JPH0379993A - Heat exchanger and manufacture thereof - Google Patents

Heat exchanger and manufacture thereof

Info

Publication number
JPH0379993A
JPH0379993A JP1214026A JP21402689A JPH0379993A JP H0379993 A JPH0379993 A JP H0379993A JP 1214026 A JP1214026 A JP 1214026A JP 21402689 A JP21402689 A JP 21402689A JP H0379993 A JPH0379993 A JP H0379993A
Authority
JP
Japan
Prior art keywords
water
hydrophilic
fin
heat exchanger
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1214026A
Other languages
Japanese (ja)
Other versions
JP2748027B2 (en
Inventor
Tsuyoshi Katsumata
堅 勝又
Keiichi Nakamura
惠一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP1214026A priority Critical patent/JP2748027B2/en
Publication of JPH0379993A publication Critical patent/JPH0379993A/en
Application granted granted Critical
Publication of JP2748027B2 publication Critical patent/JP2748027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To prevent breeding of microorganisms such as molds, bacteria, etc., by incorporating a fin provided with hydrophilic water soluble resin coating film containing fungicide on a hydrophilic film. CONSTITUTION:A heat exchanger has a build-in fin provided with a hydrophilic water soluble resin coating film containing fungicide on a hydrophilic film. If the fungicide is added into the water soluble resin, when water stuck by the operation of the exchanger is dissolved in the resin to allow press oil to flow down, the fungicide in the resin also flows down to drain water to prevent molds from generating in the drain water. Further, no press oil exists on the surface of the fin, and generation of microorganism on the surface of the fin is reduced due to no nutrient source. Moreover, special step for removing the resin is not required in this manner, and manufacturing steps can be simplified that much.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば自動車や家電用の空調機といった熱交
換器及びその製造方法に関するものである。
The present invention relates to a heat exchanger such as an air conditioner for an automobile or home appliance, and a method for manufacturing the same.

【発明の背景】[Background of the invention]

