JPH0378940A - Light emitting screen - Google Patents

Light emitting screen

Info

Publication number
JPH0378940A
JPH0378940A JP21479289A JP21479289A JPH0378940A JP H0378940 A JPH0378940 A JP H0378940A JP 21479289 A JP21479289 A JP 21479289A JP 21479289 A JP21479289 A JP 21479289A JP H0378940 A JPH0378940 A JP H0378940A
Authority
JP
Japan
Prior art keywords
hole
light
aggregate
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21479289A
Other languages
Japanese (ja)
Inventor
Shin Imamura
伸 今村
Yoji Maruyama
洋治 丸山
Yuzuru Hosoe
譲 細江
Akira Yamamoto
明 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21479289A priority Critical patent/JPH0378940A/en
Publication of JPH0378940A publication Critical patent/JPH0378940A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To have a light emitting screen with high resolution, light emission efficiency, and thermal conductivity by arranging a number of holes or aggregate thereof on both sides of the surface of a light emitting layer and the surface of a supporting element layer for it. CONSTITUTION:Holes or aggregate thereof are provided on both sides of the surface of a light emitting substance layer 1 and the surface of a light emitting substance layer supporting element 2, wherein the max. length of the opening in this aggregate shall be 700nm through 300mum, and the min. distance of this opening in aggregate from other hole or the opening in aggregate shall be 700nm through 1mm. The depth of these holes or the aggregate thereof is set to more than 1/3 of the intrusion depth of an electron beam for light emission energization and below the thickness of the light emitting layer 1. This allows the brightness of a crystalline thin film light-emitting screen to be increased by several tens of percent or more without impairing the picture quality. Also the thermal characteristics as excellent originally can be maintained, and the display thus accomplished is equipped with high brightness, high precision, and long lifetime.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、陰極線管等に用いられる発光スクリーン、特
に支持体に坦持された結晶質蛍光体薄膜を発光層として
含む発光スクリーンに関する。 【従来の技術】 陰極線管等の発光スクリーンとして、現在もっばら用い
られているのは、粉末の蛍光体を塗布し発光層を形成し
たものである。これらの粉末発光層は、発光のための電
子線等の照射により加熱された場合、粉体間の接触面積
が少ないため、熱の伝導が悪く、温度上昇による悪影響
を受けやすい。 また、粉体が一般に5〜15μmの粒径を持つため、解
像度に限界がある。 一方、テレビジョン受像機などでは、より大画面、高精
細の陰極線管が望まれている。これらの要求を実現する
ために、照射する電子線の出力を大きく、また径を細く
しぼっていく傾向にあるが、粉末発光層を持つ発光スク
リーンでは、上記のような欠点が顕著になる。また、図
面や文字のデイスプレィ管においても、従来より精細な
ものが必要とされている。 近年、それらの点においてより優れた特性を持つものと
して、支持基板上に発光体の単結晶膜や、緊密な構造の
多結晶膜を成長させ発光層としたスクリーンが注目され
ている。これらの膜は、全体が稠密で一体であるため、
熱伝導率がよく、解像度に対する障害も少ない。また、
結晶の欠陥が少ないため、発光効率の向上も期待される
。 しかし、発光体薄膜には発光すべき位置での輝度が低い
という欠点がある。これは、膜中に光を散乱させる要因
が少ないため、膜中と膜外の屈折率の差により、膜内で
発した光のうち界面に対しある特定の角度以上をなすも
のは、界面で反射を繰返して膜の端面に到達し、そこで
膜外に放射されるためである。 この問題の解決のため、米国特許No、4,298,8
20において、発光層にv字型の溝を、細かく縦横に掘
った構造が提案されている。この提案は、溝によって囲
まれた部分の光が溝の側面で反射されて表面に放射され
るようにすることにより、輝度の向上を図ったものであ
る。
INDUSTRIAL APPLICATION FIELD 1 The present invention relates to a luminescent screen used in a cathode ray tube or the like, and particularly to a luminescent screen comprising a crystalline phosphor thin film supported on a support as a luminescent layer. BACKGROUND OF THE INVENTION Currently, the most commonly used luminescent screens for cathode ray tubes and the like are those coated with powdered phosphor to form a luminescent layer. When these powder light-emitting layers are heated by irradiation with an electron beam or the like for light emission, the contact area between the powder particles is small, so heat conduction is poor and they are susceptible to adverse effects from temperature rise. Furthermore, since the powder generally has a particle size of 5 to 15 μm, there is a limit to resolution. On the other hand, cathode ray tubes with larger screens and higher definition are desired for television receivers and the like. In order to meet these demands, there is a trend to increase the output of the emitted electron beam and to reduce the diameter, but the above-mentioned drawbacks become noticeable in luminescent screens having a powder luminescent layer. Furthermore, display tubes for drawings and characters are also required to be more precise than before. In recent years, screens in which a single crystal film of a light emitting material or a tightly structured polycrystal film is grown on a supporting substrate as a light emitting layer have attracted attention as having superior characteristics in these respects. These membranes are dense and integral throughout, so
It has good thermal conductivity and has few problems with resolution. Also,
Since there are fewer crystal defects, it is also expected to improve luminous efficiency. However, the phosphor thin film has a drawback in that the brightness at the position where light should be emitted is low. This is because there are few factors that scatter light within the film, and due to the difference in refractive index between the inside and outside of the film, light emitted within the film that makes an angle of more than a certain angle with respect to the interface will not reach the interface. This is because the light is repeatedly reflected and reaches the end face of the film, where it is radiated outside the film. To solve this problem, US Patent No. 4,298,8
No. 20 proposes a structure in which V-shaped grooves are finely dug in the vertical and horizontal directions in the light emitting layer. This proposal aims to improve the brightness by allowing the light in the area surrounded by the groove to be reflected from the side surfaces of the groove and radiated to the surface.

