JPH0379287B2 - - Google Patents

Info

Publication number
JPH0379287B2
JPH0379287B2 JP57070908A JP7090882A JPH0379287B2 JP H0379287 B2 JPH0379287 B2 JP H0379287B2 JP 57070908 A JP57070908 A JP 57070908A JP 7090882 A JP7090882 A JP 7090882A JP H0379287 B2 JPH0379287 B2 JP H0379287B2
Authority
JP
Japan
Prior art keywords
argon
adsorption
oxygen
gas
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57070908A
Other languages
Japanese (ja)
Other versions
JPS58187777A (en
Inventor
Tatsuro Mori
Akira Wakaizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP57070908A priority Critical patent/JPS58187777A/en
Publication of JPS58187777A publication Critical patent/JPS58187777A/en
Publication of JPH0379287B2 publication Critical patent/JPH0379287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 この発明はアルゴン、酸素、窒素よりなる原料
ガスから低温吸着法によつてアルゴンを分離、製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and producing argon from a raw material gas consisting of argon, oxygen, and nitrogen by low-temperature adsorption.

一般にアルゴンの製造は、空気深冷分離装置の
上部精留塔からアルゴン含量の多い酸素を抜き出
し、これを粗アルゴン塔に導き、粗アルゴン塔で
精留して粗アルゴンとし、この粗アルゴン中の酸
素を脱酸したのち高純アルゴン塔で精留し、高純
アルゴンを得る方法によつて行われている。しか
しながら、この方法では、空気深冷分離装置の上
部精留塔から抜き出す原料ガス中の窒素濃度が3
%以上となると、粗アルゴン塔での精留が困難に
なるため、窒素濃度を常に規定濃度以内に保つ必
要があり、これが上部精留塔の運転条件を種々に
制約し、高度の装置運転技術を必要としている。
また、多くの設備を必要とし、設備コストの点で
不利でたり、さらに加熱、冷却を繰り返すため、
エネルギー的にも不経済である。
Generally, in the production of argon, oxygen with a high argon content is extracted from the upper rectification column of an air cryogenic separation device, introduced into a crude argon column, and rectified in the crude argon column to produce crude argon. This is done by deoxidizing oxygen and then rectifying it in a high-purity argon column to obtain high-purity argon. However, in this method, the nitrogen concentration in the raw material gas extracted from the upper rectification column of the air cryogenic separation device is 3.
% or more, it becomes difficult to rectify in the crude argon column, so it is necessary to always maintain the nitrogen concentration within the specified concentration. This imposes various restrictions on the operating conditions of the upper rectifying column, and requires advanced equipment operation technology. need.
In addition, it requires a lot of equipment, which is disadvantageous in terms of equipment cost, and also requires repeated heating and cooling.
It is also uneconomical in terms of energy.

このため、最近上述のような精留法によらない
低温吸着法によるアルゴンの分離方法が提案され
ている。(特公昭55−16088号公報参照)この方法
は、窒素濃度が0.1%以下としたアルゴン、酸素
の混合ガスを−186〜−133℃の低温でかつ1.5〜
30Kg/cm2の圧力下でA型ゼオライトに流通させて
酸素を吸着除去し、アルゴンを分離したのち、圧
力を大気圧まで低下させ、さらに0.01〜1mmHg
まで減圧することによつてA型ゼオライトから酸
素を脱着して、A型ゼオライトを再生するもので
ある。しかし、このて低温吸着法は、吸着工程を
5〜10゜/3〜5分の昇温過程で行つているため、
温度調節が面倒であること、酸素の脱着を真空減
圧下で行つているために真空装置が必要となり、
設備費および動力費が嵩むこと、窒素を予かじめ
0.1%以下に除去する必要があり、原料ガスの種
類が限定されることなどの欠点がある。
For this reason, a method of separating argon using a low-temperature adsorption method without using the above-mentioned rectification method has recently been proposed. (Refer to Japanese Patent Publication No. 55-16088) This method uses a mixed gas of argon and oxygen with a nitrogen concentration of 0.1% or less at a low temperature of -186 to -133°C and
After passing through A-type zeolite under a pressure of 30 kg/cm 2 to adsorb and remove oxygen and separate argon, the pressure is lowered to atmospheric pressure and further 0.01 to 1 mmHg.
By depressurizing the A-type zeolite, oxygen is desorbed from the A-type zeolite and the A-type zeolite is regenerated. However, in this low-temperature adsorption method, the adsorption process is carried out in a heating process of 5 to 10 degrees/3 to 5 minutes.
Temperature control is troublesome, and since oxygen desorption is performed under reduced pressure, a vacuum device is required.
Equipment costs and power costs will increase, and nitrogen should not be added in advance.
It has the disadvantage that it must be removed to 0.1% or less, and the types of raw material gases are limited.

