JPH0378573B2 - - Google Patents

Info

Publication number
JPH0378573B2
JPH0378573B2 JP60211981A JP21198185A JPH0378573B2 JP H0378573 B2 JPH0378573 B2 JP H0378573B2 JP 60211981 A JP60211981 A JP 60211981A JP 21198185 A JP21198185 A JP 21198185A JP H0378573 B2 JPH0378573 B2 JP H0378573B2
Authority
JP
Japan
Prior art keywords
temperature
fire resistance
expansion
jis
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60211981A
Other languages
Japanese (ja)
Other versions
JPS6270743A (en
Inventor
Kunio Kimura
Kazuhiko Jinnai
Osamu Ishibashi
Hiroshi Tateyama
Kinue Tsunematsu
Satoshi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21198185A priority Critical patent/JPS6270743A/en
Publication of JPS6270743A publication Critical patent/JPS6270743A/en
Publication of JPH0378573B2 publication Critical patent/JPH0378573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、陶磁器原料の耐火度測定法、さらに
詳しくいえば、本発明は、陶磁器原料を加熱した
ときの体積の変化状態を観察し、その単位温度当
りの膨張比が所定の値となつたときの温度に基づ
いてその耐火度を求める方法に関するものであ
る。 従来の技術 従来、日用食器、タイル、衛生陶器などの陶磁
器の原料の耐火度は、JIS R2204及びR8101に従
つて試料を標準網ふるい297μm全通の粒度まで粉
砕したのち、これを所定の寸法のコーンに成形
し、これを加熱し、変形状態を標準ゼーゲルコー
ンと対比させながら、観察し、対応する溶倒温度
の標準ゼーゲルコーンの番号(SK番号)をもつ
て表示する方法によつて測定されている。 しかしながら、この方法は、試料を標準網ふる
い297μm全通まで粉砕する際に、粒度分布が必ず
しも一定にならず、場合によつては著しい差異を
生じるため、SK番号で数番も異なる結果をもた
らしたり、また試料ゼーゲルコーンの変形状態が
測定者やそれと対比する標準ゼーゲルコーンの精
度によつて左右されるため、誤差範囲で大きくな
る上に陶土のような試料では試験コーンが曲がり
はじめる温度で膨張を起すため正確な測定ができ
ないという欠点がある。 このような欠点を克服するために、本発明者ら
は先に陶土粉末を円柱状又は立方体状に成形し、
これを加熱して、なだらかな膨張及びその後の焼
結による収縮から、発泡による急激な膨張に移行
する変曲点の温度を求め、その温度からJIS
M8512及びJIS R2204の耐火度試験方法に示され
ている標準ゼーゲルコーンとの比較によるSK番
号を求める方法を提案した。 しかしながら、この方法においても試料の粒度
分布の差異に起因する測定誤差を免れることはで
きなかつた。 発明が解決しようとする課題 本発明は、このような従来方法における欠点を
克服し、試料の粒度分布に著しい差異がある場合
でも、なんら測定者の個人差に起因する誤差を生
じることなく、高精度で陶磁器原料の耐火度を測
定しうる簡便な方法を提供することを目的として
なされたものである。 課題を解決するための手段 本発明者らは、陶磁器原料の耐火度を簡便に測
定するための方法を開発すべく鋭意研究を重ねた
結果、陶磁器原料の粉末を円柱状又は立方体状に
成形し、それを加熱したときの体積変化状態を観
察し、なだらかな膨張、焼結による収縮に続く急
激な膨張に移行した後の単位温度当りの膨張比が
0.01〜0.20%/℃になる範囲内で、所定粒度分布
に対してあらかじめ定められている数値に達する
温度を求めることにより、簡単かつ正確に耐火度
が測定しうることを見い出し、この知見に基づい
て本発明をなすに至った。 すなわち、本発明は、陶磁器原料の耐火度を測
定するに当り、陶磁器原料粉末を円柱状又は立方
体状に成形し、この成形体を加熱して、なだらか
な一次膨張、焼結による収縮後の発泡による急激
な二次膨張に移行した後の単位温度当りの熱膨張
率が0.01〜0.20%/℃の範囲内で所定粒度分布に
対応する特定の数値に達する温度を検知し、その
温度に基づいて耐火度に対応する温度を算出し、
その温度からJIS M8512又はJIS R2204の耐火度
試験方法に示されている標準ゼーゲルコーンとの
比較により耐火度を求めることを特徴とする耐火
度測定法を提供するのである。 また、耐火度が粒度分布によつて変動し、その
間に規則性が存在する点に着目して、上記の関係
から既知の粒度分布をもつ陶磁器原料の耐火度と
未知の粒度分布をもつ陶磁器原料の耐火度との差
異から粒度分布を算定することができる。 本発明方法においては、先ず陶磁器原料粉末を
円柱状又は立方体状に成形して試料を製造するこ
とが必要である。この成形体の寸法については特
に制限はないが、取り扱いやすさを考慮して、通
常円柱状の場合は、直径約10mm、高さ約3mmに、
また立方体状の場合は一辺約10mm程度にするのが
よい。 次に、このようにして作成した成形体を熱膨張
計にセツトして加熱する。この加熱によつて、該
成形体はある温度までは熱膨張するが、この温度
以上になると焼結するために収縮するようにな
る。さらに温度を上げていくと、特定の温度で該
成形体は溶融し始めてガラス化するため、この温
度以上では内部に発生するガスが外部に拡散する
ことができなくなり急激に膨張を開始する。 第1図は、4種類の陶石を1.2mm以下に粗砕し、
更に振動粉砕機による粉砕時間を30秒、2分、8
分、16分と変化させて粉砕した試料を用いて作成
した成形体(直径10mm、高さ3mmの円柱状)にお
ける温度と厚さの変位量との関係を示すグラフで
ある。なお、試料の粒度は、粉砕時間が長くなる
ほど全粒度範囲が微粒側に移動した。この図から
分かるように、該成形体は約1000℃までは徐々に
熱膨張しているが、この温度を超えると収縮を始
め、その後急激に二次膨張する。 次いで、単位温度当りの膨張率が0.00〜0.20%
になる温度、すなわちグラフにおける二次膨張開
始温度以上の熱膨張曲線の傾き(微分値)が0.00
〜0.20%/℃になる温度(T0.00〜T0.20)を算出
した。各試験に対する、30秒間粉砕試料のT0.00
〜T0.20と、2分、8分、16分間粉砕試料のT0.00
〜T0.20との差(ΔT0.00〜T0.20)を第1表に示す。
30秒間粉砕試料のT0.05〜T0.20と16分間粉砕試料
のT0.05〜T0.20との差(ΔT0.05〜ΔT0.20)は、両
者の二次膨張開始温度つまり熱膨張曲線の微分値
が0.00%/℃になる温度との差(ΔT0.00)に比
べ、約半分になる結果となつている。また、各試
料においてΔT0.05〜ΔT0.20の値は大差ない。しか
し、試料によつては、二次膨張が小さいために、
T0.10及びT0.20の温度が得られないこともあるた
め、この場合の耐火度の値としては、T0.05の値
を用いる。