【発明が解決しようとする課題】[Problem to be solved by the invention]

薄膜発光スクリーンの多くは、単結晶またはガラス基板
上に発光層を成長させ作成される。多くの場合、発光層
と支持基板の屈折率はほぼ等しい。 そのため1発光層で生じた光は支持体層にほとんど妨げ
なく伝達し、支持体層表面で反射され、それがまた発光
層表面で反射されることによって膜内に伝搬する。発光
層は通常5〜10μmJl[であるのに対し支持層は通
常0.3〜1mm程度であるから、伝搬光はほとんど基
板内を伝わっているといえる。 上記従来技術では、支持体表面での反射による支持体層
内での伝搬光についての考慮がなされておらず、多くの
光が発光層表面の構造に影響されず膜端まで伝達、する
。また、上記従来技術では、電子線励起光は溝で囲まれ
た部分全体、特に溝の輪郭から放射される。そのため、
溝で囲まれた部分の大きさで映像の解像度が制限される
という問題がある。また、単結晶螢光体としてよく用い
られるガーネット結晶は、エツチング溶液に対し抵抗が
強く、エッチレイトが小さくかつ側面方向と深さ方向の
エッチレイトがほぼ等しい。このため、深い溝の形成に
おいては溝幅が広がってしまい、パターンを細かくしよ
うとすると発光層を大幅に削ってしまう結果となり、輝
度の減少を招くという問題がある。 その上、溝がスクリーン上で大きな面積を占めるため、
映像上への溝の映り込みの影響が生じるという問題があ
る。また、従来技術では、溝で囲まれた部分は横方向へ
の熱伝導が少なく、薄膜螢光体の特徴を活かすことが難
しいという問題がある。 本発明の目的は、解像度が高く1発光効率がよく、熱伝
導性がよい発光スクリーンを提供することである。
Most thin film luminescent screens are made by growing a luminescent layer on a single crystal or glass substrate. In many cases, the refractive index of the light-emitting layer and the supporting substrate are approximately equal. Therefore, light generated in one light-emitting layer is transmitted to the support layer almost without hindrance, reflected on the surface of the support layer, and then propagated into the film by being reflected again on the surface of the light-emitting layer. Since the light-emitting layer usually has a thickness of 5 to 10 μmJl, whereas the support layer has a thickness of usually about 0.3 to 1 mm, it can be said that most of the propagating light is transmitted within the substrate. In the above-mentioned conventional technology, no consideration is given to light propagating within the support layer due to reflection on the support surface, and much of the light is transmitted to the film edge without being affected by the structure of the light emitting layer surface. Further, in the above-mentioned conventional technology, the electron beam excitation light is emitted from the entire portion surrounded by the groove, particularly from the contour of the groove. Therefore,
There is a problem in that the resolution of the image is limited by the size of the area surrounded by the groove. Furthermore, garnet crystal, which is often used as a single crystal phosphor, has strong resistance to etching solutions, has a small etch rate, and has approximately the same etch rate in the lateral direction and in the depth direction. For this reason, when forming deep grooves, the groove width increases, and when attempting to make the pattern finer, the light-emitting layer is significantly scraped, resulting in a problem of reduced brightness. Moreover, the grooves occupy a large area on the screen, so
There is a problem in that the groove is reflected on the image. Furthermore, in the conventional technology, there is a problem in that the portion surrounded by the groove has little lateral heat conduction, making it difficult to take advantage of the characteristics of the thin film phosphor. An object of the present invention is to provide a luminescent screen with high resolution, high luminous efficiency, and good thermal conductivity.

