JPH0379313B2 - - Google Patents

Info

Publication number
JPH0379313B2
JPH0379313B2 JP824383A JP824383A JPH0379313B2 JP H0379313 B2 JPH0379313 B2 JP H0379313B2 JP 824383 A JP824383 A JP 824383A JP 824383 A JP824383 A JP 824383A JP H0379313 B2 JPH0379313 B2 JP H0379313B2
Authority
JP
Japan
Prior art keywords
composite
heat
water
inorganic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP824383A
Other languages
Japanese (ja)
Other versions
JPS59137381A (en
Inventor
Tadayoshi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP824383A priority Critical patent/JPS59137381A/en
Publication of JPS59137381A publication Critical patent/JPS59137381A/en
Publication of JPH0379313B2 publication Critical patent/JPH0379313B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性および不燃性に優れた耐熱無機
複合体の製造方法に関するものである。 本発明により得られる耐熱無機複合体は耐熱性
および不熱性に優れるとともに電気絶縁性にも優
れ、アーク等が直接当る消弧材料あるいは電気炉
等で用いられる絶縁スペーサなどの用途に好適に
用いることができる。 ところで、無機質繊維および/または無機質粉
末からなる主剤と正ホウ酸および無水ホウ酸なら
びに酸化亜鉛から構成された結合剤を用い、これ
らを加圧加熱成形して得る複合体の製造方法は例
えば特公昭54−7359号公報などで公知である。そ
こで、このような従来公知の複合体の製造方法を
本発明者らが検討した結果、次のようなことが判
明した。即ち、特に結合剤として用いたホウ酸と
酸化亜鉛は加圧加熱成形時ならびにその後350℃
までの加熱により2ZnO・3B2O3・3H2Oなる含水
ホウ酸亜鉛塩を形成する。さらに、350〜450℃の
加熱によりこれが変化してβZnO・B2O3に変化す
る。これらの結晶が生成することにより耐水性お
よび耐熱性に優れたものとなる。 しかし、従来の複合体は必然的に気孔を有する
欠陥がある。その理由として次のことが挙げられ
る。即ち、加熱加圧成形時にH3BO3の熱変化に
伴う水分が複合体中に残存し、200℃までの加熱
によりこの水分が飛散して気孔の原因となる。ま
た、2ZnO3・3H2OはβZnO・B2O3に熱変化する
際に結合水が脱水され、複合体中に気孔を残す。
この現象は結合剤が持つ一つの必然的な欠陥であ
り、従来の製造方法においては複合体中の気孔を
少なくすることはほとんど不可能であつた。そし
て、気孔が多い複合体は吸水率が大きく、強度な
らびに電気絶縁性が劣ることは言うまでもない。 本発明は従来品の欠陥である複合体中の気孔を
少くし、耐熱性、不熱性、強度、電気絶縁性およ
び吸水率などの特性の優れた無機複合体を得る耐
熱無機複合体の製造方法を提供することを目的と
する。 本発明において、耐水性および耐熱性に優れた
水溶性無機接着剤を従来公知の製造法により得ら
れた複合体に含浸被覆することにより、耐熱性お
よび不熱性は従来より劣化させず、吸水性、強度
および電気絶縁性において従来より優れた耐熱無
機複合体を得るようにしたものである。 そこで、まず本発明に用いる従来公知の複合体
について簡単に説明する。まず、主剤である無機
質繊維としては、アスベスト繊維やガラス繊維な
どが主に用いられるが、チタン酸カリウム繊維や
シリカ繊維などのセラミツクス繊維なども用いる
ことができる。又、無機質粉末としては、層状物
質であるマイカ粉末やタルリ粉末などが適し、ま
た高融点のアルミナやマグネシアなども使用でき
る。主剤としては耐熱性に優れ、電気絶縁性に優
れたものであれば、いずれも用いることができ
る。結合剤としては正ホウ酸および酸化亜鉛が主
体でこれらに無水ホウ酸を混在させたものが一般
に用いられる。本発明では組成の一例として正ホ
ウ酸46.58重量%、無水ホウ酸10.50重量%、酸化
亜鉛42.92重量%の比率のものを用いた。 これらの主剤と結合剤を組合せて加熱加圧成形
して複合体を得るが、本発明で用いた複合体とし
ては、主剤100重量部(マイカ粉末46.16重量部と
酸化アルミニウム53.85重量部で構成された比率
のもの)に対し前記組成の結合剤を53.85重量部
の比率で調合したものを用いた。このような主剤
および結合剤からなる混合粉末を常温の金型(本
発明では高さ50mm、幅125mm、長さ125mmの金型を
用いた。)に充填し(本発明では250gを充填し
た。)、この金型を160〜200℃に昇音している熱盤
間に挿入し、50〜100Kg/cm2の加圧力で20〜
30min間加熱加圧成形する。次に熱盤を冷却する
ことで金型を冷し、金型の温度が100℃以下にな
つた際に加圧を解除し、厚さ5mm、幅125mm、長
さ125mmの複合体を得た。この複合体をさらに電
気炉などに入れ、常温から約450〜500℃に徐々に
昇音させて3時間保持して加熱処理を行い、従来
の複合体を得た。 本発明では、この従来の複合体をさらに耐水
性、耐熱性に優れた水溶性無機接着剤を用いて含
浸被覆し、これにより複合体の気孔を減少させ、
耐熱性や不熱性は従来同様優れており、かつ吸水
率が小さく、強度および電気絶縁性が従来より優
れた無機複合体を得ることができる。 本発明をさらに代表的な実施例に基き、説明す
る。 実施例 1 水溶性無機接着剤として第1リン酸アルミニウ
ムAl(H2PO43および第1リン酸マグネシウム
Mg(H2PO42の25〜50%の水溶液が適している。
この溶液を適当な容器に入れ、従来の複合体をこ
の中に浸漬させる。浸漬時間は複合体の厚さ、形
状などにより任意に決定すれば良いが、複合体に
形成された気孔に溶液が十分に入る時間であれば
良い。本実施例では3〜5時間浸漬した。その
後、複合体を取出し、表面に付着しているリン酸
塩溶液を拭き取り、1〜2時間常温で放置した
後、500℃まで徐々に加熱し3時間保持して所期
の耐熱無機複合体を得た。なお、リン酸塩溶液を
含浸する方法としては真空含浸などがより効果的
であることは言うまでもない。また、含浸被覆の
効果が顕著でない場合は、これらの操作を繰返す
ことにより所望の無機複合体を得ることができ
る。 ところで、これらのリン酸溶液は複合体を形成
している例えば酸化アルミニウムおよび酸化亜鉛
などと反応して強固な結着性を示すとともに複合
体の気孔に流入して複合体を緻密化する効果を有
する。これらリン酸塩溶液の変化をさらに説明す
れば、第1リン酸アルミニウムAl(H2PO43
200〜300℃の加熱でアモルフアスとなり、300〜
400℃でH2AlP3O10とH2AlP3O10・2H2Oになる。
さらに、400〜500℃でAl(PO33になり、耐水性
および耐熱性に優れたものとなる。又、第1リン
酸マグネシウムMg(H2PO42は200℃付近でアモ
ルフアスとなり、200〜400℃でMgH2P2O7とな
り、400℃以上ではMg(PO32となることが知ら
れている。本実施例では前述したように複合体中
の材料とさらに複雑な反応が進み、耐水性、耐熱
性に優れ、緻密化と同時に強度、電気絶縁性など
の向上にも効果を奏する。 このようにして製造された本実施例の耐熱無機
複合体の特性を測定した結果を他の実施例のもの
とともに表に示す。ここで、吸水率は原厚さで幅
50mm、長さ50mmの形状品を試験片とし、150℃で
4時間乾燥後重量(W0)を測定し、次に純水中
に24時間浸漬させた後表面を拭き、重量を測定し
た。吸水率は次式により算出した。 吸水率(%)=W1−W0/W0×100 吸水率が小さいものほど気孔が少ないと判断し
た。曲げ強さはJISC2210(電気絶縁用アスベスト
セメント板)に準じ、原厚さで幅20mm、長さ
