初期0.
75A、終期2.4A、生人参の場合のそれは初期0.
08A1終期3.3Aであった。
In hot water of about 100℃ for 3 minutes, the temperature of the center a becomes 40℃
Figure 3 (a) k shows the measurement results for carrots that were heated to a temperature of 100 ml (as confirmed with a thermocouple) and then left to cool at room temperature 1 (hereinafter referred to as warmed carrots) and fresh carrots. and (b). In the case of heated carrots, the amount of current applied is initially 0.
75A, terminal stage 2.4A, initial stage 0.
08A1 telophase was 3.3A.

加温人参(導電率1.67)の場合は各部a、b。For warmed carrots (conductivity 1.67), each part a and b.

Cとも均一に温度が上昇して、180秒後には全体が約
110℃に達することが分る。
It can be seen that the temperature rises uniformly in both cases and reaches about 110° C. after 180 seconds.

−害虫人参(導電率0.13)の場合は、場所による組
織差の彩響が顕著に現われ、温度上昇の不均一が目立ち
、中心部aの温度上昇が最も早く、上方部b z−よび
下方部Cの温度上昇は遅れ、特に下方部Cは100℃に
達しなかった。なお各部とも最高温度に達した後に温度
低下が見られるのは水分の蒸発によって導電率が低下し
、通電量が減少したためと考えられる。
- In the case of pest ginseng (electrical conductivity 0.13), the effects of tissue differences depending on the location are noticeable, and the unevenness of temperature rise is noticeable.The temperature rise is fastest in the center part a, and The temperature rise in the lower part C was delayed, and in particular the lower part C did not reach 100°C. It should be noted that the reason why the temperature was observed to decrease after reaching the maximum temperature in each part is thought to be because the conductivity decreased due to evaporation of water, and the amount of current flowing decreased.

実験例2 第4図に示すように、29wLIX29耐×35胴の直
方体形の大根15’t0.1重量係の食塩水16と共に
ビー力ようなる、内容積300 c、c、の槽17に収
納し、白金よりなる電極板18に100ホルト、50H
zの電源19よシ交流電流を供給して、大根15および
食塩水16を通電加熱した。
Experimental Example 2 As shown in Fig. 4, a rectangular parallelepiped-shaped daikon radish of 29w LIX29 resistance x 35 barrels was stored in a tank 17 with an internal volume of 300 c, such as a beer force, along with a saline solution 16 of 0.1 weight. Then, 100 holt and 50 h were applied to the electrode plate 18 made of platinum.
An alternating current was supplied from the power source 19 of Z, and the daikon radish 15 and the saline solution 16 were electrically heated.

なふ・通電量は後記の加温大根の場合、初期1.85A
The initial current amount is 1.85A for the heated radish described below.
.

終期5.OA、生大根の場合、初期1.OA、終期4.
5Aであった。大根15の中心部abよびその真下の底
面よシの高さ5mmの部分b1ならびに中心部aよシそ
れぞれ上方および下方の食塩水中の部位ckよびdに熱
電対(図示されない)を挿入して各部の通電時間に伴な
う温度変化を測定した。
Telophase 5. In the case of OA, raw radish, initial stage 1. OA, telophase 4.
It was 5A. Thermocouples (not shown) are inserted into the center part ab of the radish 15, a part b1 at a height of 5 mm from the bottom surface directly below it, and parts ck and d above and below the center part a in the saline solution, respectively. The temperature change with the energization time was measured.

家庭用電子レンジ(出力500W)での15秒のマイク
ロ波照射によシ、45℃に加温し、その後室温まで放冷
された大根(以下加温大根とよぶ)と、生大根について
の測定結果をそれぞれ第5図(a)および(b)に示す
。な釦加温大根、生大根および食塩水の導電率(25℃
にかける)はそれぞれ、4、4 mS/c1n、 0.
08 mS/crnおよび1.8mS/cmであった。
Measurements on daikon radish heated to 45°C by microwave irradiation for 15 seconds in a household microwave oven (output 500 W) and then left to cool to room temperature (hereinafter referred to as heated radish) and raw radish The results are shown in FIGS. 5(a) and (b), respectively. Conductivity of button-warmed radish, fresh radish, and saline solution (25°C
) are 4, 4 mS/c1n, and 0.
08 mS/crn and 1.8 mS/cm.