Industrial Application Field The present invention is a method for measuring the fire resistance of ceramic raw materials, and more specifically, the present invention is a method for measuring the fire resistance of ceramic raw materials. This relates to a method for determining the fire resistance based on the temperature at which the value of . Conventional technology Conventionally, the fire resistance of raw materials for ceramics such as daily tableware, tiles, and sanitary ware has been determined by grinding a sample to a particle size of 297 μm through a standard mesh sieve in accordance with JIS R2204 and R8101, and then pulverizing it to a predetermined size. It is measured by a method of forming a cone into a cone, heating it, observing the deformation state while comparing it with a standard Segel cone, and displaying the number (SK number) of the standard Segel cone with the corresponding melting temperature. There is. However, with this method, when the sample is pulverized to a standard mesh sieve of 297 μm, the particle size distribution is not necessarily constant, and in some cases there are significant differences, resulting in results that differ by several SK numbers. In addition, since the deformation state of the sample Segel cone depends on the measurer and the accuracy of the standard Segel cone compared with it, the error range is large, and samples such as china clay may expand at the temperature at which the test cone begins to bend. Therefore, it has the disadvantage that accurate measurements cannot be made. In order to overcome these drawbacks, the present inventors first formed china clay powder into a cylinder or cube shape,
This is heated to determine the temperature at the inflection point where it transitions from gentle expansion and subsequent contraction due to sintering to rapid expansion due to foaming, and from that temperature JIS
We proposed a method for determining the SK number by comparing it with the standard Seegel cone shown in the fire resistance test method of M8512 and JIS R2204. However, even with this method, measurement errors due to differences in the particle size distribution of the samples could not be avoided. Problems to be Solved by the Invention The present invention overcomes the drawbacks of such conventional methods, and even when there is a significant difference in the particle size distribution of the sample, it is possible to obtain high This was done with the aim of providing a simple method that can accurately measure the refractory degree of ceramic raw materials. Means for Solving the Problems As a result of intensive research to develop a method for easily measuring the fire resistance of ceramic raw materials, the inventors of the present invention formed ceramic raw material powder into a cylindrical or cubic shape. , we observed the state of volume change when it was heated, and found that the expansion ratio per unit temperature after transitioning from gentle expansion to rapid expansion following contraction due to sintering.
We discovered that fire resistance can be easily and accurately measured by determining the temperature at which a predetermined value is reached for a given particle size distribution within the range of 0.01 to 0.20%/℃, and based on this knowledge, we As a result, the present invention was completed. That is, in measuring the fire resistance of ceramic raw materials, the present invention molds the ceramic raw material powder into a cylinder or cube shape, heats this molded body, and performs gentle primary expansion and foaming after contraction due to sintering. Detects the temperature at which the coefficient of thermal expansion per unit temperature reaches a specific value corresponding to a predetermined particle size distribution within the range of 0.01 to 0.20%/℃ after transitioning to rapid secondary expansion, and based on that temperature. Calculate the temperature corresponding to the fire resistance,