The present invention relates to a method for producing a heat-resistant inorganic composite having excellent heat resistance and nonflammability. The heat-resistant inorganic composite obtained by the present invention has excellent heat resistance and heat resistance, as well as excellent electrical insulation properties, and can be suitably used for applications such as arc extinguishing materials that are directly exposed to arcs, etc., and insulating spacers used in electric furnaces, etc. I can do it. By the way, a method for manufacturing a composite obtained by pressurizing and heating molding using a main agent consisting of inorganic fibers and/or inorganic powder and a binder consisting of orthoboric acid, boric anhydride, and zinc oxide is described, for example, by Tokko Sho. This method is known from, for example, Japanese Patent No. 54-7359. Accordingly, the present inventors investigated the conventionally known method for manufacturing such a composite, and as a result, the following findings were found. That is, in particular, boric acid and zinc oxide used as binders were heated at 350°C during pressure and heat molding and afterwards.
By heating to 2ZnO.3B 2 O 3.3H 2 O, a hydrated zinc borate salt is formed. Furthermore, heating at 350 to 450°C changes this to βZnO·B 2 O 3 . The formation of these crystals provides excellent water resistance and heat resistance. However, conventional composites inevitably suffer from the defect of having pores. The reasons for this are as follows. That is, during hot-pressure molding, moisture associated with thermal changes in H 3 BO 3 remains in the composite, and heating up to 200° C. causes this moisture to scatter, causing pores. Furthermore, when 2ZnO 3 .3H 2 O is thermally transformed into βZnO .B 2 O 3 , bound water is dehydrated, leaving pores in the composite.
This phenomenon is an inevitable defect of the binder, and it has been almost impossible to reduce the number of pores in the composite using conventional manufacturing methods. It goes without saying that a composite with many pores has a high water absorption rate and is inferior in strength and electrical insulation. The present invention is a method for producing a heat-resistant inorganic composite that reduces pores in the composite, which are defects of conventional products, and obtains an inorganic composite that has excellent properties such as heat resistance, heat resistance, strength, electrical insulation, and water absorption. The purpose is to provide In the present invention, by impregnating and coating a composite obtained by a conventionally known manufacturing method with a water-soluble inorganic adhesive having excellent water resistance and heat resistance, heat resistance and heat resistance do not deteriorate compared to conventional methods, and water absorption The present invention aims to obtain a heat-resistant inorganic composite that is superior in strength and electrical insulation properties to conventional materials. First, the conventionally known composite used in the present invention will be briefly explained. First, as the inorganic fibers that are the main ingredient, asbestos fibers and glass fibers are mainly used, but ceramic fibers such as potassium titanate fibers and silica fibers can also be used. Further, as the inorganic powder, layered materials such as mica powder and taruri powder are suitable, and high melting point alumina and magnesia can also be used. As the base material, any material can be used as long as it has excellent heat resistance and electrical insulation. As a binder, a material mainly composed of orthoboric acid and zinc oxide mixed with boric anhydride is generally used. In the present invention, as an example of the composition, a composition having a ratio of 46.58% by weight of orthoboric acid, 10.50% by weight of boric anhydride, and 42.92% by weight of zinc oxide was used. These base materials and binders are combined and molded under heat and pressure to obtain a composite.The composite used in the present invention consists of 100 parts by weight of the base material (46.16 parts by weight of mica powder and 53.85 parts by weight of aluminum oxide). 53.85 parts by weight of the binder having the above composition was used. The mixed powder consisting of the base agent and the binder was filled into a mold at room temperature (in the present invention, a mold with a height of 50 mm, a width of 125 mm, and a length of 125 mm was used) (in the present invention, 250 g was filled). ), this mold is inserted between heating plates heated to 160 to 200℃, and heated to 20 to 20℃ with a pressure of 50 to 100Kg/ cm2 .