加温大根の場合、均一に急速に食塩水16よシも速く1
00℃以上に加熱されることが分る。
In the case of warmed daikon radish, it is uniformly and rapidly added to the saline solution at
It can be seen that it is heated to 00°C or higher.

−害虫大根の場合は部分的に温度上昇が不均一で、温度
上昇の速い中心部aの近傍には内部れがみられた。
- In the case of the pest radish, the temperature rise was uneven in some parts, and internal cracks were observed near the center a where the temperature rise was rapid.

実験例3 (17) 家庭用電子レンジ(出力s o ow)で10秒のマイ
クロ波照射によシ52℃に加温し、その後室温まで放冷
された、長さ3.4 cm 、直径2.8 cmの輪切
シした加温人参20(導電率3.6 rnS /lx 
)を、0、1重量係(導電率1.8 ms/m ) k
よび0.8重量多の食塩水(導電率12.0 mS/c
rn)と共に第4図の槽17に収納し、実験例2と同じ
条件で通電加熱を行ない、各部a、b、cの温度を測定
した。
Experimental Example 3 (17) A sample with a length of 3.4 cm and a diameter of 2 was heated to 52°C by microwave irradiation for 10 seconds in a household microwave oven (output so ow), and then allowed to cool to room temperature. 20 warmed carrots cut into .8 cm rings (conductivity 3.6 rnS/lx)
), 0,1 weight factor (conductivity 1.8 ms/m) k
and 0.8% saline solution (conductivity 12.0 mS/c
rn) in the tank 17 shown in FIG. 4, and heated with electricity under the same conditions as in Experimental Example 2, and the temperature of each part a, b, and c was measured.

食塩水濃度が0.1重量俤釦よび0.8重量俤の場合に
ついての測定結果をそれぞれ第6図(a)および第6図
(b)に示した。導電率が加温人参20より大きい0.
8重量多食塩水を加熱媒体とした場合(第6図(b) 
) 、食塩水の方が人参よジも速く昇温しで人参の加熱
速度が、0.1重量係食塩水の場合よシ遥かに遅く、か
つ部位により僅かながら加熱速度が異なることが分る。
The measurement results when the saline concentration was 0.1 wt. and 0.8 wt. were shown in FIG. 6(a) and FIG. 6(b), respectively. 0. The electrical conductivity is greater than Warming Ginseng 20.
When using 8 weight polysaline solution as the heating medium (Fig. 6(b)
), it can be seen that the temperature of the saline solution rises faster than that of the carrots, and the heating rate of the carrots is much slower than that of the 0.1wt saline solution, and that the heating rate differs slightly depending on the part. .

実験例4 17 mm X 35 tran X 15 mmの直
方体形の馬鈴薯21をカレー・ルー22(導電率14.
5mS/cfn)と共に第4図の槽17に収納し、40
ボルト、50(18) Hzの交流電流を供給して馬鈴薯およびカレー・ルーを
通電加熱した。馬鈴薯21の中心部abよびその下方の
カレー・ルー22の部分dに熱電対を挿入して、各部の
通電時間に伴なう温度変化を測定した。通電量は後記の
加温馬鈴薯の場合、初期4.5A、終期6.7A、生馬
鈴薯の場合、初期35A、終期6.7Aであった。
Experimental Example 4 A rectangular parallelepiped potato 21 measuring 17 mm x 35 tran x 15 mm was heated with curry roux 22 (conductivity 14.
5mS/cfn) in the tank 17 in Fig. 4,
An alternating current of 50 (18) volts and 50 (18) Hz was supplied to heat the potatoes and curry roux. Thermocouples were inserted into the center part ab of the potato 21 and the part d of the curry roux 22 below it, and the temperature change in each part was measured with the time of energization. The amount of current applied was 4.5 A at the initial stage and 6.7 A at the final stage in the case of heated potatoes described below, and 35 A at the initial stage and 6.7 A at the final stage in the case of raw potatoes.

