JPH037859B2 - - Google Patents

Info

Publication number
JPH037859B2
JPH037859B2 JP105985A JP105985A JPH037859B2 JP H037859 B2 JPH037859 B2 JP H037859B2 JP 105985 A JP105985 A JP 105985A JP 105985 A JP105985 A JP 105985A JP H037859 B2 JPH037859 B2 JP H037859B2
Authority
JP
Japan
Prior art keywords
iron
anode
corrosion
enamel
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP105985A
Other languages
Japanese (ja)
Other versions
JPS61161366A (en
Inventor
Kunihiro Tsuruta
Ikuo Kobayashi
Michuki Fujishima
Satoshi Arima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60001059A priority Critical patent/JPS61161366A/en
Publication of JPS61161366A publication Critical patent/JPS61161366A/en
Publication of JPH037859B2 publication Critical patent/JPH037859B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は電気、ガス、石油、太陽熱を熱源とす
る温水器に関するものである。 従来の技術 従来この種の温水器は第6図に示す様に内面を
ホウロウ処理した鉄缶体1に不溶性アノード2を
下部位置に配置してカソード防食(以下、電気防
食と記す)している。 発明が解決しようとする問題点 しかしながら上記の構成では次の様な問題が生
じていた。 ホウロウが熱水によつて徐々に浸食され、やが
て溶出し缶体鉄素地が露出してくるとカソード防
食が不充分になり鉄素地が腐蝕され温水が赤色と
なる。特に、このホウロウの溶出は温水温度が高
い缶体上部ほど著しいので、缶体下部に配置した
不溶性アノードの防食効果はほとんどなくなり鉄
素地の腐蝕が著しくなる。 本発明は上記問題点に鑑み、ホウロウが熱水に
よつて徐々に浸食されやがて溶出し缶体鉄素地が
露出しても、カソード防食の防食効果低減が少な
い防食機能を有する温水器を提供するものであ
る。 問題点を解決するための手段 上記問題点を解決するために本発明の温水器
は、内面をホウロウ処理した鉄缶体内に、不溶性
アノードを鉄缶体下部位置に、犠牲アノードを鉄
缶体上部に併設してカソード防食した構成とし
た。 作 用 本発明は上記構成によつて、ホウロウの溶出の
まつたくない使用初期は不溶性アノードによるカ
ソード防食で鉄缶体の防食がなされるが、ホウロ
ウの溶出が進行して缶体鉄素地が露出するにつれ
て犠牲アノード表面の耐熱耐蝕性皮膜も溶出し犠
牲アノードの防食効果が付与され鉄缶体の防食が
充分になされる作用がなされる。 実施例 以下、本発明の実施例を添付図面にもとづいて
説明する。 第1図において、内面をホウロウ処理した鉄缶
体3に不溶性アノード4と犠牲アノード5を併設
してカソード防食しており、犠牲アノード5の表
面には耐熱耐蝕性皮膜6が設けられている。特に
不溶性アノード4は鉄缶体2の下部位置に配置さ
れ、白金メツキしたチタン線を用いている。ま
た、犠牲アノード5は鉄缶体3の上部位置に配置
されマグネシウムを用い、その表面をスズ・ニツ
ケル等の金属メツキ、これら金属メツキ上に塗布
した樹脂(例えばメラミンアクリル樹脂、エポキ
シ樹脂)、マグネシウムの陽極酸化皮膜等の耐熱
耐蝕性皮膜6で被つている。 水は底面に設けられた給水口7より流入して鉄
缶体3にはいり、ヒータ8により加熱され温水と
して給湯口9より排出される。 なお第1図の実施例においては不溶性アノード
4はヒータ8の上部に配置したが、下部に配置し
ても良い。この温水器の鉄缶体3は、下部端面1
0にて鉄素地を溶接している構造体であるため、
この下部端面10を充分に防食する観点より不溶
性アノード4を鉄缶体3の下部位置に配置し、缶
体上部に犠牲アノード5を配置した。特に、犠牲
アノード5は不溶性アノード4の真上より横に配
置している。 本発明の効果判定を第1図・第6図に示す電気
温水器で行なつた。この電気温水器は360の貯
湯能力を有するものであり、内面のホウロウとし
て珪酸塩系ホウロウ(SiO2が約60%)のカバー
コート(平均膜厚約250μm)とほう珪酸塩系ホ
ウロウ(SiO236〜38%、B2O320%)のアンダー
コート(平均膜厚200μm)を用いている。温水
器の防食として、缶体下部位置に白金メツキした
チタン線の不溶性アノードを配置し、鉄缶体とニ
ツケルメツキしたヒータ(母材材質は銅)を絶縁
し両者をカソード防食している。防食電位は水質
の導電率にかかわらず最も貴な値を示す部分が、
鉄缶体のホウロウ上で−850mV以下(VS.S.C.
E.)、ヒータで−450mV以下(VS.S.C.E.)を満
足する様に防食電圧・電流を調整した。 市場におけるホウロウ溶出にともなう鉄素地の
露出状況を実験室的にシミユレーシヨンしてその
再現実験を試みた。実験は、温水器のホウロウ缶
体の内面に鉄板を吊り下げ鉄露出面積を変化させ
る方法を用い、鉄板はリード線にて鉄缶体と電気
的に接続している。 <実験1> 市水(導電率100μs/cm)を第6図に示す温水
器に入れ、不溶性アノードによるカソード防食
(以下、電気防食と記す)したホウロウ缶体の内
面に鉄板を吊り下げ鉄露出面積を変化させて防食
電位を測定した。なお、鉄板はリード線にて電気
的に接続し電気防食している。この電気防食によ
る防食電位の推移を第2図に示す。鉄露出面積が
増加するにつれて電位は貴なる方へ推移し、鉄露
出面積が500cm2になると鉄板に錆が発生し防食不
充分となつた。 <実験2> 電気防食を施した温水器の上部に第1図のよう
に表面を耐熱耐蝕性皮膜で被つたマグネシウム棒
(φ19mm、長さ概略900mm、材質Mg96%−Al3%−
Zn1%)を併設してカソード防食した。耐熱耐蝕
性皮膜はスズ(0.4〜3μm、平均膜厚1.5μm)、ニ
ツケル(3〜65μm、平均膜厚25μm)、マグネシ
ウムの陽極酸化皮膜(2.5〜50μm、平均膜厚30μ
m)であり、これらの皮膜で被つたマグネシウム
棒を併設した温水器において、鉄露出面積を変化
させて防食電位を測定した結果を第3図に示す。