Heat and pressure mold for 30 minutes. Next, the mold was cooled by cooling the hot platen, and when the temperature of the mold fell below 100°C, the pressure was released to obtain a composite with a thickness of 5 mm, width of 125 mm, and length of 125 mm. . This composite was further placed in an electric furnace or the like, and the temperature was gradually increased from room temperature to approximately 450 to 500°C, and heat treatment was performed by holding the temperature for 3 hours to obtain a conventional composite. In the present invention, this conventional composite is further impregnated and coated with a water-soluble inorganic adhesive having excellent water resistance and heat resistance, thereby reducing the pores of the composite.
It is possible to obtain an inorganic composite that has excellent heat resistance and heat resistance as before, has a low water absorption rate, and has better strength and electrical insulation than before. The present invention will be further explained based on representative examples. Example 1 Monobasic aluminum phosphate Al(H 2 PO 4 ) 3 and monobasic magnesium phosphate as water-soluble inorganic adhesives
A 25-50% aqueous solution of Mg( H2PO4 ) 2 is suitable.
This solution is placed in a suitable container and the conventional composite is immersed therein. The immersion time may be arbitrarily determined depending on the thickness, shape, etc. of the composite, and may be any time that allows the solution to sufficiently enter the pores formed in the composite. In this example, immersion was carried out for 3 to 5 hours. After that, the composite was taken out, the phosphate solution adhering to the surface was wiped off, and the mixture was left at room temperature for 1 to 2 hours, then gradually heated to 500℃ and kept for 3 hours to form the desired heat-resistant inorganic composite. Obtained. It goes without saying that vacuum impregnation is more effective as a method for impregnating with the phosphate solution. If the effect of the impregnated coating is not significant, a desired inorganic composite can be obtained by repeating these operations. By the way, these phosphoric acid solutions react with aluminum oxide, zinc oxide, etc. that form the complex, exhibiting strong binding properties, and also flow into the pores of the complex and have the effect of densifying the complex. have To further explain the changes in these phosphate solutions, primary aluminum phosphate Al(H 2 PO 4 ) 3 is
It becomes amorphous when heated to 200~300℃, and 300~
At 400℃, it becomes H 2 AlP 3 O 10 and H 2 AlP 3 O 10・2H 2 O.
Furthermore, it becomes Al(PO 3 ) 3 at 400 to 500°C, and has excellent water resistance and heat resistance. Furthermore, monobasic magnesium phosphate Mg(H 2 PO 4 ) 2 becomes amorphous at around 200°C, becomes MgH 2 P 2 O 7 at 200 to 400°C, and becomes Mg(PO 3 ) 2 above 400°C. Are known. In this example, as described above, a more complex reaction occurs with the materials in the composite, resulting in excellent water resistance and heat resistance, and is effective in improving strength, electrical insulation, etc. as well as densification. The results of measuring the properties of the heat-resistant inorganic composite of this example produced in this manner are shown in the table together with those of other examples. Here, the water absorption rate is the width of the original thickness.
A test piece having a shape of 50 mm and a length of 50 mm was used, and the weight (W 0 ) was measured after drying at 150° C. for 4 hours, and then immersed in pure water for 24 hours, the surface was wiped, and the weight was measured. The water absorption rate was calculated using the following formula. Water absorption rate (%) = W 1 −W 0 /W 0 ×100 It was determined that the smaller the water absorption rate, the fewer pores there were. The bending strength is based on JISC2210 (asbestos cement board for electrical insulation), and the original thickness is 20 mm in width and length.

