JPH0379901A - Control of boiler output in emergency - Google Patents

Control of boiler output in emergency

Info

Publication number
JPH0379901A
JPH0379901A JP21491789A JP21491789A JPH0379901A JP H0379901 A JPH0379901 A JP H0379901A JP 21491789 A JP21491789 A JP 21491789A JP 21491789 A JP21491789 A JP 21491789A JP H0379901 A JPH0379901 A JP H0379901A
Authority
JP
Japan
Prior art keywords
boiler
turbine bypass
main steam
power generation
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21491789A
Other languages
Japanese (ja)
Inventor
Norio Kichijima
吉島 範夫
Tadahiro Kishikawa
岸川 忠弘
Shingo Maki
牧 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21491789A priority Critical patent/JPH0379901A/en
Publication of JPH0379901A publication Critical patent/JPH0379901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To stabilize the operation of a boiler by opening suddenly a turbine bypass valve when the pressure of main steam rises beyond a control range and at the same time suppressing a change in the input to a boiler by adding the flow rate value in the turbine bypass to actual amount of power generation. CONSTITUTION:A the time of the sole operation of the system, etc. when the unit load drops a good deal, the pressure of main steam rises generator 12 bypass a proportional, integration device 11 by 100% opening signal of a signal generator 4d, and then it passes a switching relay 3d and opens suddenly a turbine bypass valve 13. On the other hand, the standard of boiler input is in non-cooperative control mode so that it becomes an actual amount of power generation, but the turbine bypass valve 13 is open, and the amount of steam passing the turbine bypass valve is added to the actual amount of power genera tion by an adder 2e. When, after the transfer of load variation is completed, the pressure of main steam of the boiler becomes gradually settled, and the deviation becomes small, the switching relay 3d and variation rate limiter 7b operate, and the flow rate in the turbine bypass to which the amount of actual power generation has been added is subtracted by a subtractor 1d.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、ボイラとタービンの出力を同じ指令信号で制
御するボイラ・タービン協調制御装置における、非常時
のボイラ出力調節方法に関するものであって、発電所内
単独運転を行なうボイラ出力制御装置、系統周波数変動
運転を行なうボイラ出力制御装置、系統単独運転を行な
うボイラ出力制御装置等に通用できる。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a boiler output adjustment method in an emergency in a boiler-turbine cooperative control device that controls the outputs of the boiler and turbine using the same command signal. The present invention can be applied to a boiler output control device that performs isolated operation within a power plant, a boiler output control device that performs grid frequency fluctuation operation, a boiler output control device that performs grid isolated operation, etc.

(従来の技術〕 従来のボイラの出力9A節方法は、主蒸気圧力を発電量
指令または実発電量により決められた値から残算し、そ
れを比例演算器と積分器により入力演算させ、それらの
値で発電量指令(燃料量指令。
(Prior art) The conventional boiler output 9A section method calculates the main steam pressure from a value determined by the power generation command or the actual power generation amount, inputs it to a proportional calculator and an integrator, and calculates the residual value. The power generation amount command (fuel amount command) is determined by the value of .

給水量指令、空気量指令)を修正し、ボイラ入力指令を
作成していた。第2図は、そのような従来のボイラ出力
調節方法の一例を示す系統図である。
Water supply amount command, air amount command) were revised and boiler input commands were created. FIG. 2 is a system diagram showing an example of such a conventional boiler output adjustment method.

まず、構成要素の機能を説明する。(la) 、 (I
b)は2つの入力を′$を算する減算器、(2a) 、
 (2力)、 (2c)(2d〉は2つの入力を加える
加算器、(3a) 、 (3b) 。
First, the functions of the constituent elements will be explained. (la), (I
b) is a subtractor that calculates $ from two inputs, (2a),
(2 inputs), (2c) (2d> is an adder that adds two inputs, (3a), (3b).