この発明は上記事情に鑑みてなされたもので、
製造設備が少なくてすむとともに運転操作が簡単
であり、しかもアルゴンの回収率の高い低温吸着
法によるアルゴンの製造方法を提供することを目
的とするものである。
This invention was made in view of the above circumstances,
The object of the present invention is to provide a method for producing argon using a low-temperature adsorption method that requires less production equipment, is easy to operate, and has a high recovery rate of argon.

以下、図面を参照してこの発明を詳しく説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、この発明のアルゴンの製造方法の第
1実施例に用いられる製造装置を示すものであ
る。
FIG. 1 shows a manufacturing apparatus used in a first embodiment of the argon manufacturing method of the present invention.

アルゴン10%、酸素50%、窒素40%よりなる混
合ガスが原料ガスとして、100Nm3/hの流量で
管1から圧縮機2に導入される。圧縮機2で3〜
5Kg/cm2に加圧された原料ガスは熱交換器3に送
られ、ここで冷却されて0〜−100℃の温度とな
つて、弁4Aから第1吸着筒5Aと第2吸着筒5
Bとからなり、切換使用される吸着器5の第1吸
着筒5Aに導入される。第1吸着筒5Aおよび第
2吸着筒5Bには吸着剤として細孔径がら5Åの
A型ゼオライトが充填され、流入原料ガス温度と
同じ0〜−100℃の温度に保持されている。第1
吸着筒5Aに流入した原料ガスは、ここで窒素つ
いで酸素が吸着除去されて、純度98.0〜99.9%の
製品アルゴンが、弁6A、管7、流量調整弁8を
経て約9Nm3/hの流量で導出される。なおこの
時のアルゴン回収率は約90%となる。
A mixed gas consisting of 10% argon, 50% oxygen, and 40% nitrogen is introduced from pipe 1 into compressor 2 as raw material gas at a flow rate of 100 Nm 3 /h. 3~ with compressor 2
The raw material gas pressurized to 5 kg/cm 2 is sent to the heat exchanger 3, where it is cooled down to a temperature of 0 to -100°C, and then passed through the valve 4A to the first adsorption cylinder 5A and the second adsorption cylinder 5.
B, and is introduced into the first adsorption column 5A of the adsorption device 5 which is used selectively. The first adsorption cylinder 5A and the second adsorption cylinder 5B are filled with type A zeolite having a pore diameter of 5 Å as an adsorbent, and are maintained at a temperature of 0 to -100°C, which is the same as the temperature of the inflowing raw material gas. 1st
The raw material gas that has flowed into the adsorption cylinder 5A is adsorbed and removed with nitrogen and then oxygen, and the product argon with a purity of 98.0 to 99.9% passes through the valve 6A, the pipe 7, and the flow rate adjustment valve 8, and has a flow rate of about 9 Nm 3 /h. It is derived as The argon recovery rate at this time is approximately 90%.