【課題を解決するための手段] 上記目的を達成するために、蛍光体薄膜を発光層として
持つ発光スクリーンにおいて、孔もしくは孔の集合体を
、発光層表面及び支持体層表面の両面に多数配置したも
のである。 第1図は本発明のスクリーンの構造を模式的に示したも
ので、(a)は原潜に垂直な断面図、(b)は発光膜層
表面の上面図である。 上記のような構造を形成する方法として、多数の孔を持
った遮蔽物を蛍光晶膜表面に置き、エツチングを行う方
法が考えられる。 【作用】 薄膜蛍光体の発光において、電子ビームその他によって
励起され生じた光は、面に対する入射角度に従って、 1)支持体層を抜けて表面から外部へ放射されるもの、 2)支持体層の表面と外部との界面で反射され膜中をを
伝搬するもの、 3)面と平行に近く発光層内を進むもの、の王道りに分
かれる。 このうち、3)の光は本来なら膜の発光位置から膜端近
くまで伝搬するが、本発明の構造によれば、発光層表面
の孔構造がこの光を反射し散乱させ、支持体層に送り出
す。また、2)の光は、支持体層表面の孔構造壁面へ入
射したものは、面との角度が小さくなり、孔構造から外
部へ放射される。この際、孔構造の壁面の、膜表面に対
する角度の最適値θは、支持体の屈折率をn工、外部の
屈折率を00とすると、次式で与えられる。 θ=2sinや1(n0/nよ) また、本発明の構造は、礼状のパターンなので、開口部
の大きさを小さくすることも比較的容易であり、構造が
画面上で目立ちにくくでき、解像度も高くできるという
特徴がある。通常用いられる発光励起用電子線のビーム
スポット径は、300 lL@程度であり、構造をそれ
より小さくすることで、十分な解像度が得られる。可視
光線の波長は約300nm−700nmであるので、構
造はこれより大きくする必要がある。また、本発明によ
る蛍光膜は、全体が連続しているので、熱による劣化が
少なくなる。また、遮蔽物として粉体を用いると、高価
なマスクを用いずにすますことができる。保護層の欠損
孔を通してエツチングを行うという方法を用いれば、手
順を大幅に簡略化できる。
[Means for solving the problem] In order to achieve the above object, in a luminescent screen having a phosphor thin film as a luminescent layer, a large number of holes or aggregations of pores are arranged on both the surface of the luminescent layer and the surface of the support layer. This is what I did. FIG. 1 schematically shows the structure of the screen of the present invention, in which (a) is a sectional view perpendicular to the nuclear submarine, and (b) is a top view of the surface of the light emitting film layer. A possible method for forming the above structure is to place a shielding material having a large number of holes on the surface of the fluorescent crystal film and perform etching. [Function] When a thin film phosphor emits light, the light excited by an electron beam or the like is generated depending on the angle of incidence on the surface: 1) the light that passes through the support layer and is emitted from the surface to the outside; 2) the light that is emitted from the support layer. 3) those that are reflected at the interface between the surface and the outside and propagate within the film, and 3) those that travel within the light-emitting layer almost parallel to the surface. Of these, the light in 3) normally propagates from the light emitting position of the film to near the film edge, but according to the structure of the present invention, the pore structure on the surface of the light emitting layer reflects and scatters this light, and the light is transmitted to the support layer. send out. Furthermore, when the light (2) is incident on the wall surface of the pore structure on the surface of the support layer, the angle with the surface becomes small, and the light is emitted from the pore structure to the outside. At this time, the optimal value θ of the angle of the wall surface of the pore structure with respect to the membrane surface is given by the following equation, assuming that the refractive index of the support is n<0> and the refractive index of the outside is 00. θ=2sin or 1 (n0/n) Furthermore, since the structure of the present invention is a thank-you note pattern, it is relatively easy to reduce the size of the opening, making the structure less noticeable on the screen, and reducing the resolution. It also has the characteristic of being able to raise the height. The beam spot diameter of a commonly used electron beam for luminescence excitation is approximately 300 lL@, and sufficient resolution can be obtained by making the structure smaller than that. Since the wavelength of visible light is about 300 nm to 700 nm, the structure needs to be larger than this. Furthermore, since the fluorescent film according to the present invention is continuous throughout, deterioration due to heat is reduced. Furthermore, if powder is used as a shield, an expensive mask can be dispensed with. The procedure can be greatly simplified by etching through the holes in the protective layer.

