JPH037897B2 - - Google Patents

Info

Publication number
JPH037897B2
JPH037897B2 JP25352984A JP25352984A JPH037897B2 JP H037897 B2 JPH037897 B2 JP H037897B2 JP 25352984 A JP25352984 A JP 25352984A JP 25352984 A JP25352984 A JP 25352984A JP H037897 B2 JPH037897 B2 JP H037897B2
Authority
JP
Japan
Prior art keywords
glossiness
curve
visual
determining
gloss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25352984A
Other languages
Japanese (ja)
Other versions
JPS61130857A (en
Inventor
Juichiro Asano
Motohito Shiozumi
Hitoshi Aizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59253529A priority Critical patent/JPS61130857A/en
Priority to EP85115140A priority patent/EP0183270B1/en
Priority to CA000496546A priority patent/CA1240052A/en
Priority to US06/802,742 priority patent/US4750140A/en
Priority to DE8585115140T priority patent/DE3579119D1/en
Publication of JPS61130857A publication Critical patent/JPS61130857A/en
Publication of JPH037897B2 publication Critical patent/JPH037897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4716Using a ring of sensors, or a combination of diaphragm and sensors; Annular sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N2021/555Measuring total reflection power, i.e. scattering and specular
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N2021/556Measuring separately scattering and specular
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、物体表面の光沢度判定方法に係り、
特に、鋼板の表面品質を計測して管理する際に用
いるのに好適な、物体表面の光反射強度分布によ
り、その視感に基づく光沢度を分類、等級付けす
る物体表面の光沢度判定方法の改良に関する。
The present invention relates to a method for determining glossiness of an object surface,
In particular, it is suitable for measuring and managing the surface quality of steel sheets, and is a method for determining the glossiness of the surface of an object, which classifies and grades the glossiness based on the visual sensation based on the light reflection intensity distribution on the object surface. Regarding improvements.

【従来の技術】[Conventional technology]