The present invention provides a method for measuring fire resistance, which is characterized in that the fire resistance is determined from the temperature by comparison with the standard Zegel cone shown in the fire resistance test method of JIS M8512 or JIS R2204. In addition, focusing on the fact that the refractoriness varies depending on the particle size distribution and that there is a regularity between them, we calculated the refractory resistance of ceramic raw materials with a known particle size distribution and the ceramic raw materials with an unknown particle size distribution based on the above relationship. Particle size distribution can be calculated from the difference in fire resistance. In the method of the present invention, it is first necessary to manufacture a sample by molding ceramic raw material powder into a cylinder or cube. There are no particular restrictions on the dimensions of this molded body, but for ease of handling, it is usually cylindrical with a diameter of approximately 10 mm and a height of approximately 3 mm.
In addition, in the case of a cubic shape, it is recommended that each side be approximately 10 mm. Next, the molded body thus produced is placed in a thermal dilatometer and heated. Due to this heating, the molded body thermally expands up to a certain temperature, but when the temperature exceeds this temperature, it contracts due to sintering. As the temperature is further increased, the molded body begins to melt and vitrify at a certain temperature, so that at temperatures above this temperature, the gas generated inside cannot diffuse to the outside, and it begins to expand rapidly. Figure 1 shows four types of pottery stone coarsely crushed to 1.2 mm or less.
Furthermore, the crushing time using the vibration crusher was changed to 30 seconds, 2 minutes, and 8 minutes.
It is a graph showing the relationship between the temperature and the amount of thickness displacement in a molded body (cylindrical shape with a diameter of 10 mm and a height of 3 mm) created using a sample pulverized at different times of 1 to 16 minutes. The particle size of the sample shifted to the finer particle side as the grinding time increased. As can be seen from this figure, the molded article undergoes gradual thermal expansion up to approximately 1000°C, but once this temperature is exceeded, it begins to contract, and then rapidly undergoes secondary expansion. Next, the expansion rate per unit temperature is 0.00~0.20%
The temperature at which the slope (differential value) of the thermal expansion curve above the secondary expansion start temperature in the graph is 0.00.
The temperature (T 0.00 to T 0.20 ) at which the temperature was ~0.20%/°C was calculated. T 0.00 of 30 seconds crushed sample for each test
~T 0.20 and T 0.00 for samples crushed for 2 minutes, 8 minutes, and 16 minutes
-T 0.20 (ΔT 0.00 -T 0.20 ) is shown in Table 1.
The difference between T 0.05 ~ T 0.20 of the sample crushed for 30 seconds and T 0.05 ~ T 0.20 of the sample crushed for 16 minutes (ΔT 0.05 ~ ΔT 0.20 ) is the secondary expansion start temperature of both, that is, the differential value of the thermal expansion curve is 0.00%. The result is that the difference is approximately half that of the temperature difference (ΔT 0.00 ) of /°C. Moreover, the values of ΔT 0.05 to ΔT 0.20 are not significantly different in each sample. However, depending on the sample, the secondary expansion is small, so
Since temperatures of T 0.10 and T 0.20 may not be obtained, the value of T 0.05 is used as the refractory value in this case.