アルミニウム又はアルミニウム合金(以下、単にアルミ
ニウム〉製の熱交換器用フィンは、近年、熱交換効率の
向上、熱交換器の小型化等からフィン表面の親水性化が
要求され、このようなことからフィン表面に無機質、有
機質又はこれらの複合による親水性を有し、かつ、耐蝕
性が優れた皮膜を設けることが行なわれている。 そして、このようなフィンは、例えばプレス成形時に潤
滑性を与える為に親水性皮膜の設けられたアルミニウム
材に潤滑剤(プレス油)を塗布し、そしてドロープレス
又はドローレスプレス加工により所定の形状に成形加工
することで製造されている。成形加工されたフィンは冷
媒用のチューブに組み合わされ、熱交換器の形に組み立
てられ、その後プレス成形時に塗布したプレス油を除去
する為トリクロルエタン等の有機溶剤で脱脂洗浄してい
る。 このような工程で組み立てられた熱交換器は、フィンの
表面に親水性皮膜が設けられているから、本来なら製造
組立後のフィンも親水性(水濡性が良好)を示す筈のも
のであるが、現実には親水性が劣化し、その性能が充分
に発揮されず、水滴が滞留し、充分な熱交換性能が発揮
されない。 この親水性劣化の大きな原因は親水性皮膜表面のポーラ
スな形状や、脱脂洛中の油濃度増加等の脱脂条件に起因
した親水性皮膜表面へのプレス油の残留であると指摘さ
れている。 ところで、アルミニウム材に親水性の皮膜を設けた後ワ
ックスを含む水溶性ポリマーの塗膜を、さらには潤滑剤
を設け、これらの複合層が設けられたアルミニウム材に
対してプレス加工を行い、プレス加工後パークロルエチ
レン等で洗浄して潤滑剤やワックスを含む水溶性ポリマ
ーの塗膜を除去し、このように洗浄してワックスを含む
水溶性ポリマーの塗膜や潤滑剤を除去したフィンをチュ
ーブに対して接続するようにした技術が提案(特公平1
−21785号公報)されている。 しかしながら、ワックスを含む水溶性ポリマーの塗膜や
潤滑剤がフィン加工後に除去され、表面には親水性成M
(潤滑剤等でこの親水性皮膜が悪影響を受けていないこ
とから、この親水性皮膜は親水性に優れている)のみが
形成されたフィンがチューブに対して組み付けられた熱
交換器にあっても問題が残されていることが判ってきた
。 すなわち、潤滑剤やワックスを除去したといっても多少
は残されており、潤滑剤やワックスがフィンに残された
熱交換器が使用されていると、フィンは冷房時に結露水
で適度な湿気と温度雰囲気にあり、潤滑剤やワックス、
さらには環境中の埃等が付着して栄養源となり、黴やバ
クテリア類等の微生物が繁殖しやすい環境にあることか
ら、熱交換器の装置が起動すると、これまでの休止中に
成長した黴類等の微生物が送風により飛散し、人体に悪
影響を与える恐れがある。 又、黴類の発生に起因して臭気が発生し、この臭気も問
題になる。 さらには、流下した結露水のドレン水中への微生物の繁
殖による配管詰まり等の問題も起きる恐れがある。
In recent years, heat exchanger fins made of aluminum or aluminum alloy (hereinafter simply referred to as aluminum) have been required to have hydrophilic fin surfaces to improve heat exchange efficiency and downsize heat exchangers. The surface of the fin is coated with a hydrophilic film made of inorganic, organic, or a combination of these materials and has excellent corrosion resistance.Such fins are used, for example, to provide lubricity during press molding. It is manufactured by applying a lubricant (press oil) to an aluminum material provided with a hydrophilic film, and then forming it into a predetermined shape by draw press or drawless press processing.The formed fins are heated using a refrigerant. The heat exchanger is assembled into a heat exchanger tube, and then degreased and cleaned with an organic solvent such as trichloroethane to remove the press oil applied during press molding. Since the exchanger has a hydrophilic film on the surface of the fins, the fins should normally exhibit hydrophilic properties (good water wettability) after manufacturing and assembly, but in reality, they are not hydrophilic. The hydrophilic property deteriorates and its performance is not fully demonstrated, water droplets remain, and sufficient heat exchange performance is not achieved.The main causes of this hydrophilic deterioration are the porous shape of the surface of the hydrophilic film and the increased oil concentration in the degreasing layer. It has been pointed out that this is due to residual press oil on the surface of the hydrophilic film due to degreasing conditions such as A lubricant is applied, and the aluminum material with these composite layers is pressed, and after the pressing, the aluminum material is washed with perchlorethylene, etc. to remove the water-soluble polymer coating containing the lubricant and wax. , a technology has been proposed in which the fins, which have been cleaned to remove the wax-containing water-soluble polymer coating and lubricant, are connected to the tube (Japanese Patent Publication No. 1).
-21785). However, the wax-containing water-soluble polymer coating and lubricant are removed after fin processing, and the surface has a hydrophilic coating.
(Since this hydrophilic film is not adversely affected by lubricants, etc., this hydrophilic film has excellent hydrophilic properties.)In a heat exchanger, fins with only fins formed on them are assembled to tubes. It has become clear that problems remain. In other words, even though lubricant and wax have been removed, some remains. If a heat exchanger with lubricant or wax left on the fins is used, the fins will become moderately moist due to condensation during cooling. and temperature atmosphere, lubricants and waxes,
Furthermore, dust from the environment becomes a source of nutrients, creating an environment in which microorganisms such as mold and bacteria tend to grow. Microorganisms such as the following may be dispersed by the blast of air and have an adverse effect on the human body. In addition, odor is generated due to the growth of mold, and this odor also becomes a problem. Furthermore, problems such as piping clogging may occur due to the proliferation of microorganisms in the drain water of flowing condensation water.

【発明の開示】[Disclosure of the invention]

