JPH0379957A - Sunlight selective absorbing membrane - Google Patents
Sunlight selective absorbing membraneInfo
- Publication number
- JPH0379957A JPH0379957A JP1214106A JP21410689A JPH0379957A JP H0379957 A JPH0379957 A JP H0379957A JP 1214106 A JP1214106 A JP 1214106A JP 21410689 A JP21410689 A JP 21410689A JP H0379957 A JPH0379957 A JP H0379957A
- Authority
- JP
- Japan
- Prior art keywords
- film
- composite
- composite layer
- sunlight
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title abstract description 8
- 238000010521 absorption reaction Methods 0.000 claims abstract description 40
- 239000002131 composite material Substances 0.000 claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 20
- 150000004767 nitrides Chemical class 0.000 claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052721 tungsten Inorganic materials 0.000 abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 abstract description 2
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910052758 niobium Inorganic materials 0.000 abstract description 2
- 230000000737 periodic effect Effects 0.000 abstract description 2
- 229910052715 tantalum Inorganic materials 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 229910052726 zirconium Inorganic materials 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract 1
- 229910052719 titanium Inorganic materials 0.000 abstract 1
- 239000010408 film Substances 0.000 description 60
- 239000010410 layer Substances 0.000 description 25
- 238000007747 plating Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/225—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、太陽光選択吸収膜に関し、更に詳細には、太
陽熱集熱用の太陽光選択吸収膜に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sunlight selective absorption film, and more particularly to a sunlight selective absorption film for collecting solar heat.
(従来の技術)
従来、太陽光選択吸収膜としては、半導体のバンドギャ
ップエネルギを利用する半導体膜、太陽光波長の中心部
の反射率を多層薄膜の干渉作用により減少させるよう、
屈折率、膜厚を規定した光干渉膜、可視光線の波長オー
ダー程度の粒子による散乱と、多重内部反射により光を
吸収するミー散乱膜、表面形態を制御することによって
、可視光線にはブラックホールとして光を捕らえ、長波
長側では平面として光を反射する多孔膜、および上記の
膜の作用を複合された複合膜が知られている。(Prior art) Conventionally, solar selective absorption films include semiconductor films that utilize the bandgap energy of semiconductors, and films that reduce the reflectance at the center of the wavelength of sunlight through the interference effect of multilayer thin films.
An optical interference film with a defined refractive index and film thickness, a Mie scattering film that absorbs light through scattering by particles on the order of the wavelength of visible light and multiple internal reflections, and a black hole in visible light by controlling the surface morphology Porous films that capture light as a surface and reflect light as a flat surface on the long wavelength side, and composite films that combine the functions of the above films are known.
上記半導体膜としては、PbS膜、S1膜、Ge膜、お
よび遷移金属の酸化物、硫化物であることが望ましい化
合物半導体膜が挙げられる。ブラッククロム鍍金(Cr
、 Ov ) 、ブラックニッケル鍍金(N15−Z
n S) 、酸化銅黒(Cu、 Ov )もこの性質を
利用しているといわれている。Examples of the semiconductor film include a PbS film, an S1 film, a Ge film, and a compound semiconductor film preferably made of an oxide or sulfide of a transition metal. Black chrome plating (Cr
, Ov), black nickel plating (N15-Z
nS) and copper oxide black (Cu, Ov) are also said to utilize this property.
上記光干渉膜としては、ANAコーティング(AI22
03 Moon N203) 、0CLI多層膜、
および2層ブラックニッケル鍍金が挙げられる。As the optical interference film, ANA coating (AI22
03 Moon N203), 0CLI multilayer film,
and two-layer black nickel plating.
上記ミー散乱膜としては、全黒蒸着膜、選択性塗料、金
属粒子と酸化物の共析出鍍金(ブラッククロム鍍金、ア
ルミ上の電界着色被膜等)等が挙げられる。Examples of the Mie scattering film include an all-black vapor deposited film, a selective paint, and a co-deposited plating of metal particles and oxides (black chromium plating, electrolytic coloring film on aluminum, etc.).
上記多孔膜こしては、柾々の鍍金、化戊披膜、化学エツ
チングにより作られた酸化銅黒、pbsの真空蒸着膜、
タングステンの化学蒸着膜、および粗面上に鍍金された
ブラッククロム鍍金等が挙げられる。The above-mentioned porous membrane includes a variety of plating, chemical etching, copper oxide black made by chemical etching, and a vacuum-deposited film of PBS.
Examples include chemical vapor deposition of tungsten and black chrome plating on rough surfaces.