本発明は鉄露出面積が2000cm2の時に錆が発生し、
従来の電気防食と比べると防食性能がすぐれてい
ることがわかる。 <実験3> 電気防食を施した温水器の上部にマグネシウム
棒(φ19mm、長さ概略900mm、材質Mg96%−Al3
%−Zn1%)を併設してカソード防食し、鉄露出
面積を変えて防食電位を測定した結果を第4図に
示す。電気防食とマグネシウム犠牲陽極棒の併用
防食法は、鉄露出面積2000cm2で−0.77Vvs.sceと
なり錆が発生するのに対し、従来例であるマグネ
シウム犠牲陽極棒のみのカソード防食法は、この
実験法においては鉄露出面積1000cm2で−0.77Vvs.
secとなり、錆の発生があつた。この結果を、前
述の実験2の結果と対比させてみると、本発明は
電気防食とMg犠牲陽極を併設した方式と比較的
類似の防食特性をもつことがわかる。 <実験4> 第1図・第6図に示す温水器に水を入れて加熱
し、80℃の温水を3日滞留させて水質変化(PH
値、Mg2+量)を測定した。なお、温水器のホウ
ロウ缶体の内面には、リード線にて電気的に鉄缶
体と接続した状態の鉄板(露出面積500cm2)を吊
り下げてある。また、市水はPH7、導電率
100μs/cmの水質を使用している。その結果を次
表に示す。なお、従来例であるマグネシウム犠牲
陽極棒のみのカソード防食法は、PH値9.0、Mg2+
量6.1ppm、腐食特性:わずかに錆発生であつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a water heater using electricity, gas, oil, or solar heat as a heat source. Conventional technology As shown in Fig. 6, this type of water heater conventionally has an iron can body 1 whose inner surface has been enameled, and an insoluble anode 2 disposed at a lower position to provide cathodic corrosion protection (hereinafter referred to as cathodic protection). . Problems to be Solved by the Invention However, the above configuration has the following problems. When the enamel is gradually eroded by the hot water and eventually eluted and the iron base of the can body is exposed, the cathodic protection becomes insufficient, the iron base corrodes, and the hot water turns red. In particular, the elution of this enamel is more pronounced in the upper part of the can where the temperature of the hot water is higher, so that the corrosion-preventing effect of the insoluble anode disposed in the lower part of the can becomes almost negligible, and the corrosion of the iron base becomes significant. In view of the above-mentioned problems, the present invention provides a water heater having an anti-corrosion function in which the anti-corrosion effect of cathodic protection is less reduced even when the enamel is gradually eroded by hot water and eventually eluted to expose the iron base of the can body. It is something. Means for Solving the Problems In order to solve the above-mentioned problems, the water heater of the present invention has an insoluble anode placed in a lower part of the iron can, and a sacrificial anode placed in the upper part of the iron can in an iron can whose inner surface is enameled. The structure was designed to provide cathodic corrosion protection. Effects According to the above configuration, the iron can body is protected from corrosion by cathodic protection using an insoluble anode during the initial period of use when enamel elution is difficult, but as enamel elution progresses, the iron base of the can body is exposed. At the same time, the heat-resistant and corrosion-resistant film on the surface of the sacrificial anode is also eluted, giving the sacrificial anode a corrosion-preventing effect and providing sufficient corrosion protection to the iron can body. Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. In FIG. 1, an insoluble anode 4 and a sacrificial anode 5 are installed together on an iron can body 3 whose inner surface has been enameled for cathodic corrosion protection, and a heat-resistant and corrosion-resistant film 6 is provided on the surface of the sacrificial anode 5. In particular, the insoluble anode 4 is disposed at the lower part of the iron can body 2, and is made of platinum-plated titanium wire. The sacrificial anode 5 is placed in the upper part of the iron can body 3 and is made of magnesium, and its surface is coated with metal such as tin or nickel, resin (for example, melamine acrylic resin, epoxy resin) coated on these metal plating, magnesium It is covered with a heat-resistant and corrosion-resistant film 6 such as an anodic oxide film. Water flows into the iron can body 3 through a water supply port 7 provided on the bottom, is heated by a heater 8, and is discharged from a hot water supply port 9 as hot water. In the embodiment shown in FIG. 1, the insoluble anode 4 is placed above the heater 8, but it may be placed below the heater 8. The iron can body 3 of this water heater has a lower end surface 1
Because it is a structure with iron base welded at 0,
In order to sufficiently protect the lower end surface 10 from corrosion, an insoluble anode 4 was placed at the lower part of the iron can body 3, and a sacrificial anode 5 was placed at the upper part of the can body. In particular, the sacrificial anode 5 is placed laterally than directly above the insoluble anode 4. The effectiveness of the present invention was evaluated using an electric water heater shown in FIGS. 1 and 6. This electric water heater has a hot water storage capacity of 360 mm, and has a cover coat (average film thickness of approximately 250 μm) of silicate enamel (approximately 60% SiO 2 ) and borosilicate enamel (SiO 2 ) on the inner surface. 36-38%, B 2 O 3 20%) undercoat (average film thickness 200 μm). To prevent corrosion of the water heater, an insoluble anode made of platinum-plated titanium wire is placed at the bottom of the can body to insulate the iron can body and the nickel-plated heater (base material is copper), providing cathodic corrosion protection for both. The corrosion protection potential shows the most noble value regardless of the conductivity of the water quality.
-850mV or less on the enamel of the iron can body (VS.SC
E.), the anti-corrosion voltage and current were adjusted using the heater to satisfy -450mV or less (VS.SCE). We attempted a laboratory simulation of the exposure of iron substrates due to elution of enamel in the market. The experiment involved hanging an iron plate on the inner surface of the enamel can of a water heater to change the exposed area of iron, and the iron plate was electrically connected to the iron can with a lead wire. <Experiment 1> City water (conductivity 100 μs/cm) was placed in the water heater shown in Figure 6, and an iron plate was suspended from the inner surface