【表】 第2図は、粉砕時間を変化させた試料の10μm
以上の粒子の含有量とT0.05の値との関係を示す
グラフである。一般に、陶土試料は、10μm以上
の粒子が約40wt%含まれている。このことから
10μm以上の粒子の含有量が40wt%を基準値とし
て、第2図中の4種類の二次曲線の平均値を用い
て下記のT0.05の補正式を算出した。 T′0.05=T0.05+29.12+0.084W10−0.0203W10 2 ただし、T′0.05は、10μm以上の粒子の含有量が
40wt%の時のT0.05の値(℃)、W10はT0.05を測定
試料の10μm以上の粒子の含有量(wt%)を示
す。 このT′0.05の値を耐火度の値とすると、粒度分
布が著しく異なつた試料を用いても、10μm以上
の粒子の含有量が40wt%の時の耐火度の値と一
致することになる。なお、5〜25μm間の10μm以
外の粒度による補正も、上記と同様の方法で可能
であるが、10μm以上の粒子の含有量を用いる場
合が、変化範囲が広く、また4種類の試料の傾向
もよく一致する。 本発明においては、所望に応じ、あらかじめ上
記の耐火度とJIS M8512又はJIS R2204の耐火度
試験方法により求めた耐火度との関係式を作成
し、この関係式から耐火度をゼーゲルコーンによ
る耐火度に対応する番数で表すことができる。 実施例 第1図で示した試料の10μm以上の粒子の含有
量は、30秒間粉砕試料が平均的な陶土の40wt%
とほぼ一致した。そこで、58種類の陶石試料を室
温乾燥後、ジヨー・クラツシヤーにて1.2mm以下
に粗砕し、さらに高速振動粉砕機を使用して30秒
間粉砕した。なお、10μm以上の粒子の含有量の
平均値は、44.2wt%であり、その標準偏差は、
4.3wt%であつた。 粉砕試料(乾粉)0.5gを、内径10mmのステンレ
ス鋼製円筒中に入れ、2500Kg/cm2の圧力で1分間
保持し、加圧成形した。なお、成形体厚さは、約
3mmとなつた。熱膨張は、成形体上荷載重量
10g、昇温速度10℃/minの条件で室温ないし最
大収縮点温度以上約50℃の間を測定した。 第3図は、上記の58試料の熱膨張測定から得ら
れた各試料の熱膨張曲線中の二次膨張の曲線の傾
きが0.05%/℃になる温度(T0.05)の値と、JIS
法による耐火度の測定から得られた各試料のSK
値に対応するゼーゲルコーンの溶倒温度(T
sk)との関係を示すグラフである。両者の二次
相関式を最小二乗法により求め、その相関式を用
いた推定値とT skとの相関係数を計算し、
0.9716の値を得た。この値は、本発明者等が先に
提案した収縮から急激な膨張に移行する変曲点の
温度から耐火度を求める方法の場合の相関係数値
の0.94に比べ大幅に上昇している。 さらに、58試料の粒度分布測定値から得られる
10μm以上の粒子の含有量を用いた補正式による
補正値(T′0.05)と、T skとの二次相関式を最
小二乗法により求め下式を得た。 T sk=−1.931×10-3T′0.05 2 +6.288T′0.05−3464 次に、本発明方法により得た耐火度をゼーゲル
コーンに対応する番数で表すには、あらかじめ、
上記式で示されるような関係式を作成し、T′0.05
を該関係式に代入することにより、JIS法による
耐火度のSK値に対応するゼーゲルコーンの溶倒
温度(T sk)を得、この温度からJIS法による
耐火度のSKを求めればよい。 第4図は、上式を用いた推定値とT skとの
関係を示すグラフである。両者の相関係数は、
0.9796であつた。粒度補正により粒度の影響がな
くなり、相関係数の値が大きくなつた。この値か
ら、粒度補正することにより、正確な耐火度の測
定ができることがわかる。また、粒度による補正
をしない場合の相関係数の値も大きい。粒度によ
る補正式によると、10μm以上の粒子の含有量が
40±5wt%の範囲の試料の場合、T0.05値は、T0.05
±8℃となり、温度範囲が狭いSK19〜20の間以
外ではJIS法によるSK値で表す場合の耐火度に
は、ほとんど影響しない。このことから、10μm
以上の粒子の含有量が基準値(40wt%)と5wt%
以上異なるとき以外は、同一条件の測定で行い、
得られるT0.05とT skとの相関式のT0.05に代入
することにより、耐火度が測定できる。 発明の効果 本発明の陶磁器原料の耐火度測定法によると、
従来のJISに規定されている方法に比べて、簡便
でかつ精度よく陶磁器原料の耐火度を測定するこ
とができ、本発明方法は極めて実用的であり、ま
た、陶磁器原料の品質管理における有効な方法と
なる。
[Table] Figure 2 shows samples with a diameter of 10 μm after changing the grinding time.
It is a graph showing the relationship between the content of the above particles and the value of T 0.05 . Generally, china clay samples contain about 40wt% of particles larger than 10μm. From this
The following correction formula for T 0.05 was calculated using the average value of the four types of quadratic curves in FIG. 2, with the content of particles of 10 μm or more being 40 wt% as a reference value. T′ 0.05 = T 0.05 +29.12+0.084W 10 −0.0203W 10 2However , T′ 0.05 means that the content of particles larger than 10 μm is
The value of T 0.05 (℃) at 40 wt%, W 10 indicates the content (wt %) of particles larger than 10 μm in the sample measured for T 0.05 . If this value of T' 0.05 is taken as the value of refractoriness, it will match the value of refractoriness when the content of particles of 10 μm or more is 40 wt%, even if samples with significantly different particle size distributions are used. Note that correction using particle sizes other than 10 μm between 5 and 25 μm is also possible using the same method as above, but when using the content of particles of 10 μm or more, the variation range is wide and the tendency of the four types of samples is also match well. In the present invention, if desired, a relational expression between the above fire resistance and the fire resistance obtained by the JIS M8512 or JIS R2204 fire resistance test method is created in advance, and from this relation, the fire resistance is converted into the Segel cone fire resistance. It can be represented by a corresponding number. Example The content of particles of 10 μm or more in the sample shown in Figure 1 was 40 wt% of the average china clay when the sample was ground for 30 seconds.
It was almost the same. Therefore, 58 types of chinastone samples were dried at room temperature, crushed into pieces of 1.2 mm or less using a Joe crusher, and then crushed for 30 seconds using a high-speed vibration crusher. The average content of particles larger than 10μm is 44.2wt%, and the standard deviation is:
It was 4.3wt%. 0.5 g of a pulverized sample (dry powder) was placed in a stainless steel cylinder with an inner diameter of 10 mm, held at a pressure of 2500 Kg/cm 2 for 1 minute, and pressure-molded. The thickness of the molded body was approximately 3 mm. Thermal expansion is the weight loaded on the molded product.