本発明者は、プレス加工に用いた塗布プレス油の完全な
る除去は現実問題として極めて困難ではないかと考え、
このプレス油が残留していても残留プレス油の問題が解
決できる方法がないものがと逆転の技術思想について思
いを巡らせた。 すなわち、フィンの加工時に用いたプレス油の残留によ
る問題を解決する手段として、脱脂条件が悪くて表面に
プレス油が残留した場合でも、熱交換器の使用中に自然
に解決される手段がないがと考えたのである。 ところで、フィンの加工時に用いたプレス油は残留して
いても、水溶性皮膜が設けられておれば、すなわちこの
水溶性皮膜に付いているのであれば、使用時に発生する
結露水によって残留プレス油は水溶性皮膜と共に流下洗
浄、除去されるのではないかと考えた。 すなわち、親水性皮膜が形成されたプレコートフィン材
表面に、プレス油や有機脱脂溶剤(トリエタン等)に不
溶又は難溶で、かつ、使用中に付着する水に可溶な親水
性樹脂を塗布しておけば、プレス成形特のプレス油は上
記親水性皮膜に吸着しないので、この親水性皮膜の特性
が低下しないのみならず、水溶性の親水性樹脂をあらか
じめ除去しておかず、使用するまでそのまま残しておけ
ば、水溶性の親水性樹脂が熱交換器動作中における結露
水により溶解し、フィン表面に残留したプレス油が流下
し、プレス油が除去されるのではないかと考えた。 そして、ここで、親水性の水溶樹脂を単に結露水で溶解
させるだけでなく、溶解時に防黴剤(本明細書では黴や
バクテリア類等の微生物の発生、繁殖を抑制あるいは死
滅させる薬剤)を同時に流出させれば、黴やバクテリア
類等の微生物の繁殖を防止でき、又、黴類の発生に起因
する臭気の発生も防止でき、さらには流下した結露水の
ドレン水中への微生物の繁殖による配管詰まり等の問題
も防止できるようになるのではないかと考えた。 すなわち、水溶性樹脂中に防黴剤を添加しておけば、熱
交換器の作動で付着した水が水溶性樹脂を溶解させてプ
レス油を流下させると、これと共に水溶性樹脂中の防黴
剤もドレン水へ流下し、ドレン水に微生物が発生するこ
とを防止でき、さらにフィン表面にプレス油がなくなり
、栄養源がない為フィン表面への微生物の発生も少なく
なると思慮したのである。 しかも、このようにすれば水溶性の親水性樹脂を除去す
る為の特別な工程も要らなくなり、それだけ製造工程も
簡略なものになる特長があると考えられた。 本発明は上記の逆転の技術思想を基にして遺戒されたも
のであり、親水性皮膜の上に防黴剤を含有する親水性で
水溶性の樹脂塗膜が設けられたフィンを組み込んでなる
ことを特徴とする熱交換器を提案するものである。 又、親水性皮膜を形式した後、防黴剤を含有する親水性
で水溶性の樹脂塗膜を設け、その後潤滑剤を用いてプレ
ス加工してフィンを構成し、このようにして得られたフ
ィン表面に防黴剤を含有する親水性で水溶性の樹脂塗膜
が残されている状態のフィンをチューブに組み合わせる
ことを特徴とする熱交換器の製造方法を提案するもので
あるや尚、ここで親水性皮膜としてはベーマイト系、コ
ロイダルシリカ系、水ガラス系皮膜、水に不溶性の親水
性有機樹脂系の皮膜、あるいはこれらの複合系の皮膜と
いった各種のものがあり、そして水溶性樹脂としてはポ
リビニルアルコール、水溶性セルロース樹脂、ポリビニ
ルエーテル、ポリアクリル酸、ポリグリセリンエステル
、ポリアクリルアマイド、ポリエチレンオキサイド、ア
ルギン酸ナトリウム等があり、これらの水溶性樹脂の中
でもたとえば水溶性メラミン樹脂や水溶性尿素樹脂ある
いはエポキシ樹脂エマルジョン等で変性処理が行なわれ
て水没気密試験程度では溶出してしまわず、徐々に溶け
る程度のものが好ましい。 そして、アルミニウム材を例えばベーマイト処理して親
水性皮膜を設けた後、水で0.1〜20%に希釈した防
黴剤を含有する水溶性樹脂の塗料をスプレー又は浸漬後
ロール絞り、リバース、ナチュラルロールコート、グラ
ビヤロールコート等の手段で塗布し、この後通常のプレ
ス加工手段でフィンに成形加工し、チューブに組み込み
脱脂後、熱交換器として使用されるまで水溶樹脂の塗膜
をそのまま残しておくことで本発明のものとなる。 尚、脱脂が行なわれなくても良い。 防黴剤を含有する水溶性樹脂塗膜の厚さは、例えば乾燥
膜厚で約0.01〜3μmあれば良い、尚、0.01μ
−以下では効果が小さくなる傾向があり、3μm以上で
は効果が大きいものの、経済的に得策でない。 防黴剤は対象とするカビの種類により選択すればよく、
その添加量も0.01〜10%の範囲の適宜なIを選べ
ば良い。 防黴剤としては、対象となる黴類の種類により選定すれ
ば良く、イミダゾール化合物、ピリジン系、チアゾール
系、ハロゲン系、フェノール系、グアニジン系、抗菌性
ゼオライト等が一種あるいは組み合わせて適宜用いられ
る。 乾燥は自然乾燥、又は約80〜250″Cで1〜30秒
間乾燥処理すれば良い。
The present inventor believes that complete removal of the applied press oil used in press processing is extremely difficult as a practical matter,
Even if this press oil remains, there is no way to solve the problem of residual press oil, and I thought about the reverse technical idea. In other words, there is no way to solve the problem caused by residual press oil used when processing the fins, but even if press oil remains on the surface due to poor degreasing conditions, there is no way to naturally solve the problem while the heat exchanger is in use. That's what I thought. By the way, even if the press oil used when processing the fins remains, if a water-soluble film is provided, that is, if it is attached to this water-soluble film, the remaining press oil will be removed by the condensation water generated during use. It was thought that the water-soluble film would be washed away and removed together with the water-soluble film. That is, on the surface of the pre-coated fin material on which a hydrophilic film has been formed, a hydrophilic resin that is insoluble or poorly soluble in press oil and organic degreasing solvents (such as triethane) and soluble in water that adheres during use is applied. If this is done, the press oil used in press molding will not be adsorbed to the hydrophilic film, so not only will the properties of this hydrophilic film not deteriorate, but the water-soluble hydrophilic resin will not be removed in advance and will remain as it is until use. We thought that if left in place, the water-soluble hydrophilic resin would be dissolved by condensed water during operation of the heat exchanger, and the press oil remaining on the fin surface would flow down and be removed. Here, in addition to simply dissolving the hydrophilic water-soluble resin with condensed water, a fungicide (in this specification, an agent that suppresses or kills the generation and reproduction of microorganisms such as mold and bacteria) is added during dissolution. If they are drained at the same time, it is possible to prevent the growth of microorganisms such as mold and bacteria, and also to prevent the generation of odors caused by mold. We thought that it might be possible to prevent problems such as pipe clogging. In other words, if an anti-mold agent is added to the water-soluble resin, when the water that adheres to the heat exchanger dissolves the water-soluble resin and the press oil flows down, the anti-mold agent in the water-soluble resin will be removed. The agent also flows into the drain water, which prevents the generation of microorganisms in the drain water.Furthermore, there is no press oil on the fin surface, and since there is no nutrient source, the generation of microorganisms on the fin surface is also reduced. Furthermore, it was thought that this would have the advantage of simplifying the manufacturing process, since no special process for removing the water-soluble hydrophilic resin would be required. The present invention was developed based on the above-mentioned reverse technical idea, and incorporates a fin in which a hydrophilic, water-soluble resin coating containing a fungicide is provided on a hydrophilic coating. The present invention proposes a heat exchanger characterized by the following characteristics. In addition, after forming the hydrophilic film, a hydrophilic water-soluble resin coating containing an anti-mold agent was applied, and then press processing was performed using a lubricant to form fins. The present invention proposes a method for manufacturing a heat exchanger characterized by combining fins with a hydrophilic, water-soluble resin coating containing an anti-mold agent on the fin surface, and a tube. Here, there are various types of hydrophilic coatings such as boehmite-based, colloidal silica-based, waterglass-based coatings, water-insoluble hydrophilic organic resin-based coatings, and composite coatings of these. There are polyvinyl alcohol, water-soluble cellulose resin, polyvinyl ether, polyacrylic acid, polyglycerin ester, polyacrylamide, polyethylene oxide, sodium alginate, etc. Among these water-soluble resins, for example, water-soluble melamine resin and water-soluble urea resin. Alternatively, it is preferable that the material be modified with an epoxy resin emulsion or the like so that it does not elute in a submerged airtightness test and only gradually dissolves. After the aluminum material is treated with boehmite to form a hydrophilic film, a water-soluble resin paint containing a fungicide diluted with water to 0.1 to 20% is sprayed or immersed, and then the material is wrung out with a roll, reversed, etc. It is applied using natural roll coating, gravure roll coating, etc., then formed into fins using normal press processing, and after degreasing and being assembled into a tube, the water-soluble resin coating is left intact until it is used as a heat exchanger. By keeping it in place, it becomes the object of the present invention. Note that degreasing may not be performed. The thickness of the water-soluble resin coating film containing the antifungal agent may be, for example, approximately 0.01 to 3 μm in dry film thickness, and 0.01 μm or less.
If the thickness is less than -, the effect tends to be small, and if it is 3 μm or more, the effect is large, but it is not economically advisable. The fungicide should be selected depending on the type of mold to be targeted.
The amount of I to be added may be appropriately selected within the range of 0.01 to 10%. The antifungal agent may be selected depending on the type of mold to be treated, and imidazole compounds, pyridine-based, thiazole-based, halogen-based, phenol-based, guanidine-based, antibacterial zeolites, etc. are used singly or in combination as appropriate. Drying may be carried out naturally or by drying at about 80 to 250''C for 1 to 30 seconds.

