JPH0379590B2 - - Google Patents

Info

Publication number
JPH0379590B2
JPH0379590B2 JP2212286A JP2212286A JPH0379590B2 JP H0379590 B2 JPH0379590 B2 JP H0379590B2 JP 2212286 A JP2212286 A JP 2212286A JP 2212286 A JP2212286 A JP 2212286A JP H0379590 B2 JPH0379590 B2 JP H0379590B2
Authority
JP
Japan
Prior art keywords
valve
valve seat
valve body
casing
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2212286A
Other languages
Japanese (ja)
Other versions
JPS62180180A (en
Inventor
Takeshi Saito
Takeshi Suguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAILEY JAPAN
Original Assignee
BAILEY JAPAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAILEY JAPAN filed Critical BAILEY JAPAN
Priority to JP2212286A priority Critical patent/JPS62180180A/en
Publication of JPS62180180A publication Critical patent/JPS62180180A/en
Publication of JPH0379590B2 publication Critical patent/JPH0379590B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は。調節弁に係り、特に蒸気原動所の起
動バイパス弁、給水流量調節弁、スプレ流量調節
弁ならびに給水ポンプ再循環弁に用いられるよう
な高温高圧流体の圧力、流量を調節するのに好適
な調節弁に関する。 [従来の技術] 一般に、調節弁は入口流路および出口流路なら
びに弁室を備えるケーシングと、ケーシングの弁
室内に形成される弁座を、ケーシングに支持さ
れ、ケーシングの弁室内を弁座に対して接離する
方向に移動可能とされる弁体とを有してなり、入
口流路から流入した流体の圧力、流量を弁体と弁
座との間に形成される可変絞り部によつて連続的
に調節し、出口流路から排出可能としている。 ところで、上記調節弁においては、流体の流速
が弁体と弁座との間に形成される可変絞り部で急
激に上昇することから、流体中の異物あるいは流
体そのものが弁体および弁座に激しく衝突し、容
易にこれらを浸食したり、また時として局部的な
キヤビテーシヨンを生じ、そこにキヤビテーシヨ
ンエローシヨンを生じ、弁体と弁座の締切部の間
に流体の漏れを生じたり、弁体と弁座との間に形
成される絞り部面積の変化によつて流量の調節特
性を阻害するおそれがある。 また、高温水を扱う調節弁においては、水中に
含まれる鉄イオン等の懸濁粒子の電荷と、弁体あ
るいは弁座の金属両面の静電力との相互作用等に
より、特に絞り部近傍で鉄イオン等の懸濁粒子が
金属表面に引き付けられ、スケールとして弁体あ
るいは弁座の表面に付着、堆積する現象を生ず
る。このスケールの付着により、弁体と弁座の締
切部の間に流体に漏れを生じたり、弁体と弁座と
の間に形成される絞り部面積が減少し、時として
排出流量の大幅な不足を来たし、流量の調節が不
可能となる。 そこで従来、絞り部近傍の浸食から弁体および
弁座の接液部表面を保護すべく、それらの表面に
耐浸食性能の高いステライト等のコバルト系合金
を盛金溶接等により一体形成させたり、弁体およ
び弁座そのものをSUS440C等のマルテンサイト
系熱処理硬化ステンレス鋼等で製作した調節弁が
使用され、浸食量の軽減を図つている。 [発明が解決しようとする問題点] しかしながら、近年において、上記原動所の設
計圧力、温度の上昇あるいはプラントの高頻度の
起動停止運用化に伴い各調節弁の使用条件が厳し
くなり、上記従来の調節弁では浸食に対する対応
が困難となつている。 また、高圧高温水を調節する調節弁の弁体ある
いは弁座におけるスケールの付着、堆積の問題に
ついては、簡便で有効な防止方法が未だ提案され
ていない。 本発明は、弁体と弁座の耐浸食性能を向上する
とともに、弁体と弁座に対するスケールの付着を
防止し、長期に亘つて制御性の良好な調節弁を提
供することを目的とする。 [問題点を解決するための手段] 本発明は、入口流路および出口流路ならびに弁
室を備えるケーシングと、ケーシングの弁室内に
形成される弁座と、ケーシングに支持され、ケー
シングの弁室内を弁座に対して接離する方向に移
動可能とされる弁体とを有してなる調節弁におい
て、弁座および弁体の表面に炭窒化チタン
(TiCN)、窒化チタン(TiN)、アルミナ
(Al2O3)からなる複合多重コーテイング材料を
被着するようにしたものである。 [作用] 本発明によれば、弁座および弁体の表面が耐エ
ロージヨン性の極めて高いセラミクス材料である
複合多重コーテイング材料によつて形成されるこ
とになる。したがつて、弁体と弁座にの耐浸食性
能を向上するとともに、弁体と弁座対するスケー
ルの付着を防止し、長期に亘つて制御性の良好な
調節弁を得ることが可能となる。 [実施例] 第1図は本発明の一実施例に係る調節弁10を
示す断面図である。調節弁10は、入口流路11
および出口流路12ならびに弁室13を備えるケ
ーシング14と、ケーシング14の内部に配設さ
れる弁座15と、ケーシング14に支持され、弁
座15に対して接離する方向に移動可能とされる
弁体(弁棒)16とを有している。弁座15はケ
ーシング14に螺合状態で固定され、弁体16の
中間部を案内する案内部17を備えるとともに、
入口流路11と出口流路12とを連絡する締切部
18、懐部19、排出孔部20を備えている。ま
た、弁体16は弁座15の締切部18に密着可能
とされる締切部21と、弁座15の締切部18と
の間に絞り部を形成し、且つその絞り部面積を弁
開度の変化とともに可変とする所定輪郭形状のプ
ラグ部22を備えている。 なお、弁体16のケーシング14から突出する
部分には、弁開閉用アクチユエータが連結可能と
されるねじ部23が備えられている。また、弁体
16の中間部分とケーシング14との間にはパツ
キング24が配設されている。また、ケーシング
14の下部には、ケーシング14に螺合されるブ