第1吸着筒5Aの吸着剤が酸素および窒素で飽
和直前に、原料ガスの供給を第1吸着筒5Aから
第2吸着筒5Bに弁を操作して切り替える。第2
吸着筒5Bでは同様に上記の吸着操作が行われ、
製品アルゴンが弁6Bから導出される。
Immediately before the adsorbent in the first adsorption column 5A is saturated with oxygen and nitrogen, the supply of raw material gas is switched from the first adsorption column 5A to the second adsorption column 5B by operating a valve. Second
The above-mentioned adsorption operation is similarly performed in the adsorption column 5B,
Product argon is led off from valve 6B.

一方、第1吸着筒5Aは減圧工程に入る。すな
わち弁4A,6Aが閉じられ、弁9Aが徐々に開
かれて、約200Nm3/hrの割合(後記する返送ガ
スも含まれるため原料ガス量よりも多くなる。)
で筒内ガスが放出され、第1吸着筒5A内の圧力
は徐々に低下してゆく。このとき筒内圧力は第1
吸着筒5Aが、その再生を完了するまでの時間の
内、最後の洗浄工程を除いた再生工程の大部分の
時間をかけて常圧となるまで漸次低下してゆく。
これにつれて、まず筒内に吸着されずに残つてい
た酸素、窒素、アルゴンが流出し、次にA型ゼオ
ライトに吸着されていた酸素及び窒息の内、酸素
がまず脱着し、この脱着酸素と第1吸着筒5Aに
溜まつていたアルゴンとが弁9Aを経て第1吸着
筒より流出する。この酸素とアルゴンとからなる
流出ガスは、管10から熱交換器3に導びかれ、
ここで原料ガスと熱交換されて、加温された後、
原料ガスの供給管1に返送される。ついで、さら
に第1吸着筒5Aの圧力が低下すると上記流出ガ
ス中のアルゴンがほとんどなくなり、実質的に酸
素のみとなる。この時、弁9Aが閉じられ、弁1
1Aが開らかれ、酸素のみの流出ガスは、弁11
Aから管12を経て外部に放出される。そして、
さらに第1吸着筒5Aの圧力が低下すると、吸着
剤から窒素が脱着しだす。この酸素と窒素とから
なる流出ガスは、同様に弁11Aから管12を経
て外部に放出される。第1吸着筒5Aの圧力が常
圧となると、洗滌工程に入る。すなわち、製品ア
ルゴンの約半分が管7から分岐され、減圧弁13
で常圧とされたうえ管14、弁15Aを経て第1
吸着筒5Aに導入され、吸着剤に吸着している残
余の酸素、窒素が洗滌される。洗滌後のアルゴ
ン、酸素、窒素よりなる廃ガスは、弁11A、管
12を通り外部に放出される。かくして、第1吸
着筒5Aは再生され、次の吸着工程に備える。そ
して、第1吸着筒5Aと第2吸着筒5Bとを順次
交互に切り替えることにより連続的に製品アルゴ
ンを得ることができる。上記の各工程における流
出ガスの組成の一例を模式的に図示すると第2図
の如くになる。
On the other hand, the first adsorption column 5A enters the depressurization process. That is, valves 4A and 6A are closed, and valve 9A is gradually opened, at a rate of about 200Nm 3 /hr (this amount is greater than the raw material gas amount as it also includes return gas, which will be described later).
The gas inside the cylinder is released, and the pressure inside the first adsorption cylinder 5A gradually decreases. At this time, the cylinder pressure is the first
The pressure in the adsorption cylinder 5A gradually decreases to normal pressure over the majority of the regeneration process excluding the final washing process, which takes the time until the adsorption cylinder 5A completes its regeneration.
As this occurs, first the oxygen, nitrogen, and argon that remained unadsorbed in the cylinder flow out, and then among the oxygen and suffocation that had been adsorbed on the A-type zeolite, oxygen is first desorbed, and this desorbed oxygen and The argon accumulated in the first adsorption cylinder 5A flows out from the first adsorption cylinder through the valve 9A. This outflow gas consisting of oxygen and argon is led from the pipe 10 to the heat exchanger 3,
After being heated by exchanging heat with the raw material gas,
The raw material gas is returned to the supply pipe 1. Then, when the pressure in the first adsorption column 5A further decreases, almost no argon is present in the outflow gas, and the outflow gas becomes substantially only oxygen. At this time, valve 9A is closed and valve 1
1A is opened and the oxygen-only effluent gas flows through valve 11.
A is discharged to the outside through a pipe 12. and,
When the pressure in the first adsorption column 5A further decreases, nitrogen begins to be desorbed from the adsorbent. This outflow gas consisting of oxygen and nitrogen is similarly discharged to the outside through the pipe 12 from the valve 11A. When the pressure in the first adsorption cylinder 5A becomes normal pressure, a cleaning process begins. That is, about half of the product argon is branched from the pipe 7 and passed through the pressure reducing valve 13.
After that, the pressure is set to normal pressure, and then the first
The adsorbent is introduced into the adsorption column 5A, and residual oxygen and nitrogen adsorbed on the adsorbent are washed away. After cleaning, the waste gas consisting of argon, oxygen, and nitrogen passes through the valve 11A and the pipe 12 and is discharged to the outside. In this way, the first adsorption column 5A is regenerated and prepared for the next adsorption step. By sequentially and alternately switching between the first adsorption cylinder 5A and the second adsorption cylinder 5B, product argon can be obtained continuously. An example of the composition of the outflow gas in each of the above steps is schematically shown in FIG. 2.