物体表面の光感度を定める方法として、従来よ
り種々の光反射測定による方法が提案されてお
り、代表的なものとしては、一定角度で投射した
白色光束の正反射強度を測定する鏡面光沢度によ
る方法、一定角度で投射した白色光の正反射強度
と拡散反射強度の比を用いる対比光沢度による方
法、及び、表面に他の物体を映し、その反射像の
ぼけを肉眼で見る鮮明光沢度による方法がある。
Various methods have been proposed to determine the light sensitivity of an object's surface using light reflection measurements.A typical method is specular gloss measurement, which measures the specular reflection intensity of a white beam projected at a fixed angle. method, a method based on contrast glossiness that uses the ratio of specular reflection intensity and diffuse reflection intensity of white light projected at a certain angle, and a method based on clear glossiness, which reflects another object on the surface and observes the blurring of the reflected image with the naked eye. There is a way.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、前記鏡面光沢度による方法は、
広く工業的に用いられているが、表面粗さの小さ
い鏡面的対象について実際と一致しないという欠
点を有する。又、前記対比光沢度による方法は、
色の異なる対象に対しても視感に近い光沢度を与
えるという特徴を有するが、これも又鏡面に近い
対象については判定精度が低くなる傾向にある。
更に、前記鮮明光沢度による方法は、定量的な異
示が得られないという問題点を有していた。
However, the method based on specular gloss,
Although it is widely used industrially, it has the disadvantage that it does not match reality for specular objects with small surface roughness. In addition, the method using the comparative glossiness,
Although it has the characteristic of giving a gloss level close to visual perception even to objects of different colors, the determination accuracy also tends to be low for objects that are close to mirror surfaces.
Furthermore, the method using the sharp glossiness has a problem in that quantitative indications cannot be obtained.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくな
されたもので、同一色(明度は異なつてもよい)
の対象について、目視光沢度に良く一致し、且
つ、鏡面から粗面までの広い粗度範囲に亘つて定
量的に光沢度を定めることができる物体表面の光
沢度判定方法を提供することを目的とする。
The present invention was made to solve the above-mentioned conventional problems, and has the same color (brightness may be different).
The purpose of the present invention is to provide a method for determining the glossiness of the surface of an object that closely matches the visual glossiness and that can quantitatively determine the glossiness over a wide roughness range from specular to rough surfaces. shall be.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、物体表面の光反射強度分布により、
その視感に基づく光沢度を分類、等級付けする物
体表面の光沢度判定方法において、第1図にその
要旨を示す如く、被測定表面プロフイルの高さ分
布の分散σが次式の関係 {(4πσ/λ1)・cosθ12≦1 …(1) {(4πσ/λ2)・cosθ22≧4 …(2) を満足するように波長λ1,λ2(λ1=λ2も含む)、入
射角θ1,θ2を設定した、波長λ1,λ2の2つの光束
を入射角θ1,θ2で投射し、各々の正反射強度I1
I2及び全反射強度S1,S2を検出し、予め2次元平
面(I1/S1,I2/S2)上に各目視光沢度の代表点
をプロツトし、これを滑かに結んで得られる曲線
lを定めておき、該曲線lと直交し、且つ、前記
代表点を、その目視光沢度に従つて区分する直線
mにより、任意の被測定物の光沢度を分別するよ
うにして、前記目的を達成したものである。 又、本発明は、前出第1図に破線で示す如く、
更に、任意の被測定物の光沢度を、該被測定物の
前記2次元平面上における点Pから前記曲線lに
下した垂線の足Qの、該曲線l上の基準点Rから
の曲線lに沿つた距離により評価するようにし
て、同じく前記目的を達したものである。 又、本発明の実施態様は、前記各目視光沢度の
代表点を、その重心点として、適切な代表点が容
易に求められるようにしたものである。
The present invention uses the light reflection intensity distribution on the object surface to
In a method for determining the glossiness of an object's surface that classifies and ranks the glossiness based on visual perception, as shown in Figure 1, the variance σ of the height distribution of the measured surface profile is determined by the following relationship {( The wavelengths λ 1 and λ 2 ( λ 1 = λ 2 ), two light beams with wavelengths λ 1 and λ 2 with incident angles θ 1 and θ 2 are projected at incident angles θ 1 and θ 2 , and the specular reflection intensities I 1 ,
Detect I 2 and total reflection intensities S 1 and S 2 , plot representative points of each visual gloss on a two-dimensional plane (I 1 /S 1 , I 2 /S 2 ) in advance, and smooth this. A curve l obtained by connecting the lines is determined, and the glossiness of any object to be measured is classified by a straight line m that is orthogonal to the curve l and divides the representative points according to their visual glossiness. The above objectives have been achieved. Further, the present invention, as shown by the broken line in FIG.
Furthermore, the glossiness of an arbitrary object to be measured is determined by a curve l from a reference point R on the curve l of a foot Q of a perpendicular line drawn from a point P on the two-dimensional plane of the object to the curve l. The above objective was also achieved by evaluating the distance along the . Further, in the embodiment of the present invention, the representative point of each visual gloss level is used as the center of gravity, so that an appropriate representative point can be easily determined.

【作用】[Effect]