【表】 125mmに切断加工したものを試料とし、支点間100
mmで常態時の曲げ強さを測定した。耐アーク性は
JISK6911(熱硬化性プラスチツクスの一般試験
法)の5・15項により常態時の耐アーク性を測定
した。絶縁抵抗はJISK6911の5・12・3項によ
り常態時ならびに25℃−90%RHで100時間後の
絶縁抵抗値も測定した。絶縁破壊電圧は厚さ2mm
に研磨したものを試料とし、常態時の貫層破壊電
圧を測定した。 実施例 2 水溶性無機接着剤として金属アルコキシドであ
るエチールシリケートSi(OC2H54を用いた。エ
チールシリケート100重量部に対しエタノール
(95%)を75重量部加えてまず混合し、次に水90
重量部に塩酸(35%)を1.2重量部加えさらにエ
タノール(95%)を75重量部加えて混合したもの
を前記混合したものに加えて本実施例の水溶性無
機接着剤とした。この溶液に従来の複合体を浸漬
し、40〜60℃で5時間加温した。その後複合体の
表面を拭き取り、60〜80℃で5〜8時間加熱し
た。次に、500℃まで徐々に加熱し、3時間保持
して本実施例の耐熱無機複合体を得た。 一般に金属アルコキシドから無機非晶体への過
程は例えばエチールシリケートの場合、 nSi(OC2H54+4nH2O→nSi(OH)4 +4nC2H5OH と加水分解し、加水分解の進行につれて液の粘度
が増しゲル化する。次にゲルを徐々に加熱すると
酸化物非晶体に変化し、その過程でOR基の分
解、脱炭素および脱水縮合などが起り、緻密化す
ることが知られている。一般に多く用いられる金
属アルコキシドとしてはエチールシリケート以外
にはチタンイソプロポキシドTi(OisoC3H74など
がある。実施例2により得られた耐熱無機複合体
の特性を前記表に示す。試験方法はいずれも実施
例1と同じである。 実施例 3 珪酸分が20〜40重量%のコロイダルシリカ溶液
に従来の複合体を24時間浸漬させた後表面を拭き
取り、60〜80℃で5〜8時間加熱した。次に500
℃まで徐々に加熱し3時間保持して本実施例の耐
熱無機複合体を得た。コロイダルシリカ粒子の表
面は−Si−O−Siのシロキサン構造よりなつてお
り、シラノール基でおおわれている。このような
コロイダルシリカを加熱すると大部分の結合水は
約200℃で失われる。コロイダルシリカはフアン
デルワールス力によるため接着力は弱いが、本発
明のように複合体の気孔を少くする場合には有効
に働く。また、コロイダルシリカは耐水性に優
れ、電気絶縁性が高いという特徴がある。本実施
例により得られた耐熱無機複合体の特性も表に示
す。試験方法はいずれも実施例1と同じである。 実施例 4 シリカあるいはアルミナを主成分とする無機接
着剤(アロンセラミツクやスミセラムなどの商品
名で市販されている。)を水で適当に薄めたもの
を用い、この中へ従来の複合体を24時間浸漬させ
た後表面を拭き取り、60〜80℃で5〜8時間加熱
した。次に、500℃まで徐々に加熱し3時間保持
して本実施例の耐熱無機複合体を得た。特性を表
に示す。試験方法はいずれも実施例1と同じであ
る。 比較例 前記の材料および製造方法により得られた従来
の複合体の特性を表に示す。試験方法はいずれも
実施例1と同じである。 以上のように本発明においては、無機質繊維お
よび/または無機質粉末からなる主剤とホウ酸お
よび酸化亜鉛から構成される結合剤を加熱加圧成
形して得た複合体を約450〜500℃まで加熱処理し
た従来の複合体に、さらに水溶性無機接着剤を含
浸被覆することにより、該接着剤が複合体の気孔
に流入し充填されるため複合体が緻密化し、耐熱
性および不熱性を劣化させずに吸水率が少くかつ
強度および電気絶縁性を向上させることができ
る。この発明により得られた耐熱無機複合体はア
ークが直接当る消弧材料あるいは電気炉などの絶
縁スペーサーなどに好適に用いることができる。
[Table] The sample was cut to 125 mm, and the distance between the supporting points was 100 mm.
The bending strength under normal conditions was measured in mm. Arc resistance is
Arc resistance under normal conditions was measured according to JISK6911 (General Test Methods for Thermosetting Plastics), Section 5.15. Insulation resistance was measured in accordance with JISK6911 Section 5.12.3 under normal conditions and after 100 hours at 25°C and 90%RH. Dielectric breakdown voltage is 2mm thick
The sample was polished and the translaminar breakdown voltage under normal conditions was measured. Example 2 Ethyl silicate Si(OC 2 H 5 ) 4 , which is a metal alkoxide, was used as a water-soluble inorganic adhesive. Add 75 parts by weight of ethanol (95%) to 100 parts by weight of ethyl silicate and mix, then 90 parts by weight of water.
A mixture of 1.2 parts by weight of hydrochloric acid (35%) and further 75 parts by weight of ethanol (95%) was added to the above mixture to obtain the water-soluble inorganic adhesive of this example. A conventional composite was immersed in this solution and heated at 40-60°C for 5 hours. Thereafter, the surface of the composite was wiped off and heated at 60-80°C for 5-8 hours. Next, the mixture was gradually heated to 500°C and maintained for 3 hours to obtain the heat-resistant inorganic composite of this example. In general, the process from metal alkoxide to inorganic amorphous is, for example, in the case of ethyl silicate, it is hydrolyzed as nSi(OC 2 H 5 ) 4 +4nH 2 O→nSi(OH) 