【実施例1】 ベーマイト処理及びケイ酸塩処理したアルミニウム板の
表面に、メチルベンズイミダゾール−2−イルカルバメ
ートを変性ポリビニルアルコール(変性PVA)に対し
て0.5%添加した変性PVA5%溶液を塗装し、15
0″Cで30秒間乾燥し、フィン材を得た。 そして、このプレコートフィン材を、プレス油(シェル
フインストックオイルA;昭和シェル石油製)を用いて
、プレス加工し、フィンを得た。 このフィンをチューブに組み込み、プレス油分5(h/
lのトリクロルエタンで室温にて1分間脱脂処理し、熱
交換器を得た。
[Example 1] A 5% solution of modified PVA in which 0.5% of methylbenzimidazol-2-yl carbamate was added to modified polyvinyl alcohol (modified PVA) was applied to the surface of a boehmite-treated and silicate-treated aluminum plate. 15
It was dried at 0''C for 30 seconds to obtain a fin material.Then, this pre-coated fin material was pressed using press oil (Shelf-In-Stock Oil A; manufactured by Showa Shell Sekiyu) to obtain fins. Incorporate this fin into the tube, press oil content 5 (h/
A heat exchanger was obtained by degreasing with 1 of trichloroethane at room temperature for 1 minute.