本発明は、物体、例えば鋼板表面の目視光沢度
が、平均粗さ及び平均山間隔の2つの表面粗度パ
ラメータに依存し、平均粗さのみでは評価できな
いことに着目してなされたものである。 即ち、ほぼ同一色の対象物の光沢を決める主要
因として表面粗さがあり、基本的には該表面粗さ
の情報を的確に把握することにより、光沢度を評
価できると考えられる。 表面粗さの情報は、概括的には、表面プロフイ
ルの高さ分布の分散σと、自己相関距離T(自己
相関関数が1/eとなる距離)で表現でき、これ
らの量と光反射強度分布には、例えば1963年に
Pergamon Pressより発行された、P.Beckmann
とA.Spizzichino著“The Scattering of
Electromagnetic Waves from Rough
Surfaces”に示される如く、一定の関係がある。 更に、「鉄と鋼、70巻(1984)」の1095頁以降に
掲載された、浅野有一郎他による、これらの関係
の詳細な検討結果に従えば、前出(1)、(2)式の各範
囲を満すことにより、各々の条件による正反射強
度I1,I2は、粗度パラメータσ及びTと次式の関
係にある。 I1=f1(σ) …(3) I2=f2(σ、T) …(4) 但し、入射光強度を単位強度、全反射率を1と
している。 ここで、全反射率を考慮に入れれば、前出(3)、
(4)式の左辺は、各々、I1/S1、I2/S2(S1,S2は、
(1)、(2)式の各条件における全反射強度)に置き換
えられ、粗度パラメータσ及びTの情報は、I1
S1,I2/S2の両情報に確実に含まれている。従つ
て、I1/S1,I2/S2の両情報により光沢度が決定
され、これを定量化することが可能である。 他方、同一種類の材質で目視光沢度が異なる多
数のサンプルについて考えれば、これらを前記の
2次元平面(I1/S1,I2/S2)上にプロツトした
場合、これらのサンプルは、例えば第2図に示す
如く、その光沢度に応じて前記2次元平面上で一
定の曲線lに沿つて連続的に分布している場合が
多い。第2図において、Oは、目視光沢度1のサ
ンプル、▲は、目視光沢度2のサンプル、□は、
目視光沢度3のサンプルをそれぞれ示す。 従つて、これらのサンプルの光沢度を(I1
S1,I2/S2)の2次元表面上で分類する場合、第
3図に示す如く、前記曲線lに垂直な直線mによ
り分類する方法が適切且つ簡便である。 発明者は、この分類をより一般的に行う方法と
して、次の方法を考えた。即ち、2次元平面
(I1/S1,I2/S2)上に各目視光沢度の代表点を
プロツトし、これを滑かに結んで得られる曲線l
を、例えば図面上での作図により定める。次い
で、任意のサンプルの光沢度を、該サンプルの前
記2次元平面上における点Pから曲線lに下した
垂線の足Qの曲線l上の基準点Rからの曲線lに
沿つた距離(あるいはこれに相当する量)で評価
する。第4図に、目視光沢度1、2、3に対応し
てサンプル点を分類した最も簡単な例を示し、第
5図に、これら目視光沢度を更に細かく評価した
例を示す。
The present invention was made based on the fact that the visual gloss of the surface of an object, such as a steel plate, depends on two surface roughness parameters: the average roughness and the average peak interval, and cannot be evaluated based on the average roughness alone. . That is, surface roughness is the main factor that determines the gloss of objects of substantially the same color, and it is basically considered that the degree of gloss can be evaluated by accurately grasping information on the surface roughness. Information on surface roughness can be roughly expressed by the variance σ of the height distribution of the surface profile and the autocorrelation distance T (distance at which the autocorrelation function is 1/e), and these quantities and the light reflection intensity The distribution includes e.g.
Published by Pergamon Press, P. Beckmann
and “The Scattering of
Electromagnetic Waves from Rough
There is a certain relationship as shown in ``Surfaces''.Furthermore, the results of detailed examination of these relationships by Yuichiro Asano et al. Accordingly, by satisfying each range of equations (1) and (2) above, the specular reflection intensities I 1 and I 2 under each condition have a relationship with the roughness parameters σ and T as shown in the following equation. I 1 = f 1 (σ) ... (3) I 2 = f 2 (σ, T) ... (4) However, the incident light intensity is set as unit intensity and the total reflectance is set as 1. Here, if the total reflectance is taken into account, the above (3),
The left side of equation (4) is I 1 /S 1 and I 2 /S 2 (S 1 and S 2 are
(1) and (2) (total reflection intensity under each condition), and the information on the roughness parameters σ and T is I 1 /
It is definitely included in both S 1 and I 2 /S 2 information. Therefore, the glossiness is determined by both information of I 1 /S 1 and I 2 /S 2 and can be quantified. On the other hand, if we consider a large number of samples of the same type of material but with different visual gloss levels, if we plot them on the two-dimensional plane (I 1 /S 1 , I 2 /S 2 ), these samples will become For example, as shown in FIG. 2, in many cases, the particles are continuously distributed along a certain curve 1 on the two-dimensional plane depending on the gloss level. In FIG. 2, O is a sample with a visual gloss level of 1, ▲ is a sample with a visual gloss level of 2, and □ is a sample with a visual gloss level of 1.
Samples with visual gloss level 3 are shown. Therefore, the glossiness of these samples can be expressed as (I 1 /
When classifying on the two-dimensional surface of S 1 , I 2 /S 2 ), it is appropriate and simple to classify using a straight line m perpendicular to the curve l, as shown in FIG. The inventor considered the following method as a method for performing this classification more generally. That is, by plotting the representative points of each visual gloss on a two-dimensional plane (I 1 /S 1 , I 2 /S 2 ) and smoothly connecting them, a curve l is obtained.
is determined, for example, by drawing on a drawing. Next, the glossiness of an arbitrary sample is determined by the distance along the curve l from the reference point R on the curve l of the foot Q of the perpendicular line drawn from the point P to the curve l on the two-dimensional plane of the sample (or (amount equivalent to). FIG. 4 shows the simplest example in which sample points are classified according to visual gloss levels 1, 2, and 3, and FIG. 5 shows an example in which these visual gloss levels are evaluated in more detail.