リーチねじ25に背面支持されるパツキン26を
介してブリーチブロツク27を配設されている。
ブリーチブロツク27は、プラグ28によつて閉
塞されるドレン孔部29を備えている。 しかして、弁座15の締切部18、懐部19、
排出孔部20を主とする流体接液部、弁体16の
締切部21、プラグ部22を主とする流体接液部
の夫々には、ステンレス鋼からなる母材にステラ
イト(ヘインズ社の商標)等のコバルト系合金を
盛金容接して仕上げた地下、もしくはSUS440C
等のマルテンサイト系ステンレス鋼を所定の硬度
に熱処理して仕上げた地下の表面に、化学蒸着法
により炭窒化チタン(TiCN)、窒化チタン
(TiN)、アルミナ(Al2O3)の3つのセラミクス
材料を順次重ねた複合多重コーテイング材料の薄
膜が、例えば第2図に示すように強固に密着状態
で形成されている。 上記複合多重コーテイング材料の化学蒸着法
は、約700〜1050℃の範囲に加熱密閉したレトル
ト内に被処理品をセツトし、ガス状のTiCl4、あ
るいはAlCl3とH2、CH4、N2、CO2を供給し、順
次、被処理品の表面に上記複合多重コーテイング
材料を化学的に形成させるものである。基本的な
化学反応式は以下のとおりである。 2TiCl4+N2+3H2+CH4 →2TiCN+8HCl+H2 2TiCl4+N2+4H2→2TiN+8HCl 2AlCl3+3CO2+3H2 →Al2O3+3CO+6HCl この化学蒸着法によるコーテイング方法は、処
理温度が高いため、コーテイング材料と被処理品
の表面の間でC等の原子の拡散が活発に生じ、強
固な密着性が得られる。また、複雑な形状の被処
理品にも均一な被膜が得られる。上記複合多重コ
ーテイング材料を構成する各材料の物性値は表1
のとおりである。Al2O3は、耐酸化性、耐食性、
耐熱性にすぐれ、摩擦係数も極端に小さい。 なお、前記ステライトとしては、例えば表2に
示すようなステライトNo.6、ステライトNo.12が用
いられる。 第3図は各種材料によつてコーテイングされた
弁座および弁体の表面硬度を示す線図である。こ
[Industrial Field of Application] The present invention. A control valve that is suitable for regulating the pressure and flow rate of high-temperature, high-pressure fluids, especially those used in steam power plant start-up bypass valves, feedwater flow rate control valves, spray flow rate control valves, and feedwater pump recirculation valves. Regarding. [Prior Art] Generally, a control valve includes a casing including an inlet flow path, an outlet flow path, and a valve chamber, and a valve seat formed in the valve chamber of the casing. The valve body is movable toward and away from the valve body, and the pressure and flow rate of the fluid flowing in from the inlet channel is controlled by a variable restrictor formed between the valve body and the valve seat. The fluid can be continuously adjusted and discharged from the outlet channel. By the way, in the above-mentioned control valve, since the flow velocity of the fluid increases rapidly at the variable restrictor formed between the valve body and the valve seat, foreign objects in the fluid or the fluid itself can violently attack the valve body and the valve seat. They collide and easily erode them, and sometimes cause local cavitation, which causes cavitation erosion and fluid leakage between the valve body and the valve seat closure. Changes in the area of the constriction formed between the valve body and the valve seat may impede the flow rate adjustment characteristics. In addition, in control valves that handle high-temperature water, the interaction between the electric charge of suspended particles such as iron ions contained in the water and the electrostatic force on both metal surfaces of the valve body or valve seat causes iron to be deposited, especially near the throttle part. Suspended particles such as ions are attracted to the metal surface, causing scale to adhere and accumulate on the surface of the valve body or valve seat. This buildup of scale can cause fluid leakage between the valve body and valve seat closure, reduce the area of the constriction formed between the valve