of the enamel can, which had been cathodically protected (hereinafter referred to as cathodic protection) by an insoluble anode, to expose the iron. The anticorrosion potential was measured by changing the area. The iron plates are electrically connected with lead wires and protected against cathodic corrosion. FIG. 2 shows the transition of the corrosion protection potential due to this cathodic protection. As the iron exposed area increased, the potential shifted towards higher values, and when the iron exposed area reached 500 cm 2 , rust formed on the iron plate and corrosion protection became insufficient. <Experiment 2> A magnesium rod (φ19 mm, length approximately 900 mm, material Mg96%-Al3%-
Zn1%) was added to provide cathodic corrosion protection. Heat-resistant and corrosion-resistant coatings include tin (0.4 to 3 μm, average thickness 1.5 μm), nickel (3 to 65 μm, average thickness 25 μm), and magnesium anodic oxide coating (2.5 to 50 μm, average thickness 30 μm).
Figure 3 shows the results of measuring the anticorrosion potential while changing the exposed iron area in a water heater equipped with magnesium rods covered with these films.
In the present invention, rust occurs when the iron exposed area is 2000cm2 ,
It can be seen that the corrosion protection performance is superior compared to conventional cathodic protection. <Experiment 3> A magnesium rod (φ19 mm, length approximately 900 mm, material Mg96%-Al3
%-Zn1%) for cathodic corrosion protection, and the corrosion protection potential was measured by changing the exposed iron area. Figure 4 shows the results. The combined corrosion protection method using cathodic protection and a magnesium sacrificial anode rod resulted in −0.77V vs. sce for an iron exposed area of 2000 cm 2 and rust occurred, whereas the conventional cathodic protection method using only a magnesium sacrificial anode rod was In the method, -0.77V vs. iron exposed area of 1000cm2 .
sec, and rust occurred. Comparing this result with the results of Experiment 2 described above, it can be seen that the present invention has corrosion protection properties that are relatively similar to the system that combines cathodic protection and an Mg sacrificial anode. <Experiment 4> Water was poured into the water heater shown in Figures 1 and 6, heated, and the 80°C warm water was allowed to stay there for 3 days to observe changes in water quality (PH
value, Mg 2+ amount) was measured. An iron plate (exposed area: 500 cm 2 ) was suspended from the inner surface of the enamel can of the water heater, which was electrically connected to the iron can with a lead wire. In addition, city water has a pH of 7 and conductivity
A water quality of 100μs/cm is used. The results are shown in the table below. In addition, the conventional cathodic corrosion protection method using only a magnesium sacrificial anode rod has a pH value of 9.0 and a Mg 2+
Amount: 6.1 ppm, corrosion characteristics: slight rust occurred.