4 +4nC 2 H 5 OH, and as the hydrolysis progresses, The viscosity of the liquid increases and it becomes a gel. It is known that when the gel is then gradually heated, it changes to an amorphous oxide, and in the process, decomposition of the OR group, decarbonization, and dehydration condensation occur, resulting in densification. In addition to ethyl silicate, commonly used metal alkoxides include titanium isopropoxide Ti(OisoC 3 H 7 ) 4 and the like. The properties of the heat-resistant inorganic composite obtained in Example 2 are shown in the table above. All test methods were the same as in Example 1. Example 3 A conventional composite was immersed in a colloidal silica solution containing 20 to 40% by weight of silicic acid for 24 hours, then the surface was wiped off and heated at 60 to 80°C for 5 to 8 hours. then 500
The heat-resistant inorganic composite of this example was obtained by gradually heating the mixture to .degree. C. and maintaining it for 3 hours. The surface of the colloidal silica particles has a siloxane structure of -Si-O-Si and is covered with silanol groups. When such colloidal silica is heated, most of the bound water is lost at about 200°C. Colloidal silica has a weak adhesive force due to Van der Waals force, but it works effectively when reducing the pores of a composite as in the present invention. Additionally, colloidal silica has excellent water resistance and high electrical insulation properties. The properties of the heat-resistant inorganic composite obtained in this example are also shown in the table. All test methods were the same as in Example 1. Example 4 An inorganic adhesive mainly composed of silica or alumina (commercially available under trade names such as Aron Ceramic and Sumiceram) was diluted appropriately with water, and a conventional composite was placed in it for 24 hours. After soaking for an hour, the surface was wiped off and heated at 60 to 80°C for 5 to 8 hours. Next, the mixture was gradually heated to 500°C and maintained for 3 hours to obtain the heat-resistant inorganic composite of this example. The characteristics are shown in the table. All test methods were the same as in Example 1. Comparative Example The properties of a conventional composite obtained using the materials and manufacturing methods described above are shown in the table. All test methods were the same as in Example 1. As described above, in the present invention, a composite obtained by heating and press-molding a main agent consisting of inorganic fibers and/or inorganic powder and a binder consisting of boric acid and zinc oxide is heated to about 450 to 500 ° C. By further impregnating and coating the treated conventional composite with a water-soluble inorganic adhesive, the adhesive flows into and fills the pores of the composite, making the composite denser and deteriorating its heat resistance and heat resistance. It has low water absorption and can improve strength and electrical insulation. The heat-resistant inorganic composite obtained according to the present invention can be suitably used as an arc-extinguishing material that is directly exposed to arcs, or as an insulating spacer for electric furnaces and the like.