【実施例】【Example】

実施例1゜ 以下、本発明を実施例により説明する。 単結晶蛍光体は、組成式がY、A150.2であるイツ
トリウム アルミニウム ガーネット(以下YAGと略
す)を基板として、LPE法を用いて付活剤Tbを含ん
だ組成式(Yo−sgTbo、。*)iA]、sOt□
の膜を成長させて得た。y A a ml)面上に、組
成を重量比で、 Y、O,: Tb、O,: Al、O,: Pb、O□
: B、O。 = 2.1386 : 0.2377 : 3.627
3 : 250 : 6.2285とする融液中で、1
060℃で約5分間成長させて、約5μmの厚みの蛍光
体単結晶膜を得た。この膜は、紫外線もしくは電子線等
による励起によって、緑色に発光した。 膜の構造形成は、SiO□膜をマスクとし熱りん酸によ
るエツチングで行った。上記のように作成した単結晶膜
に、まずスパッタによって約1μmのSiO□膜をつけ
、その上にNiFe、 Crの膜をそれぞれつけた。こ
の上にレジスト剤を塗布し、光の遮蔽物として、5μm
から10μmの粒径の比較的揃ったグラファイト粉を、
20に20μ踵の範囲におよそ1つ存在するように分散
させ露光を行った。CrとNiFe!にミリングでパタ
ーンを刻んだのち、反応性イオンエツチング(Reac
tive Ion Etching : RI E )
によりSiO□層にパターンを形成した。 比較のため、発光層表面のみパターンをつけたものと、
発光層、支持体層両表面につけたものとの二種類作製し
、160℃のりん酸で約5分エツチングを行った。その
結果、およそ2.1μmの深さのは発光層面にアルミニ
ウムを約1100nの厚みに蒸着し、メタルバック層と
した。 以上の方法で得られた蛍光膜を電子線照射装置にセット
し、加速電圧27kV、電流100nAの電子線を10
X10+m”ラスタで照射して、蛍光膜の発光出力を調
べ、片面のもの、両面のものとパターン形成前の膜との
比較をおこなった。メタルバック層上から発光層面に電
子線照射を行い、支持体層面からの放射光を、発光面か
ら垂直に12μm離れた位置で開口部が直径10mm+
の測定子を用い相対輝度を測定した。その結果を表1に
示す。 第1表 実施例2〜4゜ 膜に形成した構造の深さの影響を調べるため、実施例1
と同様の方法で、両面にパターンを形成し、エツチング
時間を変え構造の深さを変化させた実施例2〜5を作製
した。第2表は照射電子線の加速電圧を27kVとした
ときの発光出力の比較を示す、また、第2図には上記の
構造深さと発光出力の関係をグラフとして示す。 また、第3表には、同実施例のスクリーンに対して同様
の方法で、上記照射電子線の加速電圧を9kVとして測
定を行った結果を示す。さらに、この条件における構造
深さと発光出力の関係を第3図にグラフとして示す。 発光出力は、発光励起させる電子ビームの侵入深さに関
係すると考えられる。この測定では、電子ビームの侵入
深さは第2表におけるの条件(加速電圧27kv)にお
いて約3μm、第3表における条件(加速電圧9kV)
において約2μmである。発光層の厚みは約5μmであ
る。 第2図及び第3図より、構造の深さが、ビーム侵入深さ
の3分の1程度を越す程度から、発光層の厚み程度にな
る範囲で、発光出力が極大値をとることがわかる。また
、第2図よりも第3図において構造の発光特性に対する
影響が大きく現われることかわかる。 第2表 第3表 これは、第2図における条件では、構造の深さが、電子
ビーム侵入深さを上回る以前に、構造底部より侵入する
電子ビームが支持体層まで達してしまい発光量が減少す
るためである。第3図にお侵入深さの2倍以上にするこ
とにより、構造の顕著な効果が得られる。 実施例5〜7゜ 本発明の構造の密度と解像度の関係を調べるため、異な
る密度の構造を持つ実施例5〜7を作製し、目視によっ
て比較を行った。実施例1と同様。 の方法で、両面に構造を持つ発光スクリーンを作製した
。そのさい、グラファイトの粒径及び分散させる密度を
変化させ、膜上の孔構造大きさおよび互いの距離の異な
る膜を得た。第4表に実施例の孔の開口部の平均最大径
及び孔間の最近接距離を示す。 得られた発光スクリーンは、実施例1同様に電子ビーム
を照射し、照射面の反対側から目視し、解像度を調べた
。実施例5においては、電子ビームのスポットから大き
く広がって発光した。実施例6では、発光は2〜3+a
mの範囲で、実施例7ではlam以内で面上で発光が見
られた。以上より、開口部相互の距離が1000μm以
内において良好な解像度が得られることが分かる。 実施例8゜ 蛍光膜として、ノンアルカリガラス基板上に。 Mnを付活剤として含んだZnSの膜を電子ビーム蒸着
法によって成長させた。基板温度500℃において厚さ
約4μmのZnS:Mn多結晶膜を得た。この膜は、電
子ビームの励起によって橙色に発光した。 上記のようにして得た蛍光体膜に、硝酸をエッチャント
として用い本発明の構造を形成した。まず、蛍光膜上に
スパッタ法によって、SiO□膜をおよそ100na+
の厚みに形成した。実施例1と同様、蛍光層表面のみの
ものと、両面のもの二種を作製した。これを、0.01
規定の硝酸を用いて約5分間エツチングを行った。保護
層の5in2膜に多数おいている欠損孔を通じ蛍光膜が
エツチングされ、約10μm四方に1個の割で直径4μ
m前後の、深さ約2μmの円錐状の礼状構造を得た。 第5表に以上の方法で得られた蛍光膜を実施例1と同条
件で測定して得られた発光出力を、構造形成前の膜と比
較して示した。 第5表 本発明による構造によって、発光出力が大幅に向上して
いることが分かる。
Example 1 The present invention will be explained below using examples. The single-crystal phosphor is manufactured using yttrium aluminum garnet (hereinafter abbreviated as YAG) with a composition formula of Y and A150.2 as a substrate, and a composition formula (Yo-sgTbo, *) containing an activator Tb using the LPE method. )iA], sOt□
obtained by growing a film of y A a ml) surface, the composition is in weight ratio: Y, O,: Tb, O,: Al, O,: Pb, O
: B, O. = 2.1386 : 0.2377 : 3.627
3 : 250 : 6.2285 in the melt, 1
Growth was carried out at 060° C. for about 5 minutes to obtain a phosphor single crystal film with a thickness of about 5 μm. This film emitted green light when excited by ultraviolet rays or electron beams. The film structure was formed by etching with hot phosphoric acid using the SiO□ film as a mask. First, a SiO□ film of about 1 μm was applied by sputtering to the single crystal film prepared as described above, and then NiFe and Cr films were respectively applied thereon. A resist agent was applied on top of this, and a 5 μm thick resist was applied as a light shield.