Measurements were made between room temperature and about 50°C above the maximum shrinkage point temperature under the conditions of 10g and a heating rate of 10°C/min. Figure 3 shows the temperature (T 0.05 ) at which the slope of the secondary expansion curve in the thermal expansion curve of each sample obtained from the thermal expansion measurement of the 58 samples mentioned above is 0.05%/℃, and the JIS
SK of each sample obtained from fire resistance measurement by method
The melting temperature of the Seegel cone (T
sk). Find a quadratic correlation equation between the two using the least squares method, calculate the correlation coefficient between the estimated value using that correlation equation and T sk,
A value of 0.9716 was obtained. This value is significantly higher than the correlation coefficient of 0.94 in the case of the method previously proposed by the present inventors, in which the refractory degree is determined from the temperature at the inflection point where contraction changes to rapid expansion. In addition, the particle size distribution measurements of 58 samples yielded
A correction value (T′ 0.05 ) based on a correction equation using the content of particles of 10 μm or more and a quadratic correlation equation with T sk were determined by the least squares method, and the following equation was obtained. T sk = −1.931×10 -3 T′ 0.05 2 +6.288T′ 0.05 −3464 Next, in order to express the fire resistance obtained by the method of the present invention by a number corresponding to the Segel cone, in advance,
Create a relational expression as shown in the above equation, and set T′ 0.05
By substituting into the relational expression, the melting temperature (T sk) of the Seegel cone corresponding to the SK value of the refractory degree according to the JIS method can be obtained, and the SK of the refractory degree according to the JIS method can be determined from this temperature. FIG. 4 is a graph showing the relationship between the estimated value using the above formula and T sk. The correlation coefficient between the two is
It was 0.9796. Grain size correction eliminated the influence of grain size and increased the value of the correlation coefficient. From this value, it can be seen that by correcting the particle size, it is possible to accurately measure the refractory degree. In addition, the value of the correlation coefficient is also large when no correction is made based on granularity. According to the particle size correction formula, the content of particles larger than 10 μm is
For samples in the range of 40±5wt%, the T 0.05 value is T 0.05
It is ±8℃, and outside the narrow temperature range of SK19 to SK20, it has almost no effect on the fire resistance when expressed by the SK value according to the JIS method. From this, 10 μm
The content of particles is more than the standard value (40wt%) and 5wt%
Except for the above differences, measurements were performed under the same conditions.
The refractory degree can be measured by substituting T 0.05 in the correlation equation between the obtained T 0.05 and T sk. Effects of the Invention According to the method for measuring the fire resistance of ceramic raw materials of the present invention,
Compared to the conventional method prescribed by JIS, the method of the present invention can measure the fire resistance of ceramic raw materials more easily and accurately, making it extremely practical and effective in quality control of ceramic raw materials. It becomes a method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、4種類の陶石について粒度分布を変
えたときの温度と厚さの変位量、すなわち熱膨張
率との関係を示すグラフ、第2図は粒度分布の異
なる試料についての熱膨張曲線中の二次膨張の曲
線の傾きが0.05%/℃になる温度との関係を示す
グラフ、第3図は本発明による陶磁器原料の耐火
度、JIS法による耐火度との関係を示すグラフ、
第4図は本発明による陶磁器原料のゼーゲルコー
ンに対応する耐火度と、JIS法による耐火度との
関係を示すグラフである。
Figure 1 is a graph showing the relationship between temperature and thickness displacement, that is, the coefficient of thermal expansion, when the particle size distribution is changed for four types of chinastone, and Figure 2 is the graph showing the thermal expansion of samples with different particle size distributions. A graph showing the relationship with the temperature at which the slope of the secondary expansion curve in the curve becomes 0.05%/℃, FIG. 3 is a graph showing the relationship between the fire resistance of the ceramic raw material according to the present invention and the fire resistance according to the JIS method,
FIG. 4 is a graph showing the relationship between the fire resistance of the ceramic raw material according to the present invention, which corresponds to Zegelcone, and the fire resistance according to the JIS method.