body and the valve seat, and sometimes cause a significant increase in the discharge flow rate. This results in a shortage and it becomes impossible to adjust the flow rate. Conventionally, in order to protect the liquid-contact surfaces of the valve body and valve seat from erosion near the throttle part, cobalt alloys such as stellite, which have high corrosion resistance, are integrally formed on these surfaces by metal welding, etc. A control valve whose valve body and seat itself are made of martensitic heat-treated hardened stainless steel such as SUS440C is used to reduce the amount of corrosion. [Problems to be Solved by the Invention] However, in recent years, the operating conditions for each control valve have become stricter due to increases in the design pressure and temperature of the above-mentioned power plants and the frequent start-up/stop operation of plants. It has become difficult for control valves to deal with erosion. Furthermore, no simple and effective method for preventing scale adhesion and accumulation on the valve body or valve seat of a control valve that regulates high-pressure, high-temperature water has yet to be proposed. The present invention aims to provide a control valve that improves the corrosion resistance of the valve body and valve seat, prevents scale from adhering to the valve body and valve seat, and provides good controllability over a long period of time. . [Means for Solving the Problems] The present invention includes a casing including an inlet flow path, an outlet flow path, and a valve chamber, a valve seat supported by the casing, and a valve seat formed in the valve chamber of the casing. and a valve body that is movable toward and away from the valve seat, the surfaces of the valve seat and the valve body are coated with titanium carbonitride (TiCN), titanium nitride (TiN), and alumina. A composite multiple coating material consisting of (Al 2 O 3 ) is applied. [Function] According to the present invention, the surfaces of the valve seat and the valve body are formed of a composite multi-coating material which is a ceramic material with extremely high erosion resistance. Therefore, it is possible to improve the corrosion resistance of the valve body and valve seat, prevent scale from adhering to the valve body and valve seat, and obtain a control valve with good controllability over a long period of time. . [Embodiment] FIG. 1 is a sectional view showing a control valve 10 according to an embodiment of the present invention. The control valve 10 has an inlet flow path 11
a casing 14 including an outlet flow path 12 and a valve chamber 13; a valve seat 15 disposed inside the casing 14; It has a valve body (valve stem) 16. The valve seat 15 is fixed to the casing 14 in a screwed state, and includes a guide portion 17 that guides the intermediate portion of the valve body 16.