【実施例2] 実施例1において、アルミニウム板表面のベーマイト皮
膜の代わりにシリカ系フィン用親水性表面処理剤KP9
811(関西ペイント製)を用い、その他は同様にした
。 【実施例3】 実施例1において、アルミニウム板表面のベーマイト皮
膜の代わりに有機樹脂系フィン両親水性表面処理剤NP
アルコート160(日本ペイント製)を用い、その他は
同様にした。
[Example 2] In Example 1, a silica-based fin hydrophilic surface treatment agent KP9 was used instead of the boehmite film on the aluminum plate surface.
811 (manufactured by Kansai Paint), and the other procedures were the same. [Example 3] In Example 1, an organic resin-based fin hydrophilic surface treatment agent NP was used instead of the boehmite film on the surface of the aluminum plate.
Alcoat 160 (manufactured by Nippon Paint) was used, and the other procedures were the same.

【実施例4】 実施例1において、脱脂処理を省略した。[Example 4] In Example 1, the degreasing treatment was omitted.

【比較例1】 ベーマイト処理及びケイ酸塩処理したアルミニウム板の
プレコートフィン材を、プレス油(シェルフインストッ
クオイルA;昭和シェル石油製)を用いて、プレス加工
し、そしてこのようにして得たフィンをチューブに組み
込み、プレス油分50g/lのトリクロルエタンで室温
にて1分間脱脂処理し、熱交換器を得た。
[Comparative Example 1] A pre-coated fin material made of boehmite-treated and silicate-treated aluminum plate was pressed using press oil (Shelf-In-Stock Oil A; manufactured by Showa Shell Sekiyu), and thus obtained. The fins were assembled into a tube and degreased with trichloroethane containing 50 g/l of press oil at room temperature for 1 minute to obtain a heat exchanger.