つぎに、第3図のグラフを利用して、このアル
ゴンの製造法の原理を説明する。第2図のグラフ
は、A型ゼオライトの0〜−200℃の温度範囲に
おけるアルゴン、窒素、酸素の吸着特性を圧力
700mmHgの時のデータで示したもので、たて軸は
A型ゼオライトの1空洞当たりの吸着分子数を示
し、よこ軸は温度である。このグラフから明らか
なように、温度が0〜−100℃の範囲では、アル
ゴンの吸着量は窒素、酸素の吸着量に比べて著し
く低い。特に−50℃付近ではこの吸着量の差が最
大となつている。したがつて、0〜−100℃、好
ましくは−50℃前後でアルゴン、窒素、酸素の混
合ガスをA型ゼオライトが充填された第1吸着筒
5Aもしくは第2吸着筒5Bに加圧状態で導入す
れば、窒素がついで酸素がA型ゼオライトに吸着
され、アルゴンはほとんど吸着されず、そのまま
第1吸着筒5Aもしくは第2吸着筒5Bから導出
されることになり、アルゴン、酸素、窒素の混合
原料ガスからアルゴンを分離、回収することがで
きる。
Next, the principle of this argon manufacturing method will be explained using the graph of FIG. The graph in Figure 2 shows the adsorption characteristics of type A zeolite for argon, nitrogen, and oxygen in the temperature range of 0 to -200°C under pressure.
The data is shown at 700 mmHg, where the vertical axis shows the number of adsorbed molecules per cavity of A-type zeolite, and the horizontal axis shows the temperature. As is clear from this graph, in the temperature range of 0 to -100°C, the amount of argon adsorbed is significantly lower than that of nitrogen and oxygen. In particular, the difference in adsorption amount is greatest near -50°C. Therefore, a mixed gas of argon, nitrogen, and oxygen is introduced under pressure at 0 to -100°C, preferably around -50°C, into the first adsorption column 5A or the second adsorption column 5B filled with A-type zeolite. In this case, nitrogen is then adsorbed on the A-type zeolite, and argon is hardly adsorbed and is directly extracted from the first adsorption column 5A or the second adsorption column 5B, resulting in a mixed raw material of argon, oxygen, and nitrogen. Argon can be separated and recovered from gas.