(発明が解決しようεする課題)
本発明は、上記の従来の太陽光選択吸収膜たは異なる新
規な太陽光選択吸収膜を提供することを目的とするもの
である。(Problems to be Solved by the Invention) An object of the present invention is to provide a novel solar selective absorption film different from the conventional solar selective absorption film described above.
(課題を解決するための手段)
本発明による太陽光選択吸収膜は、金属炭化物と金属窒
化物の複合体を主体とする複合体層を備えていることを
特徴たするものである。(Means for Solving the Problems) The sunlight selective absorption film according to the present invention is characterized in that it includes a composite layer mainly composed of a composite of metal carbide and metal nitride.
上記複合体膜の上面には、酸化物膜が形成されているこ
とが望ましい。It is desirable that an oxide film be formed on the upper surface of the composite film.
(発明の作用)
本発明の太陽光選択吸収膜である上記金属炭化物と金属
窒化物の複合体を主体とする複合体層は、それ自体で、
太陽光に対して70%程度の吸収率を有している。また
、この複合体層の表面上に酸化物膜を形成する場合には
、その形成条件に応じて、太陽光に対する吸収率を向上
させることができるとともに、安定性が向上する。(Function of the invention) The composite layer, which is the sunlight selective absorption film of the present invention, which is mainly composed of the composite of metal carbide and metal nitride, itself has the following properties:
It has an absorption rate of about 70% for sunlight. Furthermore, when an oxide film is formed on the surface of this composite layer, the absorption rate of sunlight can be improved and the stability can be improved depending on the conditions for forming the oxide film.
(実施例)
以下、添付図面を参照しつつ、本発明の実施例による太
陽光選択吸収膜について説明する。(Example) Hereinafter, a sunlight selective absorption film according to an example of the present invention will be described with reference to the accompanying drawings.
第1図は、本発明の第1の実施例による太陽光選択吸収
膜を示し、この太陽光選択吸収膜は、基板1上に形成き
れた金属炭化物と金属窒化物の複合体を主体とする複合
体層2からなっている。FIG. 1 shows a sunlight selective absorption film according to a first embodiment of the present invention, and this sunlight selective absorption film is mainly composed of a composite of metal carbide and metal nitride formed on a substrate 1. It consists of a composite layer 2.
第2図は、本発明の第2の実施例による太陽光選択吸収
膜を示し、この太陽光選択吸収膜は、上記第1の実施例
の太陽光選択吸収膜の複合体層2の表面に酸化物層3を
備えている。FIG. 2 shows a sunlight selective absorption film according to a second embodiment of the present invention, and this sunlight selective absorption film is formed on the surface of the composite layer 2 of the sunlight selective absorption film of the first embodiment. An oxide layer 3 is provided.
上記複合体層の材料に用いられる金属元素は、周期率表
中IVa、Va、Vla族のものであり、具体的には、
T1.Zr、Hf’、V、Nb、Ta、Cr、Mo、W
が用いられる。The metal elements used in the material of the composite layer are those in groups IVa, Va, and Vla in the periodic table, and specifically,
T1. Zr, Hf', V, Nb, Ta, Cr, Mo, W
is used.
また、上記複合体における金属と炭素および窒素の比は
、MeCxNyにおいて、x−0,1〜0.5、V−0
,5〜0.9であるここが望ましい。なお、上記複合体
には、遊離金属または炭素、あるいは金属の炭窒化物が
含まれていてもよい。In addition, the ratio of metal to carbon and nitrogen in the above composite is x-0.1 to 0.5, V-0 in MeCxNy.
, 5 to 0.9 is desirable. Note that the above-mentioned composite may contain free metal, carbon, or metal carbonitride.
上記複合体層は、PVD法(蒸着、スパッタ、イオンブ
レーティング)およびCVD法のいずれでも形成するこ
とができる。なお、低温処理が可能であるので、基板の
制約が少ないPVI)法を用いることが望ましい。この
ように、PVD法を用いれば、Mのような低融点金属箔
への複合体層の成膜が可能となる。蒸発源εしては、通
常金属単体を用いるが、初めから金属炭化物および金属
窒化物を用いてもよい。The above-mentioned composite layer can be formed by either a PVD method (vapor deposition, sputtering, ion blating) or a CVD method. Note that since low-temperature processing is possible, it is desirable to use the PVI method, which has fewer restrictions on the substrate. In this way, by using the PVD method, it is possible to form a composite layer on a low melting point metal foil such as M. As the evaporation source ε, an elemental metal is usually used, but a metal carbide or a metal nitride may also be used from the beginning.