【比較例2】 ベーマイト処理及びゲイ酸塩処理したアルミニウム板の
表面に、PVA5%溶液を塗装し、工50℃で30秒間
乾燥し、フィン材を得た。 そして、このプレコートフィン材を、プレス油(シェル
フインストックオイルA;昭和シェル石油製)を用いて
プレス加工し、そして水洗処理を長時間かけて行ってP
VA塗膜を除去したフィンを得、このフィンをチューブ
に組み込み、プレス油分50g/IIのトリクロルエタ
ンで室温にて1分間脱脂処理し、熱交換器を得た。
[Comparative Example 2] A 5% PVA solution was applied to the surface of an aluminum plate treated with boehmite and silicate, and dried at 50° C. for 30 seconds to obtain a fin material. Then, this pre-coated fin material is pressed using press oil (Shelf-In-Stock Oil A; manufactured by Showa Shell Sekiyu), and then washed with water for a long time.
A fin from which the VA coating had been removed was obtained, this fin was assembled into a tube, and degreased with trichloroethane containing 50 g of press oil/II at room temperature for 1 minute to obtain a heat exchanger.

【比較例3】 ベーマイト処理及びゲイ酸塩処理したアルミニウム板の
表面に、メチルベンズイミダゾール−2−イルカルバメ
ートをポリビニルアルコール(PVA)に対して0.5
%添加したPVA5%溶液を塗装し、150℃で30秒
間乾燥し、フィン材を得た。 そして、このプレコートフィン材を、プレス油を用いて
プレス加工し、そして水洗処理してPVA塗膜を除去し
たフィンを得、このフィンをチューブに組み込み、プレ
ス油分50g/lのトリクロルエタンで室温にて1分間
脱脂処理し、熱交換器を得た。
[Comparative Example 3] Methylbenzimidazol-2-ylcarbamate was added to polyvinyl alcohol (PVA) at 0.5% on the surface of an aluminum plate treated with boehmite and silicate.
% added PVA solution was applied and dried at 150° C. for 30 seconds to obtain a fin material. Then, this pre-coated fin material was pressed using press oil, washed with water to remove the PVA coating film, and the fin was assembled into a tube, heated to room temperature with trichloroethane containing 50 g/l of press oil. A heat exchanger was obtained by degreasing for 1 minute.

【特性】【Characteristic】

上記のようにして得られた熱交換器の水濡性及び微生物
抵抗試験を調べたので、その結果を表1に示す。 表1 微生物抵抗試験は、シャーレ−中のポテトデキストロー
ス寒天培地上にカビの胞子懸濁液を塗布し、フィンの水
洗水を含浸させたペーパーディスクを置き、ペーパーデ
ィスク周辺のカビ阻止帯の発生を調査した。試験菌種に
は、^sperugi I lusuniger、 P
enicilliulIIcitorinum、 Pa
ecilomyces variotii、 Tric
hoderma viride、 Bacillus 
5ubti11sを用いた1表中、◎印はカビ阻止帯の
形成が有り、×印はカビ阻止帯の形成が無いことを示す
The heat exchanger obtained as described above was tested for water wettability and microbial resistance, and the results are shown in Table 1. Table 1 In the microbial resistance test, a mold spore suspension was applied to a potato dextrose agar medium in a petri dish, a paper disk impregnated with fin washing water was placed, and a mold inhibition zone was observed around the paper disk. investigated. Test bacterial species include ^sperugi I lusuniger, P
enicilliulIIcitorinum, Pa
ecilomyces variotii, Tric
hoderma viride, Bacillus
In Table 1 using 5ubti11s, the mark ◎ indicates that a mold inhibition zone was formed, and the mark x indicates that there was no formation of a mold inhibition zone.