そして、酸素および窒素を吸着して飽和寸前と
なつた吸着筒5A,5Bの圧力を徐々に低下させ
ると、まず、吸着筒5A,5B内に吸着されずに
残つていた、酸素、窒素、アルゴンが筒外へ流出
し、次にA型ゼオライトに吸着されていた酸素及
び窒素の内、酸素がまず脱着し、この脱着酸素と
吸着筒5A,5B内に吸着されずに残つているア
ルゴンがともに筒外に流出し、更に吸着筒5A,
5Bの圧力が低下すると上記流出ガス中のアルゴ
ンは殆ど無くなつて酸素が主に流出し、最後に吸
着され易い窒素が脱着しだし、筒外に流出する。
よつて、減圧工程において、その初期に吸着筒5
A,5Bから流出する流出ガスを原料ガス供給装
置に返送すれば、この流出ガス中のアルゴンのほ
とんどが回収される。そして、流出ガス中にアル
ゴンがほとんど含まれなくなるとこの流出ガスは
弁11A,11B、管12から外部に放出する。
このアルゴン含有量による流出ガスの流路の切替
は、流出ガスのアルゴン含有量を検知して、これ
によつて、弁9A,9Bおよひ弁11A,11B
を操作してもよいが、原料ガス組成が一定であれ
ば、流出時間がほぼ一定となるので、時間制御で
上記弁を自動操作することもできる。
Then, when the pressure of the adsorption cylinders 5A and 5B, which have adsorbed oxygen and nitrogen and are on the verge of saturation, is gradually lowered, the oxygen and nitrogen remaining without being adsorbed in the adsorption cylinders 5A and 5B are removed. Argon flows out of the cylinder, and then among the oxygen and nitrogen adsorbed on the A-type zeolite, oxygen is first desorbed, and this desorbed oxygen and the argon remaining unadsorbed in the adsorption cylinders 5A and 5B are combined. Both flow out of the cylinder, and further into the adsorption cylinder 5A,
When the pressure of 5B decreases, almost no argon exists in the outflow gas, and oxygen mainly flows out, and finally nitrogen, which is easily adsorbed, begins to desorb and flows out of the cylinder.
Therefore, in the pressure reduction process, the adsorption column 5
If the outflow gas flowing out from A and 5B is returned to the source gas supply device, most of the argon in this outflow gas will be recovered. When almost no argon is contained in the outflow gas, the outflow gas is released from the valves 11A, 11B and the pipe 12 to the outside.
This switching of the flow path of the outflow gas based on the argon content is performed by detecting the argon content of the outflow gas, and thereby switching the flow path of the valves 9A, 9B and valves 11A, 11B.
However, if the raw material gas composition is constant, the outflow time will be approximately constant, so the above valve can also be automatically operated by time control.

そして、このようなアルゴンの製造方法によれ
ば、吸着温度をさほど厳密に管理しなくてもよ
く、装置の運転が容易となる。また、真空減圧に
よる酸素、窒素の脱着を行つていないので、真空
ポンプなどの真空装置が不要であり、設備費、動
力費が安くて済む。さらに、吸着温度を0〜−
100℃と、A型ゼオライトが窒素、酸素の両者を
同時によく吸着する温度域を選択したので、従来
の低温吸着法のように予め窒素を除去しておく必
要がなく、窒素含有量の多いガスも原料ガスとし
て用いることができ、多様な原料ガスに対応する
ことができる。また、減圧工程時吸着筒5A,5
Bからの流出ガスの内、初期のアルゴン含有量の
高い流出ガスを原料ガス供給装置に返送するよう
にしたので、貴重なアルゴンのロスが少なくな
り、アルゴンの回収率が向上する。
According to such a method for producing argon, it is not necessary to control the adsorption temperature very strictly, and the operation of the apparatus becomes easy. Furthermore, since oxygen and nitrogen are not desorbed by vacuum reduction, a vacuum device such as a vacuum pump is not required, and equipment costs and power costs are low. Furthermore, the adsorption temperature was adjusted from 0 to −
We selected 100℃, a temperature range in which A-type zeolite adsorbs both nitrogen and oxygen well at the same time, so there is no need to remove nitrogen in advance as in conventional low-temperature adsorption methods, and gases with high nitrogen content can be used. It can also be used as a raw material gas, and can be used with a variety of raw material gases. In addition, during the depressurization process, the adsorption cylinders 5A, 5
Among the outflow gases from B, the outflow gas with a high initial argon content is returned to the raw material gas supply device, so the loss of valuable argon is reduced and the recovery rate of argon is improved.