【表】 本発明により、マグネシウムイオンの溶出が抑
制されていることがわかる。このことにより、マ
グネシウムの寿命が長くなり耐用年数が延びるこ
とが推測される。犠牲アノードの表面は、多孔質
な被膜で覆われているためピンホールが存在す
る。このピンホールを介してアノード陽極棒の溶
解が起こり、犠牲アノード電流が発生する。その
ため、カソード防食が可能となる。このことは、
第3図の防食電位特性、この実験の水中のマグネ
シウムイオン(アノード陽極金属イオン)の増加
から確認できる。一方、多孔質であり溶解度の小
さい被膜は、熱水に長期間曝されることで長時間
をかけて徐々に溶解剥離しアノード陽極棒が露出
する。この溶解度の小さい被膜が溶解剥離するこ
ろには、缶体上部ホウロウの溶解により鉄素地が
露出するため、鉄素地露出部はこのアノード陽極
棒が防食を行い、缶体上部の防食も十分となる訳
である。なお、内面をホウロウ処理した鉄缶体
は、不溶性アノードでカソード防食すると、ホウ
ロウ溶解が起こらないから、長期間防食効果が維
持される。しかし、ホウロウの溶解により鉄素地
が露出すると防食が不十分となるため、この鉄素
地露出部の防食をアノード陽極棒との併用で行つ
ている訳である。つまり、犠牲アノードの表面を
被膜で覆うことは、その溶解消耗を抑制してその
防食効果が真に必要な時まで消耗を遅らせること
が目的である。 犠牲アノードの表面に被膜が存在しないと、犠
牲アノードの溶解がすぐにはじまり、鉄缶体のホ
ウロウが溶解して鉄缶体の素地が露出するころに
は、もはや犠牲アノードは残り少なくなり本来の
役目を果たさないことになる。 <実験5> ホウロウの劣化度を測定するため、100℃の熱
水にてホウロウテストピースの重量減少量を測定
した。その結果を第5図に示す。ホウロウテスト
ピースは166gの重量であり、水との接水面積は
26cm2である。実験に使用した水はPH7、導電率
100μs/cmの水である。この水質におけるホウロ
ウ溶出量は0.113mg/cm2dayであり、ホウロウが熱
水によつて徐々に侵食されその成分が溶出するこ
とがわかる。温水器における使用環境はこの劣化
促進試験法よりもつとゆるやかであるため、溶出
度合いはもつと少ないが、寿命予想すると約6年
で鉄露出面積500cm2相当があることが予想される。 発明の効果 以上のように本発明の湯水器によれば次の効果
が得られる。 内面をホウロウ処理した鉄缶体内の下部位置に
不溶性アノードを、鉄缶体上部位置に、表面を被
膜で覆つたマグネシウム製犠牲アノードを併設し
てカソード防食した構成であるため、ホウロウ劣
化に起因するカソード防食効果の低下が少なくな
り、鉄缶体にはいつまでも赤錆が発生せず寿命が
延びる。また、アノード陽極棒の溶解が抑制され
その寿命も延びる。 この効果の理由は次の通りである。鉄缶体は、
内面をホウロウ処理しさらに不溶性アノードでカ
ソード防食すると、ホウロウ溶解が起こらないな
ら、長期間防食効果が維持される。しかし、熱水
中で長期間使用するとホウロウが溶解して鉄素地
が露出するため、この不溶性アノードだけの防食
効果には限界が生じ赤錆がやがて生じてくる課題
がある。この鉄素地の露出は、熱水に多く曝され
る缶体上部ほど激しい。そこで、ヒータ等の加熱
源が配置される缶体下部には、長期間防食効果を
維持できる不溶性アノードを配置し、缶体上部に
は犠牲アノードを配置した構成とし、長期使用に
よる缶体上部の鉄素地露出部を、犠牲アノードを
併用して防食してやると、缶体上部の防食も十分
となり鉄缶体は赤錆が発生しなくなる。そのた
め、鉄缶体の寿命が延びる効果が生じる。 一方、犠牲アノードだけの防食は、使用ととも
に陽極棒が徐々に溶解するため寿命が短いという
欠点があるが、不溶性アノードを併用して防食
し、しかも犠牲アノード表面を被膜で多孔質に覆
うと、陽極棒の溶解が抑制され寿命が延びるとい
う利点が生じる。これは、不溶性アノードからの
防食電流の一部が陽極棒に流れ込み、多孔質被膜
を介して犠牲アノード効果で発生する電流(この
電流のため陽極棒が溶解する)を相殺すること
と、犠牲アノード表面が溶解度の小さい被膜で多
孔質に覆われたため表面積が小さくなつたためで
ある。以上の理由により、鉄缶体およびアノード
陽極棒の寿命が延びる効果が生じる訳である。さ
らに、アノード陽極棒としてマグネシウムを用い
ているので防食効果に優れ、しかも汚濁等のない
安全な水質が得られる。また、長期間経つと溶解
度の小さい被膜は剥離し、犠牲アノード金属が露
出する利点がある。
[Table] It can be seen that the present invention suppresses the elution of magnesium ions. It is presumed that this increases the lifespan of magnesium and extends its service life. The surface of the sacrificial anode is covered with a porous film, so there are pinholes. Dissolution of the anode rod occurs through this pinhole, and a sacrificial anode current is generated. Therefore, cathodic corrosion protection becomes possible. This means that
The anticorrosion potential characteristics shown in Figure 3 can be confirmed from the increase in magnesium ions (anode metal ions) in the water in this experiment. On the other hand, a porous coating with low solubility gradually dissolves and peels off over a long period of time when exposed to hot water, exposing the anode rod. By the time this low-solubility film dissolves and peels off, the iron base is exposed due to melting of the enamel at the top of the can body, so this anode anode rod protects the exposed part of the iron base from corrosion, and the corrosion protection of the top of the can body is also sufficient. This is the translation. Note that when an iron can body whose inner surface is enameled is cathodically protected with an insoluble anode, the enamel does not dissolve, so the anticorrosion effect is maintained for a long period of time. However, if the iron base is exposed due to melting of the enamel, corrosion protection is insufficient, so corrosion protection of the exposed part of the iron base is performed in combination with an anode anode rod. In other words, the purpose of covering the surface of the sacrificial anode with a film is to suppress its dissolution and consumption and to delay the consumption until the time when its anticorrosive effect is truly needed. If there is no film on the surface of the sacrificial anode, the sacrificial anode will begin to melt immediately, and by the time the enamel of the iron can melts and the base material of the iron can is exposed, there will be little left of the sacrificial anode and it will no longer be able to fulfill its original role. This will result in not fulfilling the purpose. <Experiment 5> In order to measure the degree of deterioration of the enamel, the amount of weight loss of the enamel test piece was measured in hot water at 100°C. The results are shown in FIG. The enameled test piece weighs 166g, and the area in contact with water is
It is 26cm2 . The water used in the experiment had a pH of 7 and electrical conductivity.