(3c)は入力条件成立中は入力aを選択する切替リレ
ーである。(4a) 、 (4b)は信号発生’in、
 (5)は積分器、(6)は比例演算器である。(7a
)は、入力が大きく変化した場合、出力を決められた変
化率で入力と同等になるまで出力する変化率制限器、(
8)は入力信号に対して出力をプログラム設定する函数
発止器である。(9)は2入力のうち低い方を選択して
出力する低選択器、0ωは2入力のうち高い方を選択し
て出力する高選択器である。
(3c) is a switching relay that selects input a while the input condition is satisfied. (4a) and (4b) are signal generation 'in,
(5) is an integrator, and (6) is a proportional calculator. (7a
) is a rate-of-change limiter that outputs a fixed rate of change until it becomes equal to the input when the input changes significantly, (
8) is a function generator that programs the output in response to the input signal. (9) is a low selector that selects and outputs the lower one of two inputs, and 0ω is a high selector that selects and outputs the higher one of two inputs.

次に各構成要素相互の作用を説明する。発ff1ffi
指令と実発電量とが一致し、更に実主萬気圧と設定主蒸
気圧力とが一致すれば、ボイラの出力と入力は一致して
いることになる。発電量指令は函数発生器(8)に入力
されて、そのあと変化率制限器(7a)の出力となり、
これがボイラ主蒸気の設定値となる。この主蒸気圧力設
定値と実主蒸気圧力との偏差が減算器(1a)によって
得られる。この偏差が比例演算器(6)と積分器(5)
において演算され、その結果が加算器(2a) 、 (
2b)において発?Ii量指令に加算されて、ボイラの
要求入力の燃焼量指令、給水量指令および空気量指令と
なる。
Next, the interaction of each component will be explained. From ff1ffi
If the command and the actual power generation amount match, and furthermore, the actual main pressure and the set main steam pressure match, the boiler output and input match. The power generation command is input to the function generator (8), and then becomes the output of the rate of change limiter (7a).
This becomes the boiler main steam setting value. The deviation between this main steam pressure set value and the actual main steam pressure is obtained by the subtractor (1a). This deviation is calculated by the proportional calculator (6) and the integrator (5).
The result is calculated in the adder (2a), (
Emitted in 2b)? It is added to the Ii quantity command to become the combustion quantity command, water supply quantity command, and air quantity command of the boiler request input.

発電量指令が通常よりも大きく出た場合、主タービン・
ガバナーは早く大きく動作するが、この動作の結果主蒸
気圧力設定値と実主蒸気圧力との間に差(主蒸気圧力偏
差)が出る。この主蒸気圧力偏差が信号発生器(4a)
または(4b)で決められた値x1または×2を超えた
値が、加算器(2c)または(2d)の出力となり、低
選択器(9)または高′JA沢器00)に入力されて、
減算器(1b)の出力である発電量偏差と比較され、発
電量偏差よりも大きければ主タービン・ガバナーへの出
力となる。すなわち、主タービン・ガバナーは主蒸気圧
力を修正するように動作する。
If the power generation command is larger than normal, the main turbine
The governor operates rapidly and greatly, but as a result of this operation, a difference (main steam pressure deviation) occurs between the main steam pressure set value and the actual main steam pressure. This main steam pressure deviation is detected by the signal generator (4a)
Or a value exceeding the value x1 or x2 determined in (4b) becomes the output of the adder (2c) or (2d) and is input to the low selector (9) or high 'JA selector 00). ,
It is compared with the power generation amount deviation which is the output of the subtractor (1b), and if it is larger than the power generation amount deviation, it becomes the output to the main turbine governor. That is, the main turbine governor operates to modify the main steam pressure.

このようにして従来は、ボイラ入力に対するボイラ出力
の遅れを主タービン・ガバナーによって補償しながら、
安定したボイラの出力を保持しようとしていた。
In this way, conventionally, while compensating for the delay in boiler output relative to boiler input using the main turbine governor,
I was trying to maintain a stable boiler output.

なお、電力系統周波数の変動、発電所内動力負荷のみと
なる時の所内単独運転、ローカル負荷のみとなる系統単
独等、ユニットが正常運転でない時、ボイラとタービン
は別々に制御される非協調制御モードにおいて、ボイラ
の出力のベースは実発電量であり、切替リレー(3b)
により実発電壁が選択される。
In addition, when the unit is not operating normally, such as due to fluctuations in the power system frequency, isolated operation within the station when only the power load is within the power plant, or isolated operation when only the local load is present, the boiler and turbine are controlled separately in non-cooperative control mode. In , the base of the boiler output is the actual power generation amount, and the switching relay (3b)
The actual power generation wall is selected by