家庭用電子レンジ(出力500W)で10秒のマイクロ
波照射によう42℃に加温し、その後室温1で放冷され
た加温馬鈴薯(導電率5.0 mS/Crn)と、生馬
鈴薯(導電率0.17 mS/crn) Kついての測
定結果をそれぞれ第7図(a) hよび(b)に示す。
Warmed potatoes (conductivity 5.0 mS/Crn) that were heated to 42°C by microwave irradiation for 10 seconds in a household microwave oven (output 500 W) and then left to cool at room temperature 1, and raw potatoes ( The measurement results for conductivity (0.17 mS/crn) K are shown in FIGS. 7(a), 7(b), respectively.

加温馬鈴薯の場合、馬鈴薯とルーがほぼ同じ速度で急速
に加熱されるのが分る。
In the case of warmed potatoes, it can be seen that the potatoes and roux are rapidly heated at approximately the same rate.

実験例5 第4図に示す通電槽17に、牛肉24をO11重量重量
幅塩水16と共に収納し、実験例2の場合と同様の条件
で通電加熱した。
Experimental Example 5 Beef 24 was placed in an energizing tank 17 shown in FIG. 4 together with O11 salt water 16, and heated under the same conditions as in Experimental Example 2.

牛肉2゜4の中心部ahよびその真下の底面よシの高さ
 rranの部分b1ならびに食塩水16中の電極板1
8と槽壁間の上方部e、bよび下方部fに熱電対を挿入
して各部の通電時間に伴なう温度変化を測定した。
The center part ah of beef 2°4, the height of the bottom surface directly below it, the part b1 of rran, and the electrode plate 1 in the saline solution 16
Thermocouples were inserted into the upper parts e, b and lower part f between the tank wall 8 and the tank wall, and the temperature change in each part was measured with the energization time.

中心部が60CKなるオで水煮した加熱牛肉(23m+
n X 28 mm X 30 mm ;導電率3.1
 ms/m )および同じ寸法の生牛肉(導電率4.5
 ms/z )についての測定結果をそれぞれ第8図(
a)および(b)に示した。何れの場合は牛肉は均一に
短時間に加熱されることが分る。
Heated beef boiled in water with a center part of 60CK (23m+
n x 28 mm x 30 mm; electrical conductivity 3.1
ms/m ) and raw beef of the same dimensions (conductivity 4.5
The measurement results for ms/z) are shown in Figure 8 (
Shown in a) and (b). It can be seen that in either case, the beef is heated uniformly and in a short time.

実験例6 何れも29mmX 20tranX 15+++mの角
切シ牛肉24と加温人参20を第9図に示すように接触
させ、第4図に示す通電槽17に0.1重量幅の食塩水
工6と共に収納し、実験例2の場合と同様の条り 部b1ならび食塩水16中の上方部eおよび下方部f(
第4図参照)に熱電対を挿入して、各部の通電時間に伴
なう温度変化を測定した。生牛肉、実験例5と同様にし
て加熱された加熱牛肉あ・よび実験例1と同様にして加
温された加温人参の導電率はそれぞれ、4.5 mS/
Cm、 3.1 ms/crnhよび1.67m5/副
であった。
Experimental Example 6 A cubed beef 24 of 29 mm x 20 tran However, the same striped portion b1 as in Experimental Example 2, the upper portion e and the lower portion f (
A thermocouple was inserted into the tube (see FIG. 4) to measure the temperature change associated with the energization time of each part. The electrical conductivity of raw beef, heated beef that was heated in the same manner as in Experimental Example 5, and heated carrot that was heated in the same manner as in Experimental Example 1 was 4.5 mS/.
Cm, 3.1 ms/crnh and 1.67 m5/sub.