Graphite powder with a relatively uniform particle size of 10 μm from
Exposure was carried out by dispersing the particles so that approximately one layer was present in a 20μ heel area. Cr and NiFe! After cutting a pattern by milling, reactive ion etching (Reac
tive Ion Etching: RIE)
A pattern was formed on the SiO□ layer. For comparison, one with a pattern only on the surface of the light emitting layer, and
Two types were prepared, a light-emitting layer and a support layer attached to both surfaces, and etched with phosphoric acid at 160° C. for about 5 minutes. As a result, aluminum was vapor-deposited to a thickness of about 1100 nm on the surface of the light emitting layer to a depth of about 2.1 μm to form a metal back layer. The fluorescent film obtained by the above method was set in an electron beam irradiation device, and an electron beam with an acceleration voltage of 27 kV and a current of 100 nA was applied for 10 minutes.
The luminous output of the fluorescent film was investigated by irradiating it with a X10+m'' raster, and comparisons were made between single-sided, double-sided, and the film before pattern formation.Electron beam irradiation was performed from above the metal back layer to the light-emitting layer surface. The opening is 10 mm+ in diameter at a position 12 μm perpendicularly away from the light emitting surface to emit light emitted from the support layer surface.
The relative brightness was measured using a probe. The results are shown in Table 1. Table 1 Examples 2 to 4 In order to investigate the influence of the depth of the structure formed on the film, Example 1
Examples 2 to 5 were prepared in which patterns were formed on both sides and the depth of the structure was varied by changing the etching time using the same method as above. Table 2 shows a comparison of the light emission output when the accelerating voltage of the irradiated electron beam is 27 kV, and FIG. 2 shows the relationship between the structure depth and the light emission output as a graph. Further, Table 3 shows the results of measurements performed on the screen of the same example using the same method with the acceleration voltage of the irradiated electron beam being 9 kV. Furthermore, the relationship between the structure depth and the light emission output under these conditions is shown in a graph in FIG. It is thought that the light emission output is related to the penetration depth of the electron beam that excites the light emission. In this measurement, the penetration depth of the electron beam was approximately 3 μm under the conditions in Table 2 (acceleration voltage 27kV), and the penetration depth of the electron beam was approximately 3 μm under the conditions in Table 3 (acceleration voltage 9kV).