100 μs/cm of water. The elution amount of enamel in this water quality is 0.113 mg/cm 2 day, which indicates that enamel is gradually eroded by hot water and its components are eluted. Since the environment in which water heaters are used is more gentle than that of this accelerated deterioration test method, the degree of elution is still small, but it is expected that the exposed area of iron will be equivalent to 500 cm 2 in about 6 years. Effects of the Invention As described above, the water heater of the present invention provides the following effects. An insoluble anode is installed at the bottom of the iron can whose inner surface has been enameled, and a magnesium sacrificial anode whose surface is covered with a film is installed at the top of the iron can to provide cathodic corrosion protection. The deterioration of the cathodic corrosion protection effect is reduced, and the iron can body remains free of red rust, extending its life. Furthermore, dissolution of the anode rod is suppressed and its lifespan is extended. The reason for this effect is as follows. The iron can body is
When the inner surface is enameled and further cathodically protected with an insoluble anode, the corrosion protection effect is maintained for a long period of time if enamel dissolution does not occur. However, if used for a long period of time in hot water, the enamel will dissolve and the iron base will be exposed, so there is a problem that the anti-corrosion effect of this insoluble anode alone will be limited and red rust will develop over time. The iron base is more exposed in the upper part of the can body, which is exposed to more hot water. Therefore, an insoluble anode that can maintain a long-term anticorrosion effect is placed in the lower part of the can where a heating source such as a heater is placed, and a sacrificial anode is placed in the upper part of the can. If the exposed portion of the iron base is protected against corrosion by using a sacrificial anode, the corrosion protection of the upper part of the can body will be sufficient and red rust will not occur on the iron can body. This has the effect of extending the life of the iron can body. On the other hand, corrosion protection using only a sacrificial anode has the disadvantage of a short lifespan as the anode rod gradually dissolves with use.However, if an insoluble anode is also used for corrosion protection and the surface of the sacrificial anode is covered with a porous film, This has the advantage of suppressing melting of the anode rod and extending its life. This is because a part of the anticorrosive current from the insoluble anode flows into the anode rod and cancels the current generated by the sacrificial anode effect through the porous film (this current causes the anode rod to melt), and the sacrificial anode This is because the surface area was reduced because the surface was porously covered with a film with low solubility. For the above reasons, the lifespan of the iron can body and the anode rod is extended. Furthermore, since magnesium is used as the anode rod, it has an excellent anticorrosion effect and provides safe water quality free from pollution. Further, there is an advantage that the coating with low solubility peels off after a long period of time, exposing the sacrificial anode metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における温水器の要
部断面図、第2図は従来の温水器に用いている不
溶性アノードによるカソード防食法の防食性能特
性図、第3図は本発明の一実施例における温水器
に用いている防食法の防食性能特性図、第4図は
従来の温水器に他のカソード防食法を実施した場
合の防食性能特性図、第5図は本発明の一実施例
の温水器に用いているホウロウの熱水試験による
ホウロウ重量減少量特性図、第6図は従来の温水
器の要部断面図である。 3……鉄缶体、4……不溶性アノード、5……
犠牲アノード、6……耐熱耐蝕性皮膜。
Fig. 1 is a sectional view of essential parts of a water heater according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of the corrosion protection performance of the cathodic corrosion protection method using an insoluble anode used in a conventional water heater, and Fig. 3 is a diagram of the anticorrosion performance of the cathodic corrosion protection method using an insoluble anode used in a conventional water heater. Figure 4 is a diagram showing the corrosion protection performance characteristics of the corrosion protection method used in a water heater in one embodiment. Figure 4 is a diagram showing the corrosion prevention performance characteristics when another cathodic corrosion protection method is applied to a conventional water heater. Fig. 6 is a characteristic diagram of the amount of weight loss of the enamel used in the water heater of the example in a hot water test, and is a sectional view of the main part of the conventional water heater. 3... Iron can body, 4... Insoluble anode, 5...
Sacrificial anode, 6... Heat-resistant and corrosion-resistant film.