加熱牛肉と加温人参の組合せ、訃よび生牛肉と加温人参
の組合せについての測定結果をそれぞれ、第10図(a
)釦よび(b)に示す。
The measurement results for the combination of heated beef and heated carrots, and the combination of carcass and raw beef and heated carrots are shown in Figure 10 (a).
) button and (b).

加温人参との導電率の差がより小さい加熱牛肉との組合
せの場合の方が、全体としてよシ均一に、よう高い速度
で加熱されることが分る。
It can be seen that the combination with heated beef, which has a smaller difference in electrical conductivity from heated carrots, results in more uniform heating as a whole and at a much higher rate.

(発明の効果) 第1発間転よび第4発明によれば、固状食品が本来の味
覚を実質的に変えることなく、比較的高い速度で均一に
加熱されるという効果を奏する。
(Effects of the Invention) According to the first interpolation and the fourth invention, there is an effect that the solid food is uniformly heated at a relatively high rate without substantially changing the original taste.

従って短時間での加熱にも拘らず、部分的な加熱不足に
もとづく硬い部分や、あるいは部分的な加熱過度にもと
づく肉崩れ部分等が生じ難いというメリットヲ有する。
Therefore, despite being heated in a short time, it has the advantage that hard parts due to insufficient heating in some areas or crumbling parts due to excessive heating in certain areas are unlikely to occur.

オた約40℃以上の加温履歴を与えるという前処理は比
較的短時間に行なわれるので生産性が高いというメリッ
トを有する。
In addition, the pretreatment of providing a heating history of about 40° C. or more is carried out in a relatively short time, so it has the advantage of high productivity.

第2発間転よび第5発明は上記効果お・よびメリ(21
) ットに加えて、任意の形状あるいは小サイズの固状食品
の抵抗加熱を効率よく行なえるという利点を有する。
The second stroke interval and the fifth invention have the above effects and merits (21
) It has the advantage of being able to efficiently perform resistance heating of solid foods of any shape or small size.