Claims (1)

【特許請求の範囲】 1 無機質繊維および/または無機質粉末からな
る主剤と正ホウ酸および無水ホウ酸ならびに酸化
亜鉛から構成された結合剤を用い、これらを加熱
加圧成形して得た複合体を約450〜500℃の温度で
加熱処理した後、この複合体に水溶性無機接着剤
を含浸被覆したことを特徴とする耐熱無機複合体
の製造方法。 2 水溶性無機接着剤としてモノリン酸アルミニ
ウム水溶液またはモノリン酸マグネシウム水溶液
などのリン酸塩溶液を用いたことを特徴とする特
許請求の範囲第1項記載の耐熱無機複合体の製造
方法。 3 水溶性無機接着剤として金属アルコキシドの
水溶液を用いたことを特徴とする特許請求の範囲
第1項記載の耐熱無機複合体の製造方法。 4 水溶性無機接着剤としてコロイダルシリカ溶
液を用いたことを特徴とする特許請求の範囲第1
項記載の耐熱無機接着剤の製造方法。 5 水溶性無機接着剤としてシリカまたはアルミ
ナを主成分としたものを用いたことを特徴とする
特許請求の範囲第1項記載の耐熱無機複合体。
[Scope of Claims] 1. A composite obtained by heating and press-molding a main material consisting of inorganic fibers and/or inorganic powder and a binder consisting of orthoboric acid, boric anhydride, and zinc oxide. 1. A method for producing a heat-resistant inorganic composite, characterized in that the composite is impregnated and coated with a water-soluble inorganic adhesive after being heat-treated at a temperature of about 450 to 500°C. 2. The method for producing a heat-resistant inorganic composite according to claim 1, wherein a phosphate solution such as an aluminum monophosphate aqueous solution or a magnesium monophosphate aqueous solution is used as the water-soluble inorganic adhesive. 3. The method for producing a heat-resistant inorganic composite according to claim 1, characterized in that an aqueous solution of metal alkoxide is used as the water-soluble inorganic adhesive. 4 Claim 1 characterized in that a colloidal silica solution is used as the water-soluble inorganic adhesive
A method for producing a heat-resistant inorganic adhesive as described in Section 1. 5. The heat-resistant inorganic composite according to claim 1, wherein a water-soluble inorganic adhesive containing silica or alumina as a main component is used.
JP824383A 1983-01-21 1983-01-21 Manufacture of heat resistant inorganic composite body Granted JPS59137381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP824383A JPS59137381A (en) 1983-01-21 1983-01-21 Manufacture of heat resistant inorganic composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP824383A JPS59137381A (en) 1983-01-21 1983-01-21 Manufacture of heat resistant inorganic composite body