Claims (1)

【特許請求の範囲】[Claims] 1 陶磁器原料の耐火度を測定するに当り、陶磁
器原料粉末を円柱状又は立方体状に成形し、この
成形体を加熱して、なだらかな一次膨張、焼結に
よる収縮後の発泡による急激な二次膨張に移行し
た後の単位温度当りの熱膨張率が0.01〜0.20%/
℃の範囲内で所定粒度分布に対応する特定の数値
に達する温度を検知し、その温度に基づいて耐火
度に対応する温度を算出し、その温度からJIS
M8512又はJIS R2204の耐火度試験方法に示され
ている標準ゼーゲルコーンとの比較により耐火度
を求めることを特徴とする耐火度測定法。
1. In measuring the fire resistance of ceramic raw materials, the ceramic raw material powder is molded into a cylinder or cube shape, and this molded body is heated to produce a gradual primary expansion, followed by a rapid secondary expansion due to foaming after contraction due to sintering. Thermal expansion coefficient per unit temperature after transition to expansion is 0.01 to 0.20%/
Detect the temperature that reaches a specific value corresponding to a predetermined particle size distribution within the range of °C, calculate the temperature corresponding to the fire resistance based on that temperature, and use that temperature to determine the JIS
A fire resistance measuring method characterized by determining the fire resistance by comparison with the standard Seegel cone shown in the fire resistance test method of M8512 or JIS R2204.
JP21198185A 1985-09-24 1985-09-24 Method for measuring refractoriness of porcelain stock material Granted JPS6270743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21198185A JPS6270743A (en) 1985-09-24 1985-09-24 Method for measuring refractoriness of porcelain stock material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21198185A JPS6270743A (en) 1985-09-24 1985-09-24 Method for measuring refractoriness of porcelain stock material