上記酸化物層は、上記複合体層の表面を酸化することに
より行われる。この酸化処理は、例えば、基板上の複合
体層の表面を、大気中で所定の温度で熱処理することに
より行われる。上記処理温度は、約300〜450℃に
設定することが望ましい。太陽光選択吸収膜の吸収率を
最大にするには、特に350〜400℃とするのがよい
。The oxide layer is formed by oxidizing the surface of the composite layer. This oxidation treatment is performed, for example, by heat-treating the surface of the composite layer on the substrate at a predetermined temperature in the atmosphere. The treatment temperature is desirably set at approximately 300 to 450°C. In order to maximize the absorption rate of the sunlight selective absorption film, the temperature is preferably 350 to 400°C.
上記複合体層の厚さは、例えば5000Å〜数I1mに
設定され、また、表面の酸化物層の厚さは、200〜5
00Åに設定される。The thickness of the composite layer is set to, for example, 5000 Å to several I1 m, and the thickness of the oxide layer on the surface is set to 200 to 500 Å.
00 Å.
次に、T1の炭化物および窒化物の複合体からなる複合
体層を太陽光選択吸収膜とする具体的な実施例について
説明する。Next, a specific example will be described in which a composite layer made of a composite of T1 carbide and nitride is used as a sunlight selective absorption film.
この実施例においては、TIを蒸発源こし、イオンブレ
ーティング法によりTIの炭化物および窒化物の複合体
(以下、TlCNと称する場合がある)膜を成膜する場
合に付いて説明する。In this embodiment, a case will be described in which a composite film of carbide and nitride of TI (hereinafter sometimes referred to as TlCN) is formed by using an ion blasting method using TI as an evaporation source.
まず、イオンブレーティングのための真空槽を1O−6
Torrのオーダまで排気後、N2ガスと、02H,ガ
スと、A「ガスを導入した。この時、N2分圧によりN
組成比を、C2H5分圧によりC組成比をそれぞれ調節
する。具体的には、^r:2X 10−’Torr、
C2H5ニアX 10−’Torr−,82:2X 1
0−’Torrに設定した。また、蒸発源と基板この間
の間隙は、500mmに設定するとともに、成膜速度が
0.5 Httr/分となるようにTIを蒸発させた。First, the vacuum chamber for ion blating was set to 1O-6.
After exhausting to the order of Torr, N2 gas, 02H gas, and A gas were introduced.At this time, due to N2 partial pressure, N2 gas
The C composition ratio is adjusted by the C2H5 partial pressure. Specifically, ^r: 2X 10-'Torr,
C2H5 NearX 10-'Torr-,82:2X 1
It was set to 0-'Torr. Further, the gap between the evaporation source and the substrate was set to 500 mm, and TI was evaporated at a film formation rate of 0.5 Httr/min.
以上の条件の下で、基板こしてM箔を用い、該基板上に
TI炭化物と窒化物の複合体層T f Co、 4N
0.9を1jIIlコーテイングして、第1図に示した
第1の実施例の構造の太陽光選択吸収膜を作成した。こ
れをサンプル1とする。Under the above conditions, a composite layer of TI carbide and nitride T f Co, 4N was formed on the substrate using M foil.
A sunlight selective absorption film having the structure of the first example shown in FIG. 1 was prepared by coating 0.9 with 1jIIl. This is called sample 1.
次いで、上記のようにして形成された太陽光選択吸収膜
を大気中で300℃および400℃で加熱して、表面を
酸化し、第2図に示した第2の実施例の構造の太陽光選
択吸収膜を作成した。Next, the solar light selective absorption film formed as described above was heated in the atmosphere at 300°C and 400°C to oxidize the surface, and the solar light selective absorption film having the structure of the second embodiment shown in FIG. 2 was heated. A selective absorption membrane was created.
300℃で加熱処理したものをサンプル2とし、400
℃で加熱処理したものをサンプル3とする。Sample 2 was heat-treated at 300°C, and 400°C
Sample 3 was obtained by heating at ℃.
上記サンプル1.2.3を用いて、分光反射率特性を測
定したところ、第3図の線j21、忍2、℃3に示すよ
うなものであった。この第3図に示された分光反射率特
性から分るように、本発明の実施例による太陽光選択吸
収膜は、いずれも可視光領域において反射率が小さく、
赤外光領域において反射率が大きい選択吸収膜として作
用を充分なすものであり、特に第2の実施例によるサン
プル2.3においては、その機能が優れていた。When the spectral reflectance characteristics of Sample 1.2.3 were measured, they were as shown in the line j21, 2 degrees Celsius, 3 degrees Celsius in FIG. 3. As can be seen from the spectral reflectance characteristics shown in FIG. 3, the sunlight selective absorption films according to the examples of the present invention all have low reflectance in the visible light region;
It sufficiently functions as a selective absorption film with a high reflectance in the infrared light region, and in particular, sample 2.3 according to the second example had an excellent function.