第4図は、この発明のアルゴンの製造方法の他
の例に用いられる製造装置を示すもので、第1図
に示したものと同一構成部分には同一符号を付し
て、その説明は省略する。
FIG. 4 shows a manufacturing apparatus used in another example of the argon manufacturing method of the present invention, and the same components as those shown in FIG. do.

この例では、空気深冷分離装置の複精留塔16
の上部塔17の中間段より抜き出した、例えばア
ルゴン10%、窒素2%、酸素88%よりなる原料ガ
スが1200Nm3/hの流量で管18ら熱交換器3に
送られ、ここで加温されたのち、圧縮機2に送ら
れて、3〜5Kg/cm2程度に加圧されて、第1図に
示した装置と同様の装置によつて純度98.0〜99.9
%のアルゴンが9Nm3/hの流量で得られ、これ
は原料空気に対して約90%の回収率である。ま
た、減圧工程時、アルゴンを含有する流出ガス
は、管10から熱交換器3に送られ、冷却されて
原料ガス供給装置である上部塔17に約180N
m3/hの流量で返送される。流出ガスの上部塔1
7の返送位置は、原料ガス抜き出し位置よりも下
方とされる。
In this example, the double rectification column 16 of the air cryogenic separation device
A raw material gas containing, for example, 10% argon, 2% nitrogen, and 88% oxygen is extracted from the intermediate stage of the upper column 17 and is sent to the heat exchanger 3 through the pipe 18 at a flow rate of 1200 Nm 3 /h, where it is heated. After that, it is sent to the compressor 2, where it is pressurized to about 3 to 5 kg/cm 2 , and the purity is 98.0 to 99.9 using a device similar to that shown in Fig. 1.
% of argon was obtained at a flow rate of 9 Nm 3 /h, which is a recovery of approximately 90% relative to the feed air. In addition, during the depressurization process, the outflow gas containing argon is sent from the pipe 10 to the heat exchanger 3, cooled and sent to the upper column 17, which is a raw material gas supply device, at approximately 180N.
It is returned at a flow rate of m 3 /h. Outflow gas upper tower 1
The return position 7 is below the source gas extraction position.

このようなアルゴンの製造方法によれば、アル
ゴン分離精製工程が空気液化分離装置の深冷部と
分離して運転されるので、相互影響を少なくする
ことが出来、従来の精留法によるアルゴン製造時
の空気深冷分離装置の運転の困難度が緩和され
る。また、第1図の実施例では、吸着筒5A,5
Bからの流出ガスの一部を原料ガス系統に返送す
ることによつて、流出ガス中の酸素が循環し、酸
素が蓄積するが、この例では上部精留塔の精留作
用によつてこのような不都合が解消される。
According to this argon production method, the argon separation and purification process is operated separately from the cryogenic section of the air liquefaction separation device, so mutual influence can be reduced, and argon production using the conventional rectification method is possible. The difficulty of operating the air cryogenic separation equipment is alleviated. In addition, in the embodiment shown in FIG.
By returning a portion of the effluent gas from B to the feed gas system, oxygen in the effluent gas is circulated and accumulated. Such inconveniences will be resolved.

なお、以上の実施例では、いずれも二基の吸着
筒を切り替えて使用するものについて、説明した
が、これに限らず三基以上あるいは一基の場合で
も同様の作用効果が得られる。
In the above embodiments, two adsorption cylinders are used alternately. However, the present invention is not limited to this, and similar effects can be obtained even when three or more adsorption cylinders are used or one adsorption cylinder is used.