第3発明によび第6発明の場合も、固液混合食品の形に
釦ける固状食品について上記効果訃よびメリットを奏す
ることができる。
Also in the case of the third invention and the sixth invention, the above-mentioned effects and merits can be achieved with respect to the solid food that can be pressed into the form of a solid-liquid mixed food.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2発明の実施に用いられる連続式加熱装置の
例の説明用図面、第2図は第1発明の実施に用いられる
バッチ式加熱装置の例の説明用1部切断正面図、第3図
(a) 9 (b)は第2図の装置を用いて植物性固状
食品を抵抗加熱した場合の通電時間と温度との関係を示
す線図であって、第3図(a)は本発明の場合の線図、
第3図(b)は比較例である場合の線図、第4図は第2
発間転よび第3発明の実施に用いられるパッチ式加熱装
置の例の説明用台の通電時間と温度との関係を示す線図
であ・って、第5図(a)および第6図(a)は本発明
の場合の線図、(22) 第5図(b)および第6図(b)は比較例の場合の線図
、第7図(a) p (b) Vi第4図の装置を用い
て固液混合食品を抵抗加熱した場合の通電時間と温度と
の関係を示す線図であって、第7図(a)は本発明の場
合の線図、第7図(b)は比較例の場合の線図、第8図
(a)。 (b)は第4図の装置を用いて動物性固状食品を抵抗加
熱した場合の通電時間と温度との関係を示す線図、第9
図は動物性固状食品と植物性固状食品を抵抗加熱するた
め接触させ状態を示す正面図、第1O図(a) 9 (
b)は第9図の状態の固状食品を抵抗加熱した場合の通
電時間と温度との関係を示す線図である。 6・・・電極板、7・・・固状食品、8・・・導電性液
体、11・・・人参(植物性固状食品)、12・・・電
極板、24・・・牛肉(動物性固状食品)。 (23) (a) 第 図 (b) 通電時間 (秒) 0 20 +80 通電時間 (秒) (a) 第 図 60     120 時間(秒) 0 +20    180 時間(秒) 40 四 聰に 0 O 喫 邸2 、Ω !!l 邸ε 喫 駆ε i: ω 鴫− 四 秘2 囮 秘& !l!l 躯?
FIG. 1 is an explanatory drawing of an example of a continuous heating device used for carrying out the second invention, FIG. 2 is a partially cutaway front view for explaining an example of a batch heating apparatus used for carrying out the first invention, 3(a) and 9(b) are diagrams showing the relationship between current application time and temperature when solid vegetable food is resistance heated using the apparatus shown in FIG. ) is a diagram for the present invention,
Figure 3(b) is a diagram for a comparative example, and Figure 4 is a diagram for a second example.
FIG. 5(a) and FIG. 6 are diagrams showing the relationship between energization time and temperature of an explanatory table of an example of a patch-type heating device used for implementing the third invention. (a) is a diagram for the present invention, (22) Figures 5 (b) and 6 (b) are diagrams for the comparative example, Figure 7 (a) p (b) Vi No. 4 FIG. 7(a) is a diagram showing the relationship between current application time and temperature when a solid-liquid mixed food is resistance heated using the apparatus shown in the figure; FIG. 7(a) is a diagram for the case of the present invention; b) is a diagram for a comparative example, FIG. 8(a). (b) is a diagram showing the relationship between current application time and temperature when solid animal food is resistance heated using the apparatus shown in Figure 4;
The figure is a front view showing the state in which animal solid food and vegetable solid food are brought into contact for resistance heating, Figure 1O (a) 9 (
b) is a diagram showing the relationship between current application time and temperature when the solid food in the state shown in FIG. 9 is resistance heated. 6... Electrode plate, 7... Solid food, 8... Conductive liquid, 11... Carrot (vegetable solid food), 12... Electrode plate, 24... Beef (animal) solid foods). (23) (a) Figure (b) Current application time (seconds) 0 20 +80 Current application time (seconds) (a) Figure 60 120 Time (seconds) 0 +20 180 Time (seconds) 40 2, Ω! ! l Residence ε kiss drive ε i: ω Kazu - Four Secrets 2 Decoy Secret & ! l! l Body?

Claims (7)

【特許請求の範囲】[Claims] (1)約40℃以上の加温履歴を有する植物性固状食品
に直接通電して、該植物性固状食品を抵抗加熱すること
を特徴とする植物性固状食品の加熱方法。
(1) A method for heating a solid vegetable food, which comprises resistively heating the solid vegetable food by directly applying electricity to the solid vegetable food, which has a heating history of about 40° C. or higher.
(2)約40℃以上の加温履歴を有する植物性固状食品
を、導電率が該植物性固状食品のそれ以下である導電性
液体を媒体として抵抗加熱することを特徴とする植物性
固状食品の加熱方法。
(2) A plant-based product characterized by resistance heating a plant-based solid food with a heating history of about 40°C or higher using a conductive liquid having a conductivity lower than that of the plant-based solid food as a medium. How to heat solid foods.
(3)液体食品、および約40℃以上の加温履歴を有す
る植物性固状食品よりなる固液混合食品を、該液状食品
を媒体として抵抗加熱することを特徴とする固液混合食
品の加熱方法。
(3) Heating of a solid-liquid mixed food characterized by resistance heating a liquid food and a solid-liquid mixed food consisting of a vegetable solid food with a heating history of about 40° C. or higher using the liquid food as a medium. Method.
(4)動物性固状食品、および約40℃以上の加温履歴
を有する植物性固状食品を接触させた状態で、両固状食
品に直接通電して両固状食品を抵抗加熱することを特徴
とする固状食品の加熱方法。
(4) Resistance heating of both solid foods by directly applying electricity to both animal solid foods and vegetable solid foods that have a heating history of approximately 40°C or higher while they are in contact with each other. A method for heating solid foods characterized by:
(5)動物性固状食品、および約40℃以上の加温履歴
を有する植物性固状食品を、導電率が該動物性固状食品
および該植物性固状食品のそれら以下である導電性液体
を媒体として抵抗加熱することを特徴とする固状食品の
加熱方法。
(5) Animal solid foods and vegetable solid foods that have a heating history of approximately 40°C or higher must be treated with electrical conductivity that is less than that of the animal solid foods and the vegetable solid foods. A method for heating solid foods, characterized by resistance heating using a liquid as a medium.
(6)液状食品、動物性固状食品、および約40℃以上
の加温履歴を有する植物性固状食品よりなる固液混合食
品を、該液状食品を媒体として抵抗加熱することを特徴
とする固液混合食品の加熱方法。
(6) A solid-liquid mixed food consisting of a liquid food, an animal solid food, and a vegetable solid food with a heating history of about 40°C or higher is resistance heated using the liquid food as a medium. Method for heating solid-liquid mixed foods.
(7)動物性固状食品が、生もしくは加熱履歴を有する
ものであることを特徴とする請求項(4)、(5)また
は(6)記載の食品の加熱方法。
(7) The method for heating food according to claim (4), (5) or (6), wherein the solid animal food is raw or has a history of heating.
JP21453989A 1989-08-21 1989-08-21 How to heat food Expired - Fee Related JPH0645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21453989A JPH0645B2 (en) 1989-08-21 1989-08-21 How to heat food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21453989A JPH0645B2 (en) 1989-08-21 1989-08-21 How to heat food