It includes a closing portion 18 that connects the inlet flow path 11 and the outlet flow path 12, a pocket portion 19, and a discharge hole portion 20. Further, the valve body 16 forms a constricted portion between the shut-off portion 21 that can be brought into close contact with the shut-off portion 18 of the valve seat 15 and the shut-off portion 18 of the valve seat 15, and the area of the constricted portion is determined by the valve opening degree. The plug portion 22 has a predetermined contour shape that is variable as the shape changes. A portion of the valve body 16 that protrudes from the casing 14 is provided with a threaded portion 23 to which a valve opening/closing actuator can be connected. Further, a packing 24 is disposed between the intermediate portion of the valve body 16 and the casing 14. Further, a breech block 27 is disposed at the lower part of the casing 14 via a packing 26 supported on the back side by a breech screw 25 screwed into the casing 14.
Breach block 27 has a drain hole 29 which is closed by a plug 28. Therefore, the closing portion 18, pocket portion 19 of the valve seat 15,
Each of the fluid contact parts mainly including the discharge hole 20, the shutoff part 21 of the valve body 16, and the plug part 22 is made of Stellite (a trademark of Haynes Co., Ltd.) on a base material made of stainless steel. ), etc., or SUS440C.
Three types of ceramics: titanium carbonitride (TiCN), titanium nitride (TiN), and alumina (Al 2 O 3 ) are deposited on the underground surface of martensitic stainless steel, which has been heat-treated to a specified hardness. A thin film of a composite multilayer coating material is formed by sequentially layering materials in a tightly adhered state, as shown in FIG. 2, for example. In the chemical vapor deposition method of the above-mentioned composite multiple coating material, the workpiece is placed in a sealed retort heated to a temperature in the range of approximately 700 to 1050°C, and gaseous TiCl 4 or AlCl 3 and H 2 , CH 4 , and N 2 are used. , CO 2 are supplied to chemically form the above-mentioned composite multi-layered coating material on the surface of the object to be treated. The basic chemical reaction formula is as follows. 2TiCl 4 +N 2 +3H 2 +CH 4 →2TiCN+8HCl+H 2 2TiCl 4 +N 2 +4H 2 →2TiN+8HCl 2AlCl 3 +3CO 2 +3H 2 →Al 2 O 3 +3CO+6HCl This chemical vapor deposition coating method requires a high processing temperature, so Atoms such as C actively diffuse between the surfaces of the treated product, resulting in strong adhesion. Moreover, a uniform coating can be obtained even on a workpiece having a complicated shape. Table 1 shows the physical properties of each material constituting the above composite multiple coating material.
It is as follows. Al2O3 has oxidation resistance, corrosion resistance ,
It has excellent heat resistance and an extremely low coefficient of friction. As the stellite, for example, stellite No. 6 and stellite No. 12 as shown in Table 2 are used. FIG. 3 is a diagram showing the surface hardness of valve seats and valve bodies coated with various materials. child