次に、上記の複合体層の表面の酸化のための処理温度を
種々変えてサンプルを形成し、できたサンプルの光吸収
率を測定したところ、第4図のグラフに示すように変化
した。このグラフから分かるように、吸収率の点からは
、390℃の近辺で熱処理をするこεが望ましい。Next, samples were formed by varying the treatment temperature for oxidizing the surface of the composite layer, and the light absorption of the resulting samples was measured, and the changes were as shown in the graph of FIG. 4. As can be seen from this graph, from the viewpoint of absorption rate, it is desirable to perform the heat treatment at around 390°C.
更に、TINとにTICの成分比を種々変化させて(T
IN膜にTic(遊離炭素も含む)を徐々に加えて行っ
た)サンプルを形成し、できたサンプルの光吸収率を測
定したところ、第5図のグラフに示すように変化した。Furthermore, by varying the component ratio of TIN and TIC (T
When a sample was formed by gradually adding Tic (including free carbon) to an IN film and the light absorption rate of the resulting sample was measured, it changed as shown in the graph of FIG.
このグラフから分かるように、吸収率の点からは、T
1. NとTIC成分比はTic、N、(0,15x≦
0.5.0゜5≦ysO19)であることが望ましい。As can be seen from this graph, in terms of absorption rate, T
1. The N and TIC component ratio is Tic, N, (0,15x≦
It is desirable that 0.5.0°5≦ysO19).
(発明の効果)
以上説明したように、本発明の太陽光選択吸収膜は、基
本的に単層であり、かつ厚さについて精度をそれほど必
要としないため、製造工程が単純であり、またイオンブ
レーティング法を用いて成膜することができるので、大
面積基板へ密着性よ(高速成膜が可能であり、そしてこ
のため製造コストを低減できる。更に、複合体層の表面
上の酸化物層も大気中での熱処理によって行うことがで
きるので、この点からも製造コストを下げることができ
る。更にまた、本発明の太陽光選択吸収膜、特に酸化物
層を備えた太陽光選択吸収膜の場合には、高温(例えば
、350℃)下の収態温度でも真空に封する必要がなく
、大気中で使用可能であるため、太陽光選択吸収膜を用
いた装置も安価なものとすることできる。(Effects of the Invention) As explained above, the sunlight selective absorption film of the present invention is basically a single layer and does not require much precision regarding the thickness, so the manufacturing process is simple and the ion absorption film is simple. Since the film can be formed using the brating method, it has good adhesion to a large-area substrate (high-speed film formation is possible, and this reduces manufacturing costs. Furthermore, the oxide on the surface of the composite layer Since the layer can also be formed by heat treatment in the atmosphere, manufacturing costs can be reduced from this point of view as well.Furthermore, the sunlight selective absorption film of the present invention, particularly the sunlight selective absorption film provided with an oxide layer. In this case, there is no need to seal it in a vacuum even at a high condensation temperature (for example, 350°C), and it can be used in the atmosphere, making the device using a solar selective absorption film inexpensive. I can do that.
これに対し、上記従来の太陽光選択吸収膜は、半導体膜
にあっては、材料費が高く、複雑な成膜工程を必要とす
るという問題があり、光干渉膜にあっては耐熱温度が低
く、200〜300℃以上で使用する場合には、真空中
に封じなければならないという問題があり、またミー散
乱膜および多孔膜の場合には、材料費が高く、製造工程
が複雑である等の問題がある。On the other hand, the above-mentioned conventional sunlight selective absorption films have the problems of high material costs and the need for a complicated film formation process when used as a semiconductor film, and they have a high heat resistance temperature when used as an optical interference film. When used at temperatures of 200 to 300°C or higher, there are problems in that they must be sealed in a vacuum, and in the case of Mie scattering membranes and porous membranes, material costs are high and the manufacturing process is complicated. There is a problem.