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の方法は、発電量指令の最大変化幅が定格負荷
の3〜4%である場合には何ら問題なく使用できる。し
かし、何らかの原因で電力系統周波数が大きく変った場
合、発電ユニットが全電力系統網から切離されてローカ
ル負荷のみ背負った運転となった場合、あるいは発電所
内単独負荷運転となった場合等においては、主蒸気圧力
高、燃料ml大等の制限値により、発電ユニットは非常
停止していた。
The conventional method can be used without any problem if the maximum variation range of the power generation command is 3 to 4% of the rated load. However, if the power grid frequency changes significantly for some reason, if the power generation unit is disconnected from the entire power grid and operates with only a local load, or if the power plant is operated with a single load, etc. The power generation unit had come to an emergency stop due to limit values such as , main steam pressure, fuel ml, etc.

主蒸気圧力高となる原因としては、高い発電量負荷(1
00X定格出力時)から25%負荷まで急速に低下した
ような場合などに、主タービン・ガバナーが急速に低開
度(約1〜2秒間全閉)となり、この分ボイラの出力が
余剰となって主蒸気圧力が急上昇することが挙げられる
。この圧力上昇分を吸収するために、タービン・バイパ
ス弁がタービン入口に設けられている。しかしこのター
ビン・バイパス弁は、主蒸気圧力が高くなれば開き低く
なれば閉じるという、安全弁的機能しか持っていなかっ
た。
The cause of high main steam pressure is high power generation load (1
When the load rapidly decreases from 00X rated output to 25% load, the main turbine governor rapidly opens to a low degree (fully closes for about 1 to 2 seconds), and the boiler output becomes surplus. One example of this is that the main steam pressure increases rapidly. A turbine bypass valve is provided at the turbine inlet to absorb this pressure increase. However, this turbine bypass valve only had the function of a safety valve, opening when main steam pressure rose and closing when it fell.

電力系統周波数が変わる時や系統単独運転時においては
、要求負荷である発電量指令は成立せずに、主タービン
は系統周波数に従って動作し、ボイラは主蒸気圧力のみ
を指標にして運転しなければならない。この運転を一般
的にはボイラフォロー運転という。このような時に、従
来の主蒸気圧力補正回路のみでは、ボイラ入力が変化し
てから出力が現われるまでの時間が2〜3分かかり、急
速動作する主タービン・ガバナーの動作に追従できない
し、更に3分後のボイラ出力が主タービンの出力を変化
される結果となる。すなわち、ボイラとタービンの双方
の出力が一致せず不安定な状況となり、場合によっては
発電ユニットが非常停止する。
When the power grid frequency changes or when the grid is operating independently, the power generation command, which is the required load, does not hold, and the main turbine operates according to the grid frequency, and the boiler must operate using only the main steam pressure as an indicator. No. This operation is generally called boiler follow operation. In such cases, using only the conventional main steam pressure correction circuit, it takes 2 to 3 minutes from the time the boiler input changes until the output appears, and it cannot keep up with the operation of the rapidly operating main turbine governor. The boiler power after 3 minutes results in the main turbine power being changed. That is, the outputs of both the boiler and the turbine do not match, resulting in an unstable situation, and in some cases, the power generation unit may come to an emergency stop.

〔課題を解決するための手段] 本発明は、前記従来の課題を解決するために、ボイラ入
力を主蒸気圧力の偏差により調節する機能を有するボイ
ラ・タービン協調制御において、主蒸気圧力が制御範囲
を超えて上昇した時、タービン・バイパス弁を急速に開
かせたのち定値制御させるとともに、ボイラ入力指令と
なる発電量にタービン・バイパス舊気流量を加算し、そ
の後主蒸気圧力が規定値となった時、タービン・バイパ
ス量を強制的に徐々に少なくしてゆき、主蒸気圧力を実
発電量によって定められた値とすることを特徴とする非
常時のボイラ出力調節方法を提案するものである。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention provides boiler-turbine cooperative control that has a function of adjusting the boiler input according to the deviation of the main steam pressure. When the steam pressure rises above the specified value, the turbine bypass valve is rapidly opened and then controlled to a constant value, and the turbine bypass exhaust flow rate is added to the power generation amount that is the boiler input command, and then the main steam pressure returns to the specified value. This paper proposes a boiler output adjustment method in an emergency, which is characterized by forcibly gradually reducing the turbine bypass amount and bringing the main steam pressure to a value determined by the actual power generation amount. .