Claims (2)

【特許請求の範囲】[Claims] (1)親水性皮膜の上に防黴剤を含有する親水性で水溶
性の樹脂塗膜が設けられたフィンを組み込んでなること
を特徴とする熱交換器。
(1) A heat exchanger characterized by incorporating fins having a hydrophilic, water-soluble resin coating containing a fungicide on a hydrophilic coating.
(2)親水性皮膜を形成した後、防黴剤を含有する親水
性で水溶性の樹脂塗膜を設け、その後潤滑剤を用いてプ
レス加工してフィンを構成し、このようにして得られた
フィン表面に防黴剤を含有する親水性で水溶性の樹脂塗
膜が残されている状態のフィンをチューブに組み合わせ
ることを特徴とする熱交換器の製造方法。
(2) After forming the hydrophilic film, a hydrophilic and water-soluble resin coating containing an anti-mold agent is provided, and then press processing is performed using a lubricant to form a fin. A method for manufacturing a heat exchanger, which comprises combining fins with a hydrophilic, water-soluble resin coating containing an anti-mold agent on the surface of the fins and a tube.
JP1214026A 1989-08-22 1989-08-22 Heat exchanger and method of manufacturing the same Expired - Lifetime JP2748027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214026A JP2748027B2 (en) 1989-08-22 1989-08-22 Heat exchanger and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214026A JP2748027B2 (en) 1989-08-22 1989-08-22 Heat exchanger and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0379993A true JPH0379993A (en) 1991-04-04
JP2748027B2 JP2748027B2 (en) 1998-05-06

Family

ID=16649046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214026A Expired - Lifetime JP2748027B2 (en) 1989-08-22 1989-08-22 Heat exchanger and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2748027B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618598A (en) * 1984-06-23 1986-01-16 Kobe Steel Ltd Fin material for heat exchanger whose surface hydrophilic nature is excellent
JPS61250495A (en) * 1985-04-30 1986-11-07 Nippon Denso Co Ltd Heat exchanger made of aluminum and manufacture thereof
JPS62234926A (en) * 1986-04-05 1987-10-15 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JPS63170492A (en) * 1987-01-07 1988-07-14 Sumitomo Light Metal Ind Ltd Processing of al fin material for heat exchanger
JPS6410072A (en) * 1987-07-01 1989-01-13 Hitachi Ltd Evaporator for automobile air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618598A (en) * 1984-06-23 1986-01-16 Kobe Steel Ltd Fin material for heat exchanger whose surface hydrophilic nature is excellent
JPS61250495A (en) * 1985-04-30 1986-11-07 Nippon Denso Co Ltd Heat exchanger made of aluminum and manufacture thereof
JPS62234926A (en) * 1986-04-05 1987-10-15 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JPS63170492A (en) * 1987-01-07 1988-07-14 Sumitomo Light Metal Ind Ltd Processing of al fin material for heat exchanger
JPS6410072A (en) * 1987-07-01 1989-01-13 Hitachi Ltd Evaporator for automobile air conditioner

Also Published As

Publication number Publication date
JP2748027B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
TW513472B (en) Aqueous compositions and process for the surface modification of articles by use of the aqueous compositions
JP2010185024A (en) Hydrophilization treatment, aluminum-containing metal material, and aluminum alloy heat exchanger
JP4769159B2 (en) Aluminum coated plate and pre-coated aluminum fin material using the same
JPWO2019111793A1 (en) Heat exchange sheet
CN109161885A (en) A kind of antibacterial functionalized method of modifying of aluminum alloy surface
JPH0379993A (en) Heat exchanger and manufacture thereof
JPH03177796A (en) Heat exchanger and manufacture thereof
JP2905977B2 (en) fin
JP6412938B2 (en) Heat exchanger coating
JPH11293149A (en) Hydrophilic surface treating composition and hydrophilic surface treating membrane
JPH1123175A (en) Heat-exchanging material
JPH04278190A (en) Material of aluminum fin for heat exchanger, which is excellent in moldability and hydrophilic property
JPH01314158A (en) Heat exchanger, manufacture thereof and surface treatment agent thereof
KR100469382B1 (en) Method for fabricating hydrophilic coating of heat exchanger
JPS61101798A (en) Heat exchanger fin material
KR100469383B1 (en) Heat exchanger for air-condition system
JP2003336986A (en) Heat exchanger for air conditioning and manufacturing method therefor
JPH078963B2 (en) Hydrophilic film forming agent for aluminum heat exchanger or its fin material
JPH06331293A (en) Fin and tube type heat exchanger
JPH0416711B2 (en)
JPH01207394A (en) Lubricant
JPS6295182A (en) Production of fin for heat exchanger having excellent wettability
JPS63238285A (en) Production of heat exchange medium
CN102367011A (en) Copper radiator heat pipe with film
JPH0531463B2 (en)