【実施例】【Example】

以下、本発明によりステンレス鋼板の光沢度の
評価を行つた実施例を詳細に説明する。 本実施例は、従来から行われている目視判断に
よる光沢度判定(光沢度1〜4の4段階)を、光
反射強度I1,I2の測定による自動判定に置き換え
る目的で、自動判定の性能を試験するために行つ
たものである。 ここで扱うステンレス鋼板の表面粗さパラメー
タσは、0.02〜0.2μmであり、使用する光束とし
てλ=0.457μmのArレーザ光を用いれば、入射
角θ=75゜で、前出(1)式を満足することができ、
又、入射角θ=10゜で前出(2)式を満足することが
できる。又、ここで扱うステンレス鋼板の場合、
全反射率はほぼ一定であり、光沢評価に用いる2
次元平面(I1/S1,I2/S2)は、(I1,I2)と等価
である。 第6図に、本実施例による判定の結果を示す。
各サンプルは、熟練した複数の判定者の、標準サ
ンプルとの比較による目視判定により光沢度1〜
4に4段階に分類された。第6図において、〇、
▲、□、●は、それぞれ光沢度1、2、3、4の
サンプルを示す。 他方、これらのサンプルにつき、前記正反射強
度I1,I2を測定し、各光沢度に属するサンブルに
ついて、(I1,I2)2次元平面上での代表点(本
実施例では重心点)C1〜C4を定めた後、これら
を図面上で滑かに結んで曲線lを描いた。次に、
各光沢度毎にサンプルの分類がなされるように、
前記曲線lにそれぞれ直交する適切な境界線ma,
mb,mcを定めた。この境界線ma,mb,mcを
定める実用的な方法としては、例えば多数のサン
プル点をプロツトし、各隣接するグループにつき
誤判定となる点数が最小となるように定めること
ができる。 前記手順で求めた判定法により、多数のステン
レス鋼板サンプルを自動判定した結果、約97%の
サンプルについて正しく判定を行うことができ、
充分な性能を有することが確認できた。 なお、光沢度判定を更に細かく行う方法とし
て、代表点C1,C2,C3,C4の各点の光沢度を1.0、
2.0、3.0、4.0とし、一方の基準点Rs、曲線lと境
界点maの交点Ta、境界線mbとの交点Tb、境界
線mcとの交点Tc及び他方の基準点Reの各点の光
沢度を、それぞれ0.5、1.5、2.5、3.5、4.5とし、
更に、曲線l上の任意の点の光沢度を、各区間
(0.5〜1.0、1.0〜1.5、…4.0〜4.5)内で、曲線l
に沿つて比例的に内挿した値と定めておき、任意
のサンプルの光沢度を、2次元平面(I1,I2)上
の対応点Pから曲線lに下した垂線の足Qの位置
する点の光沢度とすることができる。 この方法によれば、アナログ的な光沢度判定が
可能である。 なお前記実施例は、本発明をステンレス鋼板の
光沢度の評価に適用していたが、本発明の適用範
囲はこれに限定されず、一般の物体表面の光沢度
判定にも同様に適用できることは明らかである。
Examples in which the glossiness of a stainless steel plate was evaluated according to the present invention will be described in detail below. This embodiment aims to replace the conventional visual determination of glossiness (4 levels of glossiness 1 to 4) with automatic determination by measuring the light reflection intensities I 1 and I 2 . This was done to test performance. The surface roughness parameter σ of the stainless steel plate treated here is 0.02 to 0.2 μm, and if an Ar laser beam of λ = 0.457 μm is used as the luminous flux, the incident angle θ = 75°, and the equation (1) above is used. can be satisfied,
Furthermore, the above equation (2) can be satisfied when the incident angle θ=10°. In addition, in the case of stainless steel plates handled here,
The total reflectance is almost constant and is used for gloss evaluation.
The dimensional plane (I 1 /S 1 , I 2 /S 2 ) is equivalent to (I 1 , I 2 ). FIG. 6 shows the results of determination according to this example.
Each sample has a gloss level of 1 to 1 based on visual judgment by multiple skilled judges in comparison with standard samples.
It was classified into four stages. In Figure 6, 〇,
▲, □, and ● indicate samples with gloss levels of 1, 2, 3, and 4, respectively. On the other hand, for these samples, the specular reflection intensities I 1 and I 2 were measured, and for the samples belonging to each gloss level, the representative points (I 1 , I 2 ) on the two-dimensional plane (in this example, the center of gravity) were measured. ) After determining C1 to C4 , they were smoothly connected on the drawing to draw a curve l. next,
So that samples are classified by each gloss level,
Appropriate boundary lines ma perpendicular to the curve l, respectively;
mb and mc were determined. A practical method for determining these boundary lines ma, mb, and mc is, for example, by plotting a large number of sample points and determining the boundaries so that the number of false positive points for each adjacent group is minimized. As a result of automatically judging a large number of stainless steel plate samples using the judgment method determined in the above procedure, we were able to correctly judge approximately 97% of the samples.