【表】【table】

【表】 の第3図によれば、SUS316の母材に盛金された
ステライトNo.6の表面にコーテイングされた前記
第2図の複合多重コーテイング材料の表面硬度
は、他の処理方法による場合に比してきわめて硬
く、実にHmV3000(マイクロビツカース硬度)
以上の超高硬度であることが認められる。 第4図は高圧水によるエロージヨン加速試験に
基づく減重量を示す線図である。この第4図によ
れば、SUS316の母材に盛金されたステライトNo.
6の表面に前記第2図の複合多重コーテイング材
料をコーテイングしてなる試験片の減重量は、き
わめて高い耐浸食性能を有することが認められ
る。 すなわち、上記第3図および第4図に認められ
るように、弁座15、弁体16の各流体接液部に
前記複合多重コーテイング材料の薄膜を形成して
なる調節弁10によれば、絞り部における高速流
体の衝突あるいは時として生ずるキヤビテーシヨ
ンからそれら弁座15、弁体16を強力に保護
し、浸食の発生を防止可能となることは明らかで
ある。なお、第4図の高圧水によるエロージヨン
加速試験は、試験片に短時間で故意にエロージヨ
ン損傷を与えるため、鋭利なスリツト部から超高
圧水流束を試験片の局部に激しく衝突させて損傷
を加速させるようにしたテスト装置による比較試
験であり損傷時間および損傷量の絶対値は上記実
施例に係る調節弁10にそのままあてはまるもの
でないことは勿論である。 次に、上記実施例の作用について説明する。 弁開閉アクチユエータの作動により、弁体16
が軸方向に移動され、弁体16のプラグ部22が
弁座15の締切部18との間に所定間隙の絞り部
を形成すると、入口流路11から弁室13に流入
する流体がその絞り部を通過する際に、圧力ある
いは流量を調節され、弁座15の懐部19から排
出孔部20を経て出口流路12へ排出される。 ここで、上記絞り部によつて急激に加速される
高速流体は、弁体16のプラグ部22と締切部2
1に激しく衝突し、さらに弁座15の締切部1
8、懐部19にも衝撃を与えるが、それらの流体
接液部の表面は前述のように耐浸食性能の非常に
高いステライト等のコバルト合金、もしくは
SUS440C等のマルテンサイト系ステンレス鋼の
地下に超高硬度を有する前記複合多重コーテイン
グ材料の薄膜によつて被覆されていることから、
容易に浸食されることがない。 また、上記調節弁10に供給される流体が高圧
高温水であり、鉄イオン等の懸濁粒子を含んでい
る場合でも、絞り部を形成する弁体16のプラグ
部22、締切部21、あるいは弁座15の締切部
18、懐部19、排出孔部20の表面は、非凝着
性が高く、不活性な無機材料である前記複合多重
コーテイング材料で覆われていることから、金属
表面に生ずる静電力を抑えるとともに、仮に弁体
16のプラグ部22および締切部21、もしくは
弁座15の締切部18等に鉄イオン等の懸濁粒子
が引付けられても前記複合多重コーテイング材料
の非凝着性のため、容易にそれらに付着せず、流
体中に含まれたまま出口流路12から排出される
こととなり、スケールの付着による流体の大幅な
不足発生を防止することが可能である。また、弁
の全閉時においても、弁体16の締切部21、あ
るいは弁座15の締切部18にスケールの付着が
生じにくくしたつて確実な締切性能を得ることが
可能となり、スケール付着物の噛み込みによる締
切部18,21におけるエロージヨン損傷の発生
を防止することも可能となる。 すなわち、上記実施例によれば、流量の調節時
に、弁座15と弁体16との間に形成される絞り
部の存在によつて生ずるエロージヨンの発生とス
ケールの付着、堆積現象を軽減することが可能と
なる。したがつて、エロージヨンの発生によつて
弁座15や弁体16を頻繁に交換したり、スケー
ルの付着により流量の大幅な不足を生じ調節不能
に至ることがない。 [発明の効果] 以上のように、本発明は、入口流路および出口
流路ならびに弁室を備えるケーシングと、ケーシ
ングの弁室内に形成される弁座と、ケーシングに
支持され、ケーシングの弁室内を弁座に対して接
離する方向に移動可能とされる弁体とを有してな
る調節弁において、弁座および弁体の表面に炭窒
化チタン(TiCN)、窒化チタン(TiN)、アルミ
ナ(Al2O3)からなる複合多重コーテイング材料
を被着するようにしたものである。したがつて、
弁体と弁座の耐浸食性能を向上するとともに、弁
体と弁座に対するスケールの付着を防止し、長期
に亘つて制御性の良好な調節弁を得ることが可能
となる。
According to Figure 3 of [Table], the surface hardness of the composite multi-layered coating material shown in Figure 2 coated on the surface of Stellite No. 6 deposited on the base material of SUS316 is the same as that of other treatment methods. It is extremely hard compared to HmV3000 (microbits hardness).
It is recognized that the hardness is extremely high. FIG. 4 is a diagram showing weight loss based on accelerated erosion test using high-pressure water. According to this Figure 4, Stellite No. 1 is deposited on the base material of SUS316.
It is recognized that the reduced weight of the test piece obtained by coating the surface of No. 6 with the composite multiple coating material shown in FIG. 2 has extremely high corrosion resistance. That is, as seen in FIGS. 3 and 4 above, according to the control valve 10 in which a thin film of the composite multiple coating material is formed on each of the fluid contact parts of the valve seat 15 and the valve body 16, the throttle It is clear that the valve seat 15 and the valve body 16 can be strongly protected from the collision of high-speed fluid or cavitation that sometimes occurs, and the occurrence of erosion can be prevented. In addition, in the accelerated erosion test using high-pressure water shown in Figure 4, in order to intentionally cause erosion damage to the test piece in a short period of time, the ultra-high pressure water flux is violently collided with the local part of the test piece from a sharp slit to accelerate the damage. It goes without saying that the absolute values of the damage time and the amount of damage do not directly apply to the control valve 10 according to the above embodiment, as this was a comparative test using a testing device designed to perform the same. Next, the operation of the above embodiment will be explained. Due to the operation of the valve opening/closing actuator, the valve body 16
is moved in the axial direction, and when the plug part 22 of the valve body 16 forms a constriction part with a predetermined gap between the plug part 22 of the valve body 16 and the shutoff part 18 of the valve seat 15, the fluid flowing into the valve chamber 13 from the inlet channel 11 passes through the constriction part. When passing through the chamber, the pressure or flow rate is adjusted and the fluid is discharged from the pocket 19 of the valve seat 15 to the outlet passage 12 via the discharge hole 20. Here, the high-speed fluid that is rapidly accelerated by the constriction section moves between the plug section 22 of the valve body 16 and the shutoff section 2.