It is approximately 2 μm in diameter. The thickness of the light emitting layer is approximately 5 μm. From Figures 2 and 3, it can be seen that the light emission output reaches its maximum value in the range from the depth of the structure exceeding about one-third of the beam penetration depth to the thickness of the light emitting layer. . It can also be seen that the influence of the structure on the light emitting characteristics appears to be greater in FIG. 3 than in FIG. 2. Table 2 Table 3 This is because under the conditions shown in Figure 2, the electron beam penetrating from the bottom of the structure reaches the support layer before the depth of the structure exceeds the electron beam penetration depth, resulting in a decrease in the amount of light emitted. This is because it decreases. By making the penetration depth more than twice the depth shown in FIG. 3, a remarkable effect of the structure can be obtained. Examples 5 to 7 In order to investigate the relationship between the density and resolution of the structures of the present invention, Examples 5 to 7 having structures with different densities were prepared and visually compared. Same as Example 1. Using this method, we fabricated a luminescent screen with structures on both sides. At that time, the particle size of graphite and the density at which it is dispersed were varied to obtain films with different pore structure sizes and mutual distances on the film. Table 4 shows the average maximum diameter of the hole openings and the closest distance between the holes in the examples. The obtained luminescent screen was irradiated with an electron beam in the same manner as in Example 1, and visually observed from the opposite side of the irradiated surface to examine the resolution. In Example 5, the light emitted spread widely from the spot of the electron beam. In Example 6, the emission was 2-3+a
In Example 7, light emission was observed on the surface within lam in the range of m. From the above, it can be seen that good resolution can be obtained when the distance between the openings is within 1000 μm. Example 8 As a fluorescent film, on a non-alkali glass substrate. A ZnS film containing Mn as an activator was grown by electron beam evaporation. A ZnS:Mn polycrystalline film with a thickness of about 4 μm was obtained at a substrate temperature of 500° C. This film emitted orange light when excited by an electron beam. The structure of the present invention was formed on the phosphor film obtained as described above using nitric acid as an etchant. First, a SiO□ film of approximately 100 na+ is deposited on the fluorescent film by sputtering
It was formed to a thickness of . As in Example 1, two types of fluorescent layers were prepared: one with only the surface of the fluorescent layer and one with both surfaces. This is 0.01
Etching was performed for about 5 minutes using specified nitric acid. The fluorescent film is etched through the many holes in the 5in2 film of the protective layer, and each hole has a diameter of 4μ per approximately 10μm square.
A conical bow-like structure with a depth of about 2 μm and a diameter of about 2 μm was obtained. Table 5 shows the luminescence output obtained by measuring the fluorescent film obtained by the above method under the same conditions as in Example 1, in comparison with the film before structure formation. Table 5 It can be seen that the structure according to the present invention significantly improves the light emitting output.