It was confirmed that it had sufficient performance. In addition, as a method for more finely determining the glossiness, the glossiness of each of the representative points C 1 , C 2 , C 3 , and C 4 is set to 1.0,
2.0, 3.0, and 4.0, and the glossiness of each point is one reference point Rs, the intersection Ta of the curve l and the boundary point ma, the intersection Tb with the boundary line mb, the intersection Tc with the boundary line mc, and the other reference point Re. are respectively 0.5, 1.5, 2.5, 3.5, and 4.5,
Furthermore, the glossiness of any point on the curve l is determined by the curve l within each interval (0.5-1.0, 1.0-1.5,...4.0-4.5).
The glossiness of any sample is defined as the value proportionally interpolated along It can be defined as the gloss level of the point. According to this method, analog glossiness determination is possible. In the above embodiment, the present invention was applied to the evaluation of the glossiness of a stainless steel plate, but the scope of application of the present invention is not limited to this, and it can be similarly applied to the determination of the glossiness of the surface of a general object. it is obvious.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、同一色
(明度は異なつてもよい)の対象について、目視
光沢度に良く一致し、且つ、境面から粗面までの
広い粗度範囲に亘つて定量的に光沢度を定めるこ
とが可能となる。従つて、オンラインにおける表
面品質の計測、管理が可能となり、不良発生の防
止等、実用上の効果が大きいという優れた効果を
有する。
As explained above, according to the present invention, for objects of the same color (brightness may differ), the visual glossiness matches well and can be quantified over a wide roughness range from boundary surfaces to rough surfaces. It becomes possible to determine the gloss level. Therefore, it is possible to measure and manage the surface quality online, which has excellent practical effects such as prevention of defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る物体表面の光沢度判定
方法の要旨を示す流れ図、第2図は、本発明の原
理を説明するための、2次元平面(I1/S1,I2
S2)上のサンプルの分布状況の例を示す線図、第
3図は、同じく、2次元平面(I1/S1,I2/S2
上の曲線l及び直線mの例を示す線図、第4図
は、同じく、本発明によりサンプル点を分類した
最も簡単な例を示す線図、第5図は、同じく、本
発明により目視光沢度を更に細かく評価した例を
示す線図、第6図は、本発明を適用してステンレ
ス鋼板の光沢度評価を行つた実施例の判定結果を
示す線図である。 σ……分散、λ1,λ2……波長、θ1,θ2……入射
角、I1,I2……正反射強度、S1,S2……全反射強
度、l……曲線、m,ma,mb,mc……直線、
P……点、Q……垂線の足、R,Rs,Re……基
準点、C1〜C4……代表点。
FIG. 1 is a flowchart showing the gist of the method for determining the glossiness of an object surface according to the present invention, and FIG. 2 is a two-dimensional plane (I 1 /S 1 , I 2 /
S 2 ) A diagram showing an example of the distribution of samples on the top, Figure 3 is also a two-dimensional plane (I 1 /S 1 , I 2 /S 2 )
FIG. 4 is a diagram showing an example of the above curve l and straight line m, FIG. 4 is a diagram showing the simplest example of classifying sample points according to the present invention, and FIG. FIG. 6 is a diagram showing an example of a more detailed evaluation of glossiness. FIG. 6 is a diagram showing the determination results of an example in which the present invention was applied to evaluate the glossiness of a stainless steel plate. σ...Dispersion, λ1 , λ2 ...Wavelength, θ1 , θ2 ...Incidence angle, I1 , I2 ...Specular reflection intensity, S1 , S2 ...Total reflection intensity, l...Curve , m, ma, mb, mc...straight line,
P...point, Q...leg of perpendicular line, R, Rs, Re...reference point, C1 to C4 ...representative point.