[作 用] 本発明においては、系統単独運転移行時等ボイラの負荷
を緊袋に低下させねばならないユニット運転の場合、オ
ン・オフの安全弁的機能しか持っていないタービン・バ
イパス弁を、ボイラの出力と協調させて操作させると同
時に、ボイラの入力をタービン・バイパスの萬気量を考
慮して決定することにより、ボイ、うを安定化する。
[Function] In the present invention, in the case of a unit operation in which the load on the boiler must be reduced to a tight bag, such as when transitioning to system isolated operation, the turbine bypass valve, which only has the function of an on/off safety valve, is replaced with a turbine bypass valve of the boiler. The boiler is stabilized by operating in coordination with the output and at the same time determining the input to the boiler in consideration of the air flow of the turbine bypass.

〔実施例] 第1図は本発明方法の一実施例を示す系統図である。こ
の実施例は、前記第2図により説明した従来のボイラ出
力gI ffff系に、タービン・バイパス弁の調節系
と、主タービン・ガバナの調節系のボイラ入力指令とな
る発電量にタービン・バイパスス蒸気流星を加算する調
節系とが追加されたものである。そこで、第1図中前記
第2図と同様の部分については、冗長になるのを避ける
ため、同一の符号を付けて詳しい説明を省略する。
[Example] FIG. 1 is a system diagram showing an example of the method of the present invention. In this embodiment, in addition to the conventional boiler output gI ffff system explained with reference to FIG. An adjustment system that adds meteors has been added. Therefore, in order to avoid redundancy, the same parts in FIG. 1 as in FIG. 2 are given the same reference numerals and detailed explanations will be omitted.

この第2図において、追加された各構成要素のa能は次
に示すとおりである。(lc) 、 (ld)は(la
)。
In FIG. 2, the functions of each added component are as shown below. (lc), (ld) are (la
).

(1b)と同様、2つの入力をfIi算する減算器、(
2e)は(2a) 、 (2b) 、 (2c) 、 
(2d)と同様、2つの入力を加算する加算器、(3d
) 、 (3e)は(3a) 、 (3b) 、 (3
c)と同様、入力条件成立中は入力aを選択する切替リ
レ、(4c) 、 (4d)は(4a) 、 (4b)
と同様信号発生器である。(7b)は(7a)と同様、
入力が大きく変化した場合出力を決められた変化率で入
力と同等になるまで出力する変化率制限器である。(1
1)は比例・積分器、021は信号発生器(4d)から
の信号を受けて1パルスを発生する1パルス発生器、Q
3)はタービン・バイパス弁である。
Similar to (1b), a subtractor that calculates fIi on two inputs, (
2e) is (2a), (2b), (2c),
Similar to (2d), an adder that adds two inputs, (3d
), (3e) is (3a), (3b), (3
Similar to c), the switching relay selects input a while the input condition is satisfied, (4c) and (4d) are (4a) and (4b).
It is also a signal generator. (7b) is similar to (7a),
This is a rate-of-change limiter that outputs an output at a predetermined rate of change when the input changes significantly until it becomes equal to the input. (1
1) is a proportional/integrator, 021 is a 1-pulse generator that generates 1 pulse upon receiving the signal from the signal generator (4d), and Q
3) is a turbine bypass valve.

このような系統において、通常の負荷変化中の主蒸気圧
力偏差によるボイラ入力の補正は、前記第2図により説
明した従来の方法と同様にして行なわれる。
In such a system, correction of the boiler input due to the main steam pressure deviation during normal load changes is performed in the same manner as the conventional method explained with reference to FIG. 2 above.