Claims (1)

【特許請求の範囲】 1 内面をホウロウ処理した鉄缶体内に不溶性ア
ノードと、被膜で表面を覆つたマグネシウム製犠
牲アノードを配置した温水器。 2 ホウロウが、珪酸塩系カバーコートと、ほう
珪酸塩系アンダーコートからなる特許請求の範囲
第1項記載の温水器。 3 マグネシウム製犠牲アノードが、アルミニウ
ムおよび亜鉛を少量含有したマグネシウム合金で
ある特許請求の範囲第1項記載の温水器。
[Scope of Claims] 1. A water heater in which an insoluble anode and a magnesium sacrificial anode whose surface is covered with a film are arranged in an iron case whose inner surface is enameled. 2. The water heater according to claim 1, wherein the enamel comprises a silicate-based cover coat and a borosilicate-based undercoat. 3. The water heater according to claim 1, wherein the magnesium sacrificial anode is a magnesium alloy containing a small amount of aluminum and zinc.
JP60001059A 1985-01-08 1985-01-08 Water heater Granted JPS61161366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001059A JPS61161366A (en) 1985-01-08 1985-01-08 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001059A JPS61161366A (en) 1985-01-08 1985-01-08 Water heater

Publications (2)

Publication Number Publication Date
JPS61161366A JPS61161366A (en) 1986-07-22
JPH037859B2 true JPH037859B2 (en) 1991-02-04

Family

ID=11490966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001059A Granted JPS61161366A (en) 1985-01-08 1985-01-08 Water heater

Country Status (1)

Country Link
JP (1) JPS61161366A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA21230U (en) * 2006-02-08 2007-03-15 Polaris Internat Ltd Electric water heater

Also Published As

Publication number Publication date
JPS61161366A (en) 1986-07-22

Similar Documents

Publication Publication Date Title
US2459123A (en) Water heating device with corrosion protective anode
US2343440A (en) Domestic water heater
US5176807A (en) Expandable coil cathodic protection anode
US5023928A (en) Apparatus for reducing the current drain on the sacrificial anode in a water heater
US2486936A (en) Combination outlet fitting and sacrificial anode
US4972066A (en) Method and apparatus for reducing the current drain on the sacrificial anode in a water heater
US3176115A (en) Electric water heater
JPH037859B2 (en)
US3001924A (en) Sacrificial magnesium anodes
US3037925A (en) Cathodically protected structure and method of making same
US2852462A (en) Hot water storage tank
US4338997A (en) Heat exchanger with bilayered metal end container for anticorrosive addition
KR0159135B1 (en) Heat exchanger tube for lng vaporizer
JPS5820845Y2 (en) netsukoukansouchi
US3742588A (en) Consumable magnesium anode with a tin-coated, ferrous metal core wire
JPS5818814Y2 (en) Denki Yuwakashiki
US6262401B1 (en) Gold-plated water heater element and method of making same
US3052946A (en) Burial casket
JPH06235692A (en) Nontesting part protective method for corrosion test
JP2001064788A (en) Corrosion-protective method of metal surface in contact with flowing water of water film
JPH0327245Y2 (en)
JPS59140380A (en) Galvanic anode having long life
JP2874383B2 (en) Electric water heater heating equipment
JPH0410218Y2 (en)
JPH0776434B2 (en) Anticorrosion device for hot water storage tank