Claims (1)

【特許請求の範囲】 1 物体表面の光反射強度分布により、その視感
に基づく光沢度を分類、等級付けする物体表面の
光沢度判定方法において、 被測定表面プロフイルの高さ分布の分散σが次
式の関係 {(4πσ/λ1)・cosθ12≦1 {(4πσ/λ2)・cosθ22≧4 を満足するように波長λ1,λ2(λ1=λ2も含む)、入
射角θ1,θ2を設定して、波長λ1,λ2の2つの光束
を入射角θ1,θ2で投射し、 各々の正反射強度I1,I2及び全反射強度S1,S2
を検出し、 予め2次元平面(I1/S1,I2/S2)上に各目視
光沢度の代表点をプロツトし、これを滑かに結ん
で得られる曲線lを定めておき、 該曲線lと直交し、且つ、前記代表点を、その
目視光沢度に従つて区分する直線mにより、任意
の被測定物の光沢度を分別することを特徴とする
物体表面の光沢度判定方法。 2 前記各目視光沢度の代表点を、その重心点と
した特許請求の範囲第1項記載の物体表面の光沢
度判定方法。 3 物体表面の光反射強度分布により、その視感
に基づく光沢度を分類、等級付けする物体表面の
光沢度判定方法において、 被測定表面プロフイルの高さ分布の分散σが次
式の関係 {(4πσ/λ1)・cosθ12≦1 {(4πσ/λ2)・cosθ22≧4 を満足するように波長λ1,λ2(λ1=λ2も含む)、入
射角θ1,θ2を設定して、波長λ1,λ2の2つの光束
を入射角θ1,θ2で投射し、 各々の正反射強度I1,I2及び全反射強度S1,S2
を検出し、 予め2次元平面(I1/S1,I2/S2)上に各目視
光沢度の代表点をプロツトし、これを滑かに結ん
で得られる曲線lを定めておき、 任意の被測定物の光沢度を、該被測定物の前記
2次元平面上における点Pから前記曲線lに下し
た垂線の足Qの、該曲線l上の基準点Rからの曲
線lに沿つた距離により評価することを特徴とす
る物体表面の光沢度判定方法。
[Claims] 1. In a method for determining the glossiness of an object surface, which classifies and ranks the glossiness based on the visual perception based on the light reflection intensity distribution on the surface of the object, the dispersion σ of the height distribution of the surface profile to be measured is The wavelengths λ 1 and λ 2 ( λ 1 = λ 2 are also ), the incident angles θ 1 and θ 2 are set, and two light fluxes with wavelengths λ 1 and λ 2 are projected at the incident angles θ 1 and θ 2 , and the specular reflection intensities I 1 and I 2 and total reflection are respectively Strength S 1 , S 2
, plot the representative points of each visual gloss on a two-dimensional plane (I 1 /S 1 , I 2 /S 2 ) in advance, and define a curve l obtained by smoothly connecting these points. A method for determining the glossiness of an object surface, comprising classifying the glossiness of an arbitrary object to be measured using a straight line m that is perpendicular to the curve l and divides the representative points according to their visual glossiness. . 2. The method for determining the glossiness of an object surface according to claim 1, wherein the representative point of each visual glossiness is the center of gravity. 3 In an object surface gloss determination method that classifies and ranks the glossiness based on visual perception based on the light reflection intensity distribution of the object surface, the variance σ of the height distribution of the measured surface profile is expressed by the following equation {( 4πσ/λ 1 )・cosθ 1 } 2 ≦1 {(4πσ/λ 2 )・cosθ 2 } 2 ≧4 The wavelengths λ 1 and λ 2 (including λ 1 = λ 2 ) and the incident angle θ are 1 and θ 2 are set, two light beams with wavelengths λ 1 and λ 2 are projected at incident angles θ 1 and θ 2 , and the specular reflection intensities I 1 and I 2 and total reflection intensities S 1 and S 2 are respectively
, plot the representative points of each visual gloss on a two-dimensional plane (I 1 /S 1 , I 2 /S 2 ) in advance, and define a curve l obtained by smoothly connecting these points. The glossiness of an arbitrary object to be measured is determined by measuring the glossiness of a perpendicular line Q drawn from the point P on the two-dimensional plane of the object to the curve 1 along the curve 1 from the reference point R on the curve 1. A method for determining glossiness of an object surface, characterized in that evaluation is performed based on the distance between objects.
JP59253529A 1984-11-30 1984-11-30 Decision for gloss of object surface Granted JPS61130857A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59253529A JPS61130857A (en) 1984-11-30 1984-11-30 Decision for gloss of object surface
EP85115140A EP0183270B1 (en) 1984-11-30 1985-11-29 Method of determining glossinesses of surface of body
CA000496546A CA1240052A (en) 1984-11-30 1985-11-29 Method of and apparatus for determining glossinesses of surface of body
US06/802,742 US4750140A (en) 1984-11-30 1985-11-29 Method of and apparatus for determining glossiness of surface of a body
DE8585115140T DE3579119D1 (en) 1984-11-30 1985-11-29 METHOD FOR DETERMINING THE SURFACE GLOSS OF A BODY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253529A JPS61130857A (en) 1984-11-30 1984-11-30 Decision for gloss of object surface