1 violently collides with the valve seat 15, and furthermore, the valve seat 15 is
8. Impact is also applied to the pocket 19, but the surface of those parts in contact with the fluid is made of cobalt alloy such as stellite, which has very high corrosion resistance as described above, or
Because the surface of martensitic stainless steel such as SUS440C is coated with a thin film of the above-mentioned composite multi-layered coating material having ultra-high hardness,
Not easily eroded. Further, even if the fluid supplied to the control valve 10 is high-pressure, high-temperature water and contains suspended particles such as iron ions, the plug portion 22 of the valve body 16 forming the throttle portion, the shut-off portion 21, or The surfaces of the shutoff portion 18, pocket portion 19, and discharge hole portion 20 of the valve seat 15 are covered with the composite multi-coating material, which is an inert inorganic material with high non-adhesive properties, so that it does not adhere to the metal surface. In addition to suppressing the generated electrostatic force, even if suspended particles such as iron ions are attracted to the plug portion 22 and the shutoff portion 21 of the valve body 16 or the shutoff portion 18 of the valve seat 15, the non-resistance of the composite multiple coating material Due to its adhesive properties, it does not easily adhere to them and is discharged from the outlet channel 12 while remaining contained in the fluid, making it possible to prevent a large shortage of fluid due to scale adhesion. . Furthermore, even when the valve is fully closed, it is possible to obtain reliable shut-off performance by making it difficult for scale to adhere to the shut-off portion 21 of the valve body 16 or the shut-off portion 18 of the valve seat 15. It is also possible to prevent erosion damage in the closing portions 18, 21 due to jamming. That is, according to the above embodiment, when adjusting the flow rate, it is possible to reduce the occurrence of erosion and the adhesion and accumulation of scale caused by the presence of the constriction portion formed between the valve seat 15 and the valve body 16. becomes possible. Therefore, the valve seat 15 and the valve body 16 will not have to be replaced frequently due to the occurrence of erosion, and the adhesion of scale will not cause a significant shortage of flow rate, which will result in the inability to adjust. [Effects of the Invention] As described above, the present invention includes a casing that includes an inlet flow path, an outlet flow path, and a valve chamber, a valve seat that is supported by the casing, and that is formed in the valve chamber of the casing. and a valve body that is movable toward and away from the valve seat, the surfaces of the valve seat and the valve body are coated with titanium carbonitride (TiCN), titanium nitride (TiN), and alumina. A composite multiple coating material consisting of (Al 2 O 3 ) is applied. Therefore,
It is possible to improve the corrosion resistance of the valve body and valve seat, prevent scale from adhering to the valve body and valve seat, and obtain a control valve with good controllability over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる調節弁を示
す断面図、第2図は本発明における複合多重コー
テイング材料の被着状態を示す断面図、第3図は
複合多重コーテイング材料の表面硬度を示す線
図、第4図は高圧水によるエロージヨン加速試験
の結果を示す線図である。 10……調節弁、11……入口流路、12……
出口流路、13……弁室、14……ケーシング、
15……弁座、16……弁体。
FIG. 1 is a cross-sectional view showing a control valve according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the state of application of the composite multiple coating material in the present invention, and FIG. 3 is a surface hardness of the composite multiple coating material. FIG. 4 is a diagram showing the results of an accelerated erosion test using high-pressure water. 10... Control valve, 11... Inlet channel, 12...
Outlet flow path, 13... valve chamber, 14... casing,
15... Valve seat, 16... Valve body.