系統単独運転時等、ユニット負荷が大きく低下する場合
には、主蒸気圧力が大きく上昇する。この時信号発生器
(4c)により決められた値以上になると、比例・積分
器(11)によりタービン・バイパス弁03)が開くが
、急速に開かせるために、所定の設定値を超えた場合(
設定埴生α)には、信号発生2H(dd)の100χ開
度信号によりIパルス発生器(+2)から出たパルスが
、比例・積分器(II)をバイパスして、切替リレー(
3d)を通りタービン・バイパス弁03)を急速に開く
。1パルス発生器の時間経過後は、比例・積分器(If
)の出力がタービン・バイパス弁03)の入力となる。
When the unit load decreases significantly, such as when the system is operating independently, the main steam pressure increases significantly. At this time, when the value exceeds the value determined by the signal generator (4c), the turbine bypass valve 03) is opened by the proportional/integrator (11), but in order to open rapidly, if the value exceeds the predetermined value. (
Setting Hanyu α), the pulse output from the I pulse generator (+2) by the 100χ opening signal of signal generation 2H (dd) bypasses the proportional/integrator (II) and is activated by the switching relay (
3d) and rapidly open the turbine bypass valve 03). After one pulse generator time elapses, the proportional/integrator (If
) becomes the input to the turbine bypass valve 03).

一方、ボイラ入力の基準は非協調制御モードであるため
実発電量となるが、タービン・バイパス弁03)が開い
ており、タービン・バイパス弁を通過する蒸気’rRm
を、加算器(2e)により実発電量に加算する。負荷変
化の移行が完了後、ボイラの主蒸気圧が徐々に整定して
その偏差が小さくなれば、切替リレー(3d)と変化率
制限器(7b)が動作し、実発電量に加算されているタ
ービン・バイパス流量を減算器(ld)により減じる。
On the other hand, the reference for boiler input is the actual power generation amount because it is in non-cooperative control mode, but the turbine bypass valve 03) is open and the steam passing through the turbine bypass valve 'rRm
is added to the actual power generation amount by an adder (2e). After the load change transition is completed, when the main steam pressure of the boiler gradually settles and its deviation becomes smaller, the switching relay (3d) and rate of change limiter (7b) operate and the pressure is added to the actual power generation amount. The turbine bypass flow rate that is present is subtracted by a subtractor (ld).

タービンによる主蒸気圧力の補正は、このような非常時
には動作しないよう、主タービン・ガバナーの切替リレ
ー(3e)は(b −c )側に切替えられている。
The switching relay (3e) of the main turbine governor is switched to the (b-c) side so that correction of the main steam pressure by the turbine does not operate in such an emergency.

〔発明の効果] 本発明方法においては、大幅かつ急激な発竜機出力変化
時にボイラ主蒸気圧力高によるボイラトリップを防止す
るため、タービン・バイパス弁を急速に開くと同時にタ
ービン・バイパス流星を実発電量に加えて、ボイラ入力
の変化を抑える。このことにより具体的に次の効果が得
られる。
[Effects of the Invention] In the method of the present invention, in order to prevent boiler trips due to high boiler main steam pressure when there is a large and rapid change in engine output, the turbine bypass valve is opened rapidly and at the same time a turbine bypass meteor is generated. In addition to increasing power generation, it also suppresses changes in boiler input. This specifically provides the following effects.

1) ボイラの入力値が低下しないのでボイラ給水低と
はならない。
1) Since the input value of the boiler does not decrease, the boiler feed water does not become low.

2) 同様にボイラの入力値の低下により、従来は2〜
3分後にボイラ出力低下が現われる結果、ボイラ入力増
要求の状況となり、更に2〜3分後にはボイラ出力余剰
となってボイラ入力域要求の状況となっていた。すなわ
ち従来はボイラが不安定となっていたが、本発明ではこ
の不安定の要因が除去できる。
2) Similarly, due to a decrease in boiler input value, conventionally
As a result of the boiler output decreasing appearing after 3 minutes, a situation occurred where an increase in the boiler input was required, and after another 2 to 3 minutes, the boiler output became surplus and the situation became a situation where a boiler input range was required. That is, conventionally, the boiler was unstable, but the present invention can eliminate the cause of this instability.