第1図は本発明の第1の実施例による太陽光選択吸収膜
の構造を示す断面図、第2図は本発明の第2の実施例に
よる太陽光選択吸収膜の構造を示す断面図、第3図は本
発明の実施例の太陽光選択吸収膜の分光反射率特性を示
すグラフ図、第4図は酸化物層を形成するための酸化処
理温度を変化させた際の光吸収率の変化を示すグラフ図
、第5図は複合体層におけるTINとTICの成分比を
変化させた場合の光吸収率の変化を示すグラフ図である
。
1・・・・・・基 板
2・・・・・・複合体層
3・・・・・・酸化物層FIG. 1 is a cross-sectional view showing the structure of a sunlight selective absorption film according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the structure of a sunlight selective absorption film according to a second embodiment of the present invention. FIG. 3 is a graph showing the spectral reflectance characteristics of the sunlight selective absorption film of the example of the present invention, and FIG. 4 shows the light absorption rate when changing the oxidation treatment temperature for forming the oxide layer. Graph showing changes. FIG. 5 is a graph showing changes in light absorption when the component ratio of TIN and TIC in the composite layer is changed. 1... Substrate 2... Composite layer 3... Oxide layer
Claims (1)
体層を備えていることを特徴とする太陽光選択吸収膜。 2、前記複合体層の表面に酸化物層が形成されているこ
とを特徴とする請求項第1項記載の太陽光選択吸収膜。[Claims] 1. A sunlight selective absorption film comprising a composite layer mainly composed of a composite of metal carbide and metal nitride. 2. The sunlight selective absorption film according to claim 1, wherein an oxide layer is formed on the surface of the composite layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1214106A JPH0379957A (en) | 1989-08-22 | 1989-08-22 | Sunlight selective absorbing membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1214106A JPH0379957A (en) | 1989-08-22 | 1989-08-22 | Sunlight selective absorbing membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0379957A true JPH0379957A (en) | 1991-04-04 |
Family
ID=16650333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1214106A Pending JPH0379957A (en) | 1989-08-22 | 1989-08-22 | Sunlight selective absorbing membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0379957A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065107A1 (en) * | 2012-10-26 | 2014-05-01 | 株式会社豊田自動織機 | Heat conversion member and heat conversion laminate |
-
1989
- 1989-08-22 JP JP1214106A patent/JPH0379957A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065107A1 (en) * | 2012-10-26 | 2014-05-01 | 株式会社豊田自動織機 | Heat conversion member and heat conversion laminate |
JP2014085101A (en) * | 2012-10-26 | 2014-05-12 | Toyota Industries Corp | Heat conversion member, and heat conversion laminate |
US20150285532A1 (en) * | 2012-10-26 | 2015-10-08 | Kabushiki Kaisha Toyota Jidoshokki | Heat conversion member and heat conversion laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10126020B2 (en) | Selective solar absorbing coating and manufacturing method | |
KR100949600B1 (en) | Transparent substrate equipped with an electrode, method for using the substrate and solar cell comprising the substrate | |
EP0536607B1 (en) | Heat processable metallic appearing coatings | |
Kurtz et al. | Chemical vapor deposition of titanium nitride at low temperatures | |
US6623794B2 (en) | Multilayer heat processable vacuum coatings with metallic properties and method of heat processing | |
KR100610298B1 (en) | Multilayered film having excellent wear resistance, heat resistance and adhesion to substrate and method for producing the same | |
KR101166407B1 (en) | A steel strip coated with zirconia | |
US20090169845A1 (en) | Structural material of diamond like carbon composite layers and method of manufacturing the same | |
Seraphin | Spectrally selective surfaces and their impact on photothermal solar energy conversion | |
CA2563945A1 (en) | Hybrid coating stack | |
JP2000233947A5 (en) | ||
WO2016155407A1 (en) | A spectrally selective solar absorbing coating and a method for making it | |
WO2005010225A1 (en) | Solar selective surface coatings, materials for use therein and a method of producing same | |
FI96507B (en) | Glass product and method for making a titanium-containing coating on a glass substrate | |
US10604834B2 (en) | Titanium nickel niobium alloy barrier for low-emissivity coatings | |
US5705278A (en) | Heat processable metallic vacuum coatings | |
JP2018514499A (en) | Titanium nickel niobium alloy barrier for low emissivity coating | |
CN112962064A (en) | High-temperature-resistant optical reflecting film and preparation method and application thereof | |
Chain et al. | Highly reflecting molybdenum thin films having significant solar absorptance | |
US6139969A (en) | Reactive sputtering of silicon and transition metal | |
JPH0379957A (en) | Sunlight selective absorbing membrane | |
JP2518129B2 (en) | Heat-treated coated glass and method for producing the same | |
EP4189304B1 (en) | Spectrally selective solar absorber coating | |
JPH0570580B2 (en) | ||
JP2563315B2 (en) | Superconductor wire and method of manufacturing the same |