Claims (1)

【特許請求の範囲】 1 入口流路および出口流路ならびに弁室を備え
るケーシングと、ケーシングの弁室内に形成され
る弁座と、ケーシングに支持され、ケーシングの
弁室内を弁座に対して接離する方向に移動可能と
される弁体とを有してなる調節弁において、弁座
および弁体の表面に炭窒化チタン(TiCN)、窒
化チタン(TiN)、アルミナ(Al2O3)からなる
複合多重コーテイング材料を被着することを特徴
とする調節弁。 2 前記複合多重コーテイング材料が、弁座およ
び弁体を形成する母材の表面に硬化形成されてな
るコバルト合金系硬化材の表面に被着される特許
請求の範囲第1項に記載の調節弁。
[Claims] 1. A casing including an inlet flow path, an outlet flow path, and a valve chamber, a valve seat formed in the valve chamber of the casing, and a valve seat supported by the casing and in contact with the valve seat within the valve chamber of the casing. In a control valve having a valve body that is movable in the direction of separation, the surfaces of the valve seat and the valve body are coated with titanium carbonitride (TiCN), titanium nitride (TiN), or alumina (Al 2 O 3 ). A control valve characterized by being coated with a composite multiple coating material. 2. The control valve according to claim 1, wherein the composite multiple coating material is adhered to the surface of a cobalt alloy-based hardened material that is hardened and formed on the surface of a base material that forms the valve seat and the valve body. .
JP2212286A 1986-02-05 1986-02-05 Adjusting valve Granted JPS62180180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212286A JPS62180180A (en) 1986-02-05 1986-02-05 Adjusting valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212286A JPS62180180A (en) 1986-02-05 1986-02-05 Adjusting valve

Publications (2)

Publication Number Publication Date
JPS62180180A JPS62180180A (en) 1987-08-07
JPH0379590B2 true JPH0379590B2 (en) 1991-12-19

Family

ID=12074074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212286A Granted JPS62180180A (en) 1986-02-05 1986-02-05 Adjusting valve

Country Status (1)

Country Link
JP (1) JPS62180180A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315369U (en) * 1986-07-15 1988-02-01
JP5269716B2 (en) * 2009-08-12 2013-08-21 株式会社日立産機システム Oil-filled transformer

Also Published As

Publication number Publication date
JPS62180180A (en) 1987-08-07

Similar Documents

Publication Publication Date Title
USRE34173E (en) Multi-layer wear resistant coatings
Goyal et al. Slurry erosion behaviour of HVOF sprayed WC–10Co–4Cr and Al2O3+ 13TiO2 coatings on a turbine steel
Vereschaka et al. Development and research of nanostructured multilayer composite coatings for tungsten-free carbides with extended area of technological applications
US6073648A (en) Metal element having a laminated coating
Parameswaran et al. Titanium nitride coating for aero engine compressor gas path components
JPH02175859A (en) Multi-layered abrasion-resistant coating
RU2559955C2 (en) Valve fitted by ceramic gate with protected blocking surfaces
JPH0379591B2 (en)
CN105179719B (en) Sliding door regulator
Singh et al. Slurry erosion behaviour of plasma thermal sprayed (50%) WC-Co-Cr and Ni-Cr-B-Si coatings of different thickness on CA6NM turbine steel material
JPH0379590B2 (en)
JP2021107741A (en) Safety valve and nozzle and disk or device used in the same
Shanov et al. Erosion resistance of coatings for metal protection at elevated temperatures
JPS6148671A (en) Adjusting valve
Garg et al. Low‐Temperature Chemical Vapor Deposition Tungsten Carbide Coatings for Wear/Erosion Resistance
Kumar et al. Influence of Surface Treatments on Erosion Behavior of Various Steel Alloys-A Literature Review
Feldshtein et al. Tribological characteristics of composite coatings formed by laser cladding of powders of nickel self-fluxing alloy and bronze
Oka et al. Water droplet erosion resistance of aluminizing diffusion coatings on steel tubes
WO2020098967A1 (en) Coated article exhibiting high corrosion and erosion resistance including ain-layer
KR102481582B1 (en) Ball for ball valve
Kim et al. Plasma diffusion treatment of stellite
Tkhabisimov et al. Research results of solid particle erosion resistance of 20GL steel with boriding
RU99841U1 (en) LOCKING BODY FOR THE BALL VALVE
Garg et al. Low‐Temperature CVD Tungsten Carbide Coatings for Wear/Erosion Resistance
Tutar et al. The hydro-abrasive erosion wear behavior of duplex-treated surfaces of AISI H13 tool steel