3) 主蒸気圧力の修正回路比例演算器や積分器のパラ
メータは、通常運転時と系統単独時等の非常時運転下に
おいて同し値とすることができる。
3) The parameters of the main steam pressure correction circuit proportional calculator and integrator can be set to the same value during normal operation and under emergency operation such as when the system is alone.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示す系統図、第2図は
従来のボイラ出力調節方法の一例を示す系統図である。 (la) 、 (lb) 、 (lc) 、 (Id)
 ・= 減算器(2a) 、 (2b) 、 (2c)
 、 (2d) 、 (2e) −加算器(3a) 、
 (3b) 、 (3c) 、 (3d) 、 (3e
)−切替リレー(4a) 、 (4b) 、 (4c)
 、 (4d) −信号発生器(5)・・・積分器、(
6)・・・比例演算器(7a) 、 (7b)・・・変
化率制限器、(8)・・・函数発生2L(9)・・・低
選択器、   0■・・・高選択器(II)・・・比例
・積分器、02)・・・lパルス発生器0の・・・ター
ビン・バイパス弁。
FIG. 1 is a system diagram showing an embodiment of the method of the present invention, and FIG. 2 is a system diagram showing an example of a conventional boiler output adjustment method. (la), (lb), (lc), (Id)
・= Subtractor (2a), (2b), (2c)
, (2d), (2e) - adder (3a),
(3b), (3c), (3d), (3e
)-switching relay (4a), (4b), (4c)
, (4d) - Signal generator (5)... Integrator, (
6)... Proportional calculator (7a), (7b)... Change rate limiter, (8)... Function generation 2L (9)... Low selector, 0 ■... High selector (II)...proportional/integrator, 02)...l pulse generator 0...turbine bypass valve.

Claims (1)

【特許請求の範囲】[Claims] ボイラ入力を主蒸気圧力の偏差により調節する機能を有
するボイラ・タービン協調制御において、主蒸気圧力が
制御範囲を超えて上昇した時、タービン・バイパス弁を
急速に開かせたのち定値制御させるとともに、ボイラ入
力指令となる発電量にタービン・バイパス蒸気流量を加
算し、その後主蒸気圧力が規定値となった時、タービン
・バイパス量を強制的に徐々に少なくしてゆき、主蒸気
圧力を実発電量によって定められた値とすることを特徴
とする非常時のボイラ出力調節方法。
In boiler-turbine cooperative control, which has the function of adjusting boiler input based on deviations in main steam pressure, when the main steam pressure rises beyond the control range, the turbine bypass valve is rapidly opened and then controlled at a constant value. The turbine bypass steam flow rate is added to the power generation amount that is the boiler input command, and then when the main steam pressure reaches the specified value, the turbine bypass amount is forcibly gradually reduced to reduce the main steam pressure to the actual power generation. A boiler output adjustment method in an emergency, characterized by adjusting the output to a value determined by the amount.
JP21491789A 1989-08-23 1989-08-23 Control of boiler output in emergency Pending JPH0379901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21491789A JPH0379901A (en) 1989-08-23 1989-08-23 Control of boiler output in emergency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21491789A JPH0379901A (en) 1989-08-23 1989-08-23 Control of boiler output in emergency

Publications (1)

Publication Number Publication Date
JPH0379901A true JPH0379901A (en) 1991-04-04

Family

ID=16663723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21491789A Pending JPH0379901A (en) 1989-08-23 1989-08-23 Control of boiler output in emergency

Country Status (1)

Country Link
JP (1) JPH0379901A (en)

Similar Documents

Publication Publication Date Title
US5953902A (en) Control system for controlling the rotational speed of a turbine, and method for controlling the rotational speed of a turbine during load shedding
JPH0379901A (en) Control of boiler output in emergency
JPS6039842B2 (en) Boiler/turbine coordinated voltage transformation operation method
JP3792853B2 (en) Combined cycle control device and gas turbine control device
JPH11223302A (en) Automatic control device and method of power generating plant
JP2515797B2 (en) Turbin controller
JP3374745B2 (en) Process control device and control method thereof
JP2642999B2 (en) Load control device for combined cycle plant
JPS6022241B2 (en) Main steam pressure control method
JPS59188701A (en) Boiler master controlling device
JPH0719007A (en) Turbine control device
JPH11166402A (en) Turbine speed control method
JPS5824681B2 (en) Steam temperature control device
JPS59145309A (en) Afc controller of turbine bypass thermal power plant
JPH07310902A (en) Steam temperature control for once-through boiler
JPH10259704A (en) Steam turbine control device
JPH02298609A (en) Automatic plant load control device
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPH0217499A (en) Turbine controlling of nuclear power generating plant
JPS6133354B2 (en)
JPS5888536A (en) Device for combustion control of boiler
JPS58100794A (en) Load following-up control device for atomic power plant
JPS63150403A (en) Turbine control device
JPS6032002B2 (en) Turbine control device
JPH01269093A (en) Feed water controller for nuclear reactor