Publications (2)

Publication Number Publication Date
JPS61130857A JPS61130857A (en) 1986-06-18
JPH037897B2 true JPH037897B2 (en) 1991-02-04

Family

ID=17252634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253529A Granted JPS61130857A (en) 1984-11-30 1984-11-30 Decision for gloss of object surface

Country Status (1)

Country Link
JP (1) JPS61130857A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502008002030D1 (en) * 2008-06-09 2011-01-27 Leister Process Tech Electrical resistance heating element for a heating device for heating a flowing gaseous medium

Also Published As

Publication number Publication date
JPS61130857A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
EP0183270B1 (en) Method of determining glossinesses of surface of body
US5367378A (en) Highlighted panel inspection
US4929846A (en) Surface quality analyzer apparatus and method
US4966455A (en) Real time mottle measuring device and method
EP2749865B1 (en) Reflection characteristic measuring apparatus
US5122672A (en) Surface quality analyzer apparatus and method
EP0726456A1 (en) Method of and apparatus for measuring nonuniformity of glossiness and thickness of printed image
US4213708A (en) Graininess sensor
JP2705842B2 (en) Method and apparatus for measuring surface properties of metal plate
US4710808A (en) Machine vision differential measurement system
JP3882302B2 (en) Surface flaw inspection apparatus and method
JPH037897B2 (en)
Inoue et al. Point spread function of specular reflection and gonio-reflectance distribution
JPH0219420B2 (en)
JP3826578B2 (en) Surface inspection device
JPH02271211A (en) Evaluating method of painting sharpness
JPH0224458B2 (en)
JPH05505677A (en) Method and apparatus for determining the imageability of surfaces
EP0131710A1 (en) Method of determining surface roughness using a visible and infrared laser source
JPS61230045A (en) Method for comparing luster of curved subject by degree of fading of video
JP3591161B2 (en) Surface inspection equipment
JP2001264251A (en) Gloss measuring method
JP3239793B2 (en) Method for determining the surface properties of chromium-based stainless steel sheets
JPH0124256B2 (en)
JP3063523B2 (en) Surface flaw detection method and device