Publications (2)

Publication Number Publication Date
JPS6270743A JPS6270743A (en) 1987-04-01
JPH0378573B2 true JPH0378573B2 (en) 1991-12-16

Family

ID=16614909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21198185A Granted JPS6270743A (en) 1985-09-24 1985-09-24 Method for measuring refractoriness of porcelain stock material

Country Status (1)

Country Link
JP (1) JPS6270743A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165683A (en) * 1974-12-03 1976-06-07 Ono Gijutsu Kenkyusho Jugen Jutenmoshikuha nankatenno sokuteihoho oyobi sochi
JPS5862550A (en) * 1981-10-09 1983-04-14 Kansai Coke & Chem Co Ltd Method of measuring softening meltability of coal added with pitch or the like
JPS5857948B2 (en) * 1979-05-31 1983-12-22 日本電気ホームエレクトロニクス株式会社 electromagnetic deflection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857948U (en) * 1981-10-15 1983-04-19 三菱重工業株式会社 Meltability test equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165683A (en) * 1974-12-03 1976-06-07 Ono Gijutsu Kenkyusho Jugen Jutenmoshikuha nankatenno sokuteihoho oyobi sochi
JPS5857948B2 (en) * 1979-05-31 1983-12-22 日本電気ホームエレクトロニクス株式会社 electromagnetic deflection device
JPS5862550A (en) * 1981-10-09 1983-04-14 Kansai Coke & Chem Co Ltd Method of measuring softening meltability of coal added with pitch or the like

Also Published As

Publication number Publication date
JPS6270743A (en) 1987-04-01

Similar Documents

Publication Publication Date Title
Pérez et al. Microstructure and technological properties of porcelain stoneware tiles moulded at different pressures and thicknesses
EP0081061B1 (en) Low thermal expansion modified cordierites
US20150137407A1 (en) Method of manufacturing porous ceramic body and composition for porous ceramic body
JPH0378573B2 (en)
Leo et al. Freeze casting for near‐net‐shaping of dense zirconium diboride ceramics
Sánchez et al. Residual stresses in porcelain tiles. Measurement and process variables assessment
JPS60201243A (en) Method for measuring refractoriness of porcelain clay
CN111087234B (en) Application of ceramic with excellent temperature sensitive characteristic in resonator temperature sensor
Jones et al. Strength, density, nitrogen weight gain relationships for reaction sintered silicon nitride
JP4713214B2 (en) Method for producing porous ceramics
JP6735242B2 (en) Method for measuring the strength of hollow particles
US4167550A (en) Methods of manufacture of beta-alumina
JP6355615B2 (en) Manufacturing method of ceramic sintered body
Duarte et al. Study of the influence of sintering temperature on water absorption in the manufacture of porcelain cups
SU672182A1 (en) Charge for ceramic articles and method of producing same
JPH1164118A (en) Thermal hysteresis sensor
Sleptsov et al. Removal of binder from silicon nitride specimens
Sánchez-Vilches et al. Residual stresses in porcelain tiles. Measurement and process variables assessment
JPH01261277A (en) Granulated powder for production of silicon nitride sintered form
Butcher et al. The Influence of Pressure, Temperature, and Time on the Hot Pressing of Commercial Beryllium Powder
JPH075387B2 (en) Method for manufacturing silicon nitride sintered body
IE912062A1 (en) Ceramic moulding with hollow chambers
Akhter Evaluation of Mechanical Properties of Sinterered Nano Alumina Ceramic Powder with Different Doping Concentration
JPH05240716A (en) Molding for detecting heat history
Shao et al. Relationship of densification rate and relative density for submicron α-Al2O3 green compacts during low heating rate sintering

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term