【発明の効果】【Effect of the invention】

本発明によれば、画質を落すことなしに、結晶質薄膜発
光スクリーンの輝度を、数刻以上と大幅に高くできる。 また、本来の優れた熱特性を維持でき、高輝度、高精細
、長寿命の表示装置の実現に役立つ。
According to the present invention, the brightness of a crystalline thin film luminescent screen can be significantly increased to several fractions of a second or more without degrading the image quality. In addition, the original excellent thermal properties can be maintained, which is useful for realizing display devices with high brightness, high definition, and long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明で得られた発光スクリーンを模式的に
示した断面図および上面図である。 第2図は本発明の実施例のスクリーンの27kV電子線
照射における孔構造の深さと発光出力の関係を示したグ
ラフである。 第3図は本発明の実施例のスクリーンの9kV電子線照
射における孔構造の深さと発光出力の関係を示したグラ
フである。 符号の説明 1・・・発光層 2・・・支持体 3・・・反射膜(メタルバック層) 4・・・発光層表面構造体 5・・・支持体層表面構造体 第1 回 第2図 ◎ ◎ ◎ ◎ / 2   3   4 1遵:/7で (μ気)
FIG. 1 is a cross-sectional view and a top view schematically showing a luminescent screen obtained by the present invention. FIG. 2 is a graph showing the relationship between the depth of the hole structure and the light emission output when the screen of the example of the present invention is irradiated with a 27 kV electron beam. FIG. 3 is a graph showing the relationship between the depth of the hole structure and the light emission output when the screen of the example of the present invention is irradiated with a 9 kV electron beam. Explanation of symbols 1... Luminescent layer 2... Support 3... Reflective film (metal back layer) 4... Luminescent layer surface structure 5... Support layer surface structure 1st 2nd Figure ◎ ◎ ◎ ◎ / 2 3 4 1 compliance: /7 (μ ki)

Claims (1)