以上説明したように、この発明のアルゴンの製
造方法によれば、従来の低温吸着法に比べて吸着
温度が高く、しかも厳密に管理する必要がないの
で運転操作が容易となる。また、吸着剤の再生を
減圧と製品アルゴンによる洗滌パージによつてい
るので真空ポンプなどの真空装置が不要となり、
設備費、動力費が低減される。さらに、減圧時に
吸着筒から流出する流出ガスの内、アルゴン含有
量の多い部分を原料ガス系統に返送するようにし
たのでアルゴンのロスが少なくなり、アルゴンの
回収率が向上する。また、原料ガス中の窒素含有
量に特に制約を受けることがないので、多種多様
の原料ガスに対応できる。さらにまた、原料ガス
に空気深冷分離装置の上部精留塔より抜き出した
アルゴン含有酸素を使用する場合には、精留塔と
は分離して運転されるので、互いに悪影響を与え
ることもなく、精留塔の運転も容易となるなどの
利点を有するものである。
As explained above, according to the method for producing argon of the present invention, the adsorption temperature is higher than that of the conventional low-temperature adsorption method, and there is no need for strict control, making operation easier. In addition, since the adsorbent is regenerated by reducing pressure and cleaning and purging with product argon, there is no need for vacuum equipment such as a vacuum pump.
Equipment costs and power costs are reduced. Furthermore, of the outflow gas flowing out from the adsorption column during depressurization, a portion with a high argon content is returned to the source gas system, which reduces argon loss and improves the argon recovery rate. Further, since there is no particular restriction on the nitrogen content in the raw material gas, it is possible to deal with a wide variety of raw material gases. Furthermore, when using argon-containing oxygen extracted from the upper rectification column of the air cryogenic separation device as the raw material gas, it is operated separately from the rectification column, so there is no adverse effect on each other. This has advantages such as ease of operation of the rectification column.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のアルゴンの製造方法の一例
に用いられる製造装置の概略構成図、第2図は本
発明の吸着分離方法の各工程における流出ガスの
組成の一例を模式的に示した図、第3図はA型ゼ
オライトの吸着特性を示すグラフ、第4図はこの
発明の他の例に用いられる製造装置の概略図であ
る。 2……圧縮機、4,6,9,15……弁、5…
…吸着器、5A……第1吸着筒、5B……第2吸
着筒、10,14……管、13……減圧弁。
FIG. 1 is a schematic configuration diagram of a manufacturing apparatus used in an example of the argon manufacturing method of the present invention, and FIG. 2 is a diagram schematically showing an example of the composition of outflow gas in each step of the adsorption separation method of the present invention. , FIG. 3 is a graph showing the adsorption characteristics of type A zeolite, and FIG. 4 is a schematic diagram of a production apparatus used in another example of the present invention. 2... Compressor, 4, 6, 9, 15... Valve, 5...
...Adsorption device, 5A...First adsorption cylinder, 5B...Second adsorption cylinder, 10, 14...Pipe, 13...Pressure reducing valve.

Claims (1)