Publications (2)

Publication Number Publication Date
JPS59137381A JPS59137381A (en) 1984-08-07
JPH0379313B2 true JPH0379313B2 (en) 1991-12-18

Family

ID=11687699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP824383A Granted JPS59137381A (en) 1983-01-21 1983-01-21 Manufacture of heat resistant inorganic composite body

Country Status (1)

Country Link
JP (1) JPS59137381A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166934A (en) * 1985-01-17 1986-07-28 Toyota Motor Corp Short fiber compacted body for manufacturing composite material and its manufacture

Also Published As

Publication number Publication date
JPS59137381A (en) 1984-08-07

Similar Documents

Publication Publication Date Title
KR101788337B1 (en) Glass for insulating composition
CN102531392A (en) Low-temperature co-fired ceramic material and preparation method thereof
US3232782A (en) High temperature resistant vitreous material and method of producing same
RU2525892C1 (en) Method of obtaining quartz ceramics
US3383275A (en) Insulation utilizing boron phosphate
JPH0379313B2 (en)
JP2839365B2 (en) Non-combustible cement for electronic components and method for producing the same
US5492661A (en) Process for producing a casting ceramic
JP3998838B2 (en) Nonflammable sealing material for electronic parts
JPS59232964A (en) Manufacture of mica composite ceramics
CN111892409A (en) Calcium hexaluminate hollow whisker reinforced aluminum-calcium complex phase refractory material and preparation method thereof
KR100482279B1 (en) Preparation method of boron nitride thick film with binder
JPH0421629B2 (en)
JPS621664B2 (en)
JPS616189A (en) Manufacture of cement set body
JP3325046B2 (en) Manufacturing method of arc extinguishing material
RU2148045C1 (en) Raw mix for manufacturing heat-insulating material and method of manufacturing thereof
JP2813391B2 (en) Glazed lightweight ceramic product and method for producing the same
JPS5950084A (en) Ceramic laminate and manufacture
KR20180081321A (en) Inorganic binder for high temperature insulating materials, superhigh temperature insulating materials containing the same and Manufacturing method thereof
JPS6116128B2 (en)
JP3461907B2 (en) Arc extinguishing material composition and method for producing arc extinguishing chamber using the same
Zhien et al. Study of the preparation process for BaO-Al 2 O 3-SiO 2 powders by a two-step method
JPS60166238A (en) Preparation of vitreous insulator
CN111439928A (en) Self-leveling low-expansion glaze slip composition