【特許請求の範囲】 1、支持体に坦持された電子線励起により発光する物質
の結晶質薄膜において、発光体層表面及び発光体層支持
体表面の両面に孔もしくは孔の集合体を有し、該孔もし
くは孔の集合体の開口部の最大長が300μm以下70
0nm以上であり、該孔もしくは孔の集合体の開口部と
、他の孔もしくは孔の集合体の開口部の最近接距離が1
mm以下700nm以上であり、該孔もしくは孔の集合
体の深さが発光励起用電子線の侵入深さの3分の1以上
発光層の厚み以下であることを特徴とする発光スクリー
ン。 2、請求項1記載の構造を有する発光スクリーンにおい
て、発光層の厚みが発光励起用電子線の侵入深さの2倍
以上あることを特徴とする発光スクリーン。 3、請求項1記載の孔もしくは孔の集合体構造を、分散
した粒状物をマスクとして用いて形成することを特徴と
する発光スクリーン製造方法。 4、請求項1記載の孔もしくは孔の集合体構造を、表面
に形成した保護層に生じる膜欠損孔を通してエッチング
して形成することを特徴とする発光スクリーン製造方法
。 5、請求項1記載の発光スクリーンを有することを特徴
とする陰極線管。
[Scope of Claims] 1. A crystalline thin film of a substance supported on a support that emits light by electron beam excitation, which has pores or aggregations of pores on both the surface of the phosphor layer and the surface of the phosphor layer support. However, the maximum length of the opening of the hole or aggregation of holes is 300 μm or less70
0 nm or more, and the closest distance between the opening of the hole or hole aggregate and the opening of another hole or hole aggregate is 1
700 nm or more, and the depth of the hole or a collection of holes is at least one third of the penetration depth of an electron beam for excitation of light emission and at most the thickness of the light emitting layer. 2. A luminescent screen having the structure according to claim 1, wherein the thickness of the luminescent layer is at least twice the penetration depth of the electron beam for excitation of luminescence. 3. A method for producing a luminescent screen, characterized in that the hole or hole aggregate structure according to claim 1 is formed using dispersed particulate matter as a mask. 4. A method for manufacturing a luminescent screen, characterized in that the hole or hole aggregate structure according to claim 1 is formed by etching through a film defect hole that occurs in a protective layer formed on the surface. 5. A cathode ray tube comprising the luminescent screen according to claim 1.
JP21479289A 1989-08-23 1989-08-23 Light emitting screen Pending JPH0378940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21479289A JPH0378940A (en) 1989-08-23 1989-08-23 Light emitting screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21479289A JPH0378940A (en) 1989-08-23 1989-08-23 Light emitting screen

Publications (1)

Publication Number Publication Date
JPH0378940A true JPH0378940A (en) 1991-04-04

Family

ID=16661608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21479289A Pending JPH0378940A (en) 1989-08-23 1989-08-23 Light emitting screen

Country Status (1)

Country Link
JP (1) JPH0378940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085917A1 (en) * 2004-03-04 2005-09-15 Nova Measuring Instruments Ltd. Glan-thompson type broadband polarizer device for use in the deep ultraviolet spectral range and method of its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085917A1 (en) * 2004-03-04 2005-09-15 Nova Measuring Instruments Ltd. Glan-thompson type broadband polarizer device for use in the deep ultraviolet spectral range and method of its manufacture

Similar Documents

Publication Publication Date Title
US4298820A (en) Luminescent screen
US5418377A (en) Pixelized phosphor
DE2826788A1 (en) LUMINAIRE
US4695762A (en) Electron beam pumped rod-like light emitters
US5137598A (en) Thin film phosphor screen structure
US4906893A (en) X-ray image intensifier and method of manufacturing the same
US11105486B2 (en) Optic and illumination device
JPH0378940A (en) Light emitting screen
JPH06236742A (en) Radioactive ray image reinforcing pipe
EP0491419B1 (en) Method of manufacturing a display window for a display device
US4807241A (en) Electron beam pumped laser
KR100813241B1 (en) Field emission type backlight unit, and manufacturing method of upper panel thereof
US20090072701A1 (en) Luminescent screen
KR100786858B1 (en) Flat panel display device having reflective layer and manufacturing method of the reflective layer
RU2144236C1 (en) Cathodic luminescent screen
JPS6362135A (en) Phosphor display plate and its manufacture
Soshchin et al. A Cathodoluminescent Screen of Columnar Structure for Field Emission Displays
RU2127465C1 (en) Method for manufacturing of luminescent screens with row-like structure
KR100322680B1 (en) Fluorescent Surface Formation Method of Image Display Device
JPH03225791A (en) Thin film electroluminescence (el) element
JPH0529701A (en) Visible light emitting device
KR20030035971A (en) Cathode ray tube
JPS62268042A (en) Phosphor display plate
KR20110085165A (en) Field emission type backlight unit
EP0232586A2 (en) Cathode ray tube with single crystal targets