【特許請求の範囲】 1 アルゴン、酸素、窒素の混合ガスを原料ガス
とし、吸着工程及び再生工程よりなり、かつ該再
生工程が減圧工程と洗浄工程よりなる吸着分離法
を用いたアルゴンの製造方法において、 前記吸着工程が、この原料ガスを加圧してA型
ゼオライトが充填された吸着筒に0〜−100℃で
流して製品アルゴンを得る工程であり、再生工程
が、前記吸着筒内の圧力を、該吸着筒から初めに
アルゴン、酸素が脱着し、その後酸素、窒素が脱
着するように徐々に減圧し、該吸着筒から流出す
るガス中にアルゴンが含有している間この流出ガ
スを再度原料ガス供給装置に返送し、該流出ガス
中のアルゴンが殆ど無くなつた時以降は、該吸着
筒が常圧に達するまで該流出ガスを系外へ放出す
る減圧工程と、その後の、製品アルゴンの一部を
該吸着筒に流して該吸着筒内を洗滌した上、放出
する洗浄工程とで構成され、吸着筒を再生する工
程であるをことを特徴とするアルゴンの製造方
法。 2 上記原料ガスが空気深冷分離装置の複精留塔
から抜き出されたアルゴン、酸素、窒素の混合ガ
スであり、かつ再生工程における原料ガス供給装
置が上記複精留塔である特許請求の範囲第1項記
載のアルゴンの製造方法。
[Claims] 1. A method for producing argon using an adsorption separation method using a mixed gas of argon, oxygen, and nitrogen as a raw material gas and comprising an adsorption step and a regeneration step, and the regeneration step comprises a pressure reduction step and a washing step. In this method, the adsorption step is a step in which the raw material gas is pressurized and passed through an adsorption column filled with A-type zeolite at 0 to -100°C to obtain a product argon, and the regeneration step is a step in which the pressure inside the adsorption column is The pressure is gradually reduced so that argon and oxygen are first desorbed from the adsorption column, and then oxygen and nitrogen are desorbed, and while argon is contained in the gas flowing out from the adsorption column, this outflow gas is recirculated. After the argon in the outflow gas is almost completely gone, a depressurization process is carried out in which the outflow gas is discharged outside the system until the adsorption cylinder reaches normal pressure, and then the product argon is A method for producing argon, comprising a washing step of flowing a part of the argon into the adsorption column to wash the inside of the adsorption column and then releasing it, and a step of regenerating the adsorption column. 2. The above-mentioned raw material gas is a mixed gas of argon, oxygen, and nitrogen extracted from a double rectification column of an air cryogenic separation device, and the raw material gas supply device in the regeneration process is the double rectification column. A method for producing argon according to scope 1.
JP57070908A 1982-04-27 1982-04-27 Manufacture of argon Granted JPS58187777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57070908A JPS58187777A (en) 1982-04-27 1982-04-27 Manufacture of argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57070908A JPS58187777A (en) 1982-04-27 1982-04-27 Manufacture of argon

Publications (2)

Publication Number Publication Date
JPS58187777A JPS58187777A (en) 1983-11-02
JPH0379287B2 true JPH0379287B2 (en) 1991-12-18

Family

ID=13445082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57070908A Granted JPS58187777A (en) 1982-04-27 1982-04-27 Manufacture of argon

Country Status (1)

Country Link
JP (1) JPS58187777A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (en) * 1984-01-11 1985-08-02 大同酸素株式会社 Method and device for manufacturing high-purity nitrogen gas

Also Published As

Publication number Publication date
JPS58187777A (en) 1983-11-02

Similar Documents

Publication Publication Date Title
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US4756723A (en) Preparation of high purity oxygen
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
KR960004606B1 (en) Process for producing high purity oxygen gas from air
EP0489555A1 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
CA2287039A1 (en) Pressure swing adsorption method for production of an oxygen-enriched gas
JP3902416B2 (en) Gas separation method
JPH0459926B2 (en)
KR100605549B1 (en) Apparatus for producting oxygen and control method the same
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
CA2048263A1 (en) Process for helium purification
JPH0379287B2 (en)
KR19980068513A (en) Low Pressure Ethanol Pressure Swing Adsorption Dewatering System Using Carbon Dioxide
JP2000271425A (en) Method of purifying and low temperature separating air without precooling and plant therefor
JPH0351648B2 (en)
EP0314040B1 (en) Method for removing carbon dioxide gas and moisture in a city gas production
JPS6129768B2 (en)
JPH0351647B2 (en)
JPS621766B2 (en)
JPH0525801B2 (en)
JPH07746A (en) Production of carbon dioxide and hydrogen from methanol and hydrogen producing equipment
JPS63103805A (en) Production of nitrogen by pressure swing adsorption process
JPH09267016A (en) Improved pressure swing adsorption method
JPH1015331A (en) Heat regeneration type pressure swing adsorbing apparatus
JPH0221285B2 (en)