Publications (2)

Publication Number Publication Date
JPH0380053A true JPH0380053A (en) 1991-04-04
JPH0645B2 JPH0645B2 (en) 1994-01-05

Family

ID=16657415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21453989A Expired - Fee Related JPH0645B2 (en) 1989-08-21 1989-08-21 How to heat food

Country Status (1)

Country Link
JP (1) JPH0645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036562A (en) * 2018-09-05 2020-03-12 株式会社フロンティアエンジニアリング Method of producing pickles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036562A (en) * 2018-09-05 2020-03-12 株式会社フロンティアエンジニアリング Method of producing pickles

Also Published As

Publication number Publication date
JPH0645B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
De Alwis et al. The use of direct resistance heating in the food industry
Goullieux et al. Ohmic heating
Ahmed et al. Microwave pasteurization and sterilization of foods
Martins et al. Microwave processing: current background and effects on the physicochemical and microbiological aspects of dairy products
JP6840665B2 (en) Microwave retort system, method of heating food using microwave retort system, and food prepared for microwave retort
Sarang et al. Electrical conductivity of fruits and meats during ohmic heating
Awuah et al. Inactivation of Escherichia coli K-12 and Listeria innocua in milk using radio frequency (RF) heating
KR890002168B1 (en) Process for and apparatus for treatment food with electricity
US6784405B2 (en) Variable frequency automated capacitive radio frequency (RF) dielectric heating system
EP3494798B1 (en) Method for sterilizing processed foods comprising microwave heating pretreatment
Lee et al. Conventional and emerging combination technologies for food processing
Lyng et al. Ohmic heating of foods
Mathavi et al. New trends in food processing
Skudder 2.4 New system for the sterilization of particulate food products by ohmic heating
Jan et al. Ohmic heating technology for food processing: a review of recent developments
Priyadarshini et al. Influence of ohmic heating on fruits and vegetables: a review
Morya et al. Ohmic Heating as an Advantageous Technology for the Food Industry: Prospects and Applications
Mishra et al. Novel thermal methods in dairy processing
JPH0380053A (en) Method for heating food
JP3604109B2 (en) Manufacturing method of sterilized solid food ingredients
CA3189111A1 (en) Special electrode arrangement for the targeted ohmic heating of different products or structures that are electrically conductive or contain electrically conductive constituents
Ohlsson Sterilization of food by microwaves
da Silva Rocha et al. Ohmic heating
Das et al. Ohmic Heating in Food Processing: A Futuristic Technology
JP2002191334A (en) Food sterilization method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees