JPH0378518A - Cooling structure for engine - Google Patents

Cooling structure for engine

Info

Publication number
JPH0378518A
JPH0378518A JP21262589A JP21262589A JPH0378518A JP H0378518 A JPH0378518 A JP H0378518A JP 21262589 A JP21262589 A JP 21262589A JP 21262589 A JP21262589 A JP 21262589A JP H0378518 A JPH0378518 A JP H0378518A
Authority
JP
Japan
Prior art keywords
liner
groove
passage
circumferential grooves
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21262589A
Other languages
Japanese (ja)
Inventor
Hidetsugu Yamamoto
英継 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP21262589A priority Critical patent/JPH0378518A/en
Publication of JPH0378518A publication Critical patent/JPH0378518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To eliminate cooling nonuniformity of a liner outer wall surface, in a longitudinal passage communicating respectively to multiple circumferential grooves arranged on an outer wall surface of the liner, by gradually increasing and decreasing a cross sectional area thereof toward a downstream side at upper and lower half parts respectively. CONSTITUTION:Multiple circumferential grooves 30 for circulating liquid coolant are arranged on the outer wall surface of a liner 16 fitted inside a cylinder bore part of a crank case 12. Each circumferential groove 30 is divided into a plurality of groove groups I, II, and is communicating to a longitudinal passage 32c which is formed on the outer wall surface of the liner 16. In this occasion, a lateral width of the passage 32c is gradually increased from an upper stream side toward a downstream side, at an upper half part where the liquid coolant flows from the circumferential groove 30 of the groove group I into the longitudinal passage 32c. On the other hand, at a lower half part where lubricating oil flows from the longitudinal passage 32c into the circumferential groove 30 of the other groove group II, the lateral width of the passage 32c is gradually decreased from the upper steam side toward the downsteam side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジン冷却構造に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine cooling structure.

(従来の技術) 車両用ディーゼルエンジン等湿式ライナを具えたエンジ
ンにおいて、ライナの外壁面に軸線方向に間隔を存し多
数の円周溝を設けると共に、上記円周溝を夫々数本の溝
を含む複数の溝群に区分し、各溝群の円周溝をライナの
外壁面に形成した縦方向即ちシリンダ軸線方向の通路に
連通させ、同縦方向通路を介して上流側の溝群から順次
下流側の溝群に冷却液体を流通させるようにした冷却構
造が既に提案されている。
(Prior Art) In an engine equipped with a wet liner such as a vehicle diesel engine, a large number of circumferential grooves are provided at intervals in the axial direction on the outer wall surface of the liner, and each of the circumferential grooves is provided with several grooves. The circumferential groove of each groove group is communicated with a passage formed in the outer wall surface of the liner in the vertical direction, that is, in the direction of the cylinder axis, and sequentially from the groove group on the upstream side via the longitudinal passage. A cooling structure has already been proposed in which a cooling liquid is caused to flow through a group of grooves on the downstream side.

この種のエンジン冷却構造では、ライナ外壁面に比較的
密に円周溝が配置され、これら円周溝内に潤滑油や冷却
水のような冷却液体が強制流通されるので、近来の高過
給高出力二ンソ/等厳しい熱負荷に曝されるライナの冷
却を効果的に行なうことができ、同時にライナを保持す
るクランクケ−スの構造簡素化及び軽量化を達成するこ
とができる。
In this type of engine cooling structure, circumferential grooves are arranged relatively densely on the outer wall surface of the liner, and cooling liquids such as lubricating oil and cooling water are forced to flow through these circumferential grooves. It is possible to effectively cool the liner which is exposed to severe heat loads such as high power supply and output, and at the same time it is possible to simplify the structure and reduce the weight of the crankcase that holds the liner.

いま、本発明の一実施例を示した第1図及び第3図を援
用し、かつ第4図を参照して、従来のこの種エンジン冷
却構造の典型的な構成を説明する。
Now, with reference to FIGS. 1 and 3 showing an embodiment of the present invention, and with reference to FIG. 4, a typical configuration of a conventional engine cooling structure of this type will be described.

先ず第1図において、符号10はトラック用の直接噴射
式ディーゼルエンジンを総括的に示し。
First, in FIG. 1, reference numeral 10 generally indicates a direct injection diesel engine for trucks.

12は同エンジンのクランクケース、14はシリンダヘ
ッド、16は上記クランクケース12に形成されたボア
部18内に嵌装されたシリンダライナ、20は同ライナ
16内に嵌装されたピストン。
12 is a crankcase of the engine, 14 is a cylinder head, 16 is a cylinder liner fitted in a bore 18 formed in the crankcase 12, and 20 is a piston fitted in the liner 16.

22はコネクティングロッド、24はクランクケース1
2内にクランク軸線方向に延在して形成された入口側オ
イルギヤラリ、26は同クランクケース12内にクラン
ク軸線方向に延在して形成された出口側オイルギヤラリ
、28は上記シリンダヘッド14に装着された燃料噴射
ノズルである。
22 is the connecting rod, 24 is the crankcase 1
An inlet oil gear lary 26 is formed within the crankcase 12 and extends in the crank axial direction; 26 is an outlet oil gear lary formed within the crankcase 12 extending in the crank axial direction; and 28 is an outlet oil gear lary mounted on the cylinder head 14. This is a fuel injection nozzle.

上記ライナ16の外壁面には、シリンダ軸線方向に適宜
の間隔を存して多数の円周溝30が設けられている。図
示の場合、上記多数の円周溝30は、シリンダヘッド1
4側から順次夫々数個例えば4個の円周溝30を含む溝
群1.It及び■に群別されている。第3図の模式図に
明示されているように、溝群■の円周溝30は、ライナ
16の外壁面に形成された縦方向通路32aによって上
記入口側オイルギヤラリ24に接続され、また溝群■の
円周溝30は、上記通路32aに対し直径方向反対側の
ライナ外壁面に形成された縦方向通路32bによって上
記出口側ギヤラリ26に接続されている。更に、上記通
路32aとは直径的に反対側のライナ外壁面に形成され
た縦方向通路32eによって溝群I及び■が接続され、
一方上記通路32aの延長線上においてライナ外壁面に
形成された縦方向通路32dによって溝群■及び■が接
続されている。(なお、第3図の模式図において、夫々
の円周溝30は、実線で示した一方の半内部分と鎖線で
示した他の半内部分とで表わされている。) 入口側オイルギヤラリ24から供給された冷却液体とし
ての潤滑油は、縦方向通路32&から溝群■の各円周溝
30内を流謳て通路32cに入シ。
A large number of circumferential grooves 30 are provided on the outer wall surface of the liner 16 at appropriate intervals in the cylinder axis direction. In the illustrated case, the plurality of circumferential grooves 30 are arranged in the cylinder head 1.
Groove group 1. includes several circumferential grooves 30, for example, four circumferential grooves 30, sequentially from the fourth side. It is grouped into It and ■. As clearly shown in the schematic diagram of FIG. The circumferential groove 30 shown in (2) is connected to the outlet side gear rally 26 by a vertical passage 32b formed on the outer wall surface of the liner on the opposite side in the diametrical direction to the passage 32a. Further, the groove groups I and (2) are connected by a vertical passage 32e formed on the outer wall surface of the liner diametrically opposite to the passage 32a,
On the other hand, the groove groups 1 and 2 are connected by a vertical passage 32d formed on the outer wall surface of the liner on the extension line of the passage 32a. (In the schematic diagram of FIG. 3, each circumferential groove 30 is represented by one inner half shown by a solid line and the other half inner part shown by a chain line.) Inlet side oil gear The lubricating oil as a cooling liquid supplied from 24 flows through each circumferential groove 30 of the groove group (2) from the vertical passage 32&, and enters the passage 32c.

同通路32cから溝群■の各円周溝30内を流れて通路
32dに流出し、更に同通路32dから溝群■の各円周
溝30内を流れて通路32bに流出し、最後に出口側オ
イルギヤラリ26に流入する。
From the passage 32c, it flows through each of the circumferential grooves 30 of the groove group (■) and flows out to the passage 32d, and further flows from the same passage 32d through each of the circumferential grooves 30 of the groove group (2), flows out to the passage 32b, and finally exits. The oil flows into the side oil gear gallery 26.

−従来の構成では、第4図に示されているように。- In a conventional configuration, as shown in FIG.

溝群Iの円周溝30から溝群■の円周溝30に潤滑油を
導く上記縦方向通路32cは、シリンダ軸線方向のすべ
ての断面において実質的に同一の断面積を有し、これは
溝群■の円周溝30から溝群mの円周溝30に潤滑油を
導く縦方向通路32dについても同様である。溝群Iの
複数(図示の場合4個)の円周溝30から縦方向通路3
2cに潤滑油が流入する際に、上流側から下流側に向っ
て次第に円周溝30の数が増えるので、−様断面積の縦
方向通路32eによって複数の円周溝30の潤滑油を集
収した場合、各円周溝における潤滑油流速が不均等にな
り、流速が大きい円周溝30は冷却能力が大きく、流速
が小さい円周溝30では冷却能力が小さいので、同−溝
群に属する円周溝金具えたライナ壁部分においてシリン
ダ軸線方向に関し冷却むらが発生する。これは、同じ縦
方向通路32cの下流部分において潤滑油が同通路から
溝群■に流入する場合も全く同様であり、更に縦方向通
路32dについても明らかに同様である。
The longitudinal passage 32c that guides the lubricating oil from the circumferential groove 30 of groove group I to the circumferential groove 30 of groove group The same applies to the vertical passage 32d that guides the lubricating oil from the circumferential groove 30 of the groove group (2) to the circumferential groove 30 of the groove group (m). A plurality of (four in the illustrated case) circumferential grooves 30 of groove group I to the longitudinal passage 3
When lubricating oil flows into 2c, the number of circumferential grooves 30 gradually increases from the upstream side to the downstream side, so the lubricating oil in the plurality of circumferential grooves 30 is collected by the vertical passage 32e with a −-like cross-sectional area. In this case, the lubricating oil flow velocity in each circumferential groove becomes uneven, and the circumferential groove 30 with a high flow velocity has a large cooling capacity, and the circumferential groove 30 with a low flow velocity has a small cooling capacity, so it belongs to the same groove group. Cooling unevenness occurs in the cylinder axial direction in the liner wall portion with the circumferential groove fitting. This is exactly the same when the lubricating oil flows from the same vertical passage 32c into the groove group (2) in the downstream portion thereof, and the same is obviously true for the vertical passage 32d as well.

(発明が解決しようとする課題) 本発明は、上記事情に鑑み創案されたもので。(Problem to be solved by the invention) The present invention was created in view of the above circumstances.

ライナの外壁面に多数段けられ、複数の溝群に区分され
た各溝群の円周溝内を流れる潤滑油等冷却液体の流速を
略均等ならしめることによって、同一溝群に属する円周
溝を具えたライナ壁部分のシリンダ軸線方向における冷
却むらを可及的に解消し、冷却むらに基いて発生する冷
却性能の低下を防止すると共に、熱歪及び熱応力の発生
を効果的に低減することを目的とする。ものである。
By making the flow velocity of cooling liquid such as lubricating oil approximately equal in the circumferential grooves of each groove group divided into multiple groove groups, which are arranged in multiple stages on the outer wall surface of the liner, the circumferential grooves belonging to the same groove group are Eliminates as much as possible uneven cooling in the cylinder axial direction of the grooved liner wall, prevents the cooling performance from deteriorating due to uneven cooling, and effectively reduces thermal strain and thermal stress. The purpose is to It is something.

(課題を解決するための手段) 上記目的を達成するため、本発明に係るエンジノ冷却構
造は、クランクケースのシリンダボア部にライナを嵌装
し、同ライナの外壁面に冷却流体を流通させる多数の円
周溝を設けると共に、上記円周溝を夫々複数の溝を含む
複数の溝群に区分して各溝群の円周溝を上記ライナの外
壁面に形成した縦方向の通路に連通させ、同縦方向通路
を介して上流側の溝群から順次下流側の溝群に上記冷却
液体を流通させるように構成したものにおいて、上記溝
群内の複数の円周溝から冷却液体が流入する縦方向通路
は上流側から下流側に向って断面積が増大するように形
成され、かつ縦方向通路から溝群内の複数の円周溝に冷
却液体が流入する当該縦方向通路は上流側から下流側に
向って断面積が減少するように形成されていることを特
徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the engine cooling structure according to the present invention includes a liner fitted into the cylinder bore of the crankcase, and a large number of cooling fluids flowing through the outer wall surface of the liner. providing a circumferential groove, dividing the circumferential groove into a plurality of groove groups each including a plurality of grooves, and communicating the circumferential groove of each groove group with a vertical passage formed in the outer wall surface of the liner; The cooling liquid is configured to flow from the groove group on the upstream side to the groove group on the downstream side sequentially through the same longitudinal passage, wherein the cooling liquid flows into the vertical groove from the plurality of circumferential grooves in the groove group. The directional passage is formed so that the cross-sectional area increases from the upstream side to the downstream side, and the longitudinal passage in which the cooling liquid flows from the longitudinal passage to the plurality of circumferential grooves in the groove group is formed so that the cross-sectional area increases from the upstream side to the downstream side. It is characterized by being formed so that the cross-sectional area decreases toward the sides.

(作用) 本発明によれば、複数の円周溝から冷却液体が流入する
縦方向通路は上流側から下流側に向って断面積が増大す
るように形成され%また複数の円周溝に対して冷却液体
を分配する縦方向通路は上流側から下流側に向って断面
積が減少するように形成されているので、夫々の溝群内
の複数の円周溝を流れる冷却液体の流速が均等化され、
各溝群に属する円周溝を具えたライナ壁部分の冷却むら
の発生が効果的に防止される。
(Function) According to the present invention, the longitudinal passage into which the cooling liquid flows from the plurality of circumferential grooves is formed so that the cross-sectional area increases from the upstream side to the downstream side. The vertical passages that distribute the cooling liquid are formed so that the cross-sectional area decreases from the upstream side to the downstream side, so that the flow velocity of the cooling liquid flowing through the plurality of circumferential grooves in each groove group is equalized. became
The occurrence of uneven cooling of the liner wall portion provided with the circumferential grooves belonging to each groove group is effectively prevented.

(実施例) 以下本発明の実施例を第1図及び第2図について具体的
に説明する。(なお、第1図及び第3図を援用し、かつ
第4図を参照して説明した従来の構成と実質的に同−又
は対応する部材又は部分には同一の符号を付し、重複説
明は省略する。)本発明によれば、特に第2図に明示さ
れているように、縦方向の通路32c内に溝群■の円周
溝30から冷却液体例えば潤滑油が流入する上半部分で
は、通路32cの横方向の巾即ちシリンダ軸線に対し直
角方向の巾が、上流側から下流側に向って順次増大し、
換言すれば断面積が順次増大するように形成されている
。また、縦方向通路32cから溝群■に属する円周溝3
0内に潤滑油が流入する下半部分では、通路32eの横
方向の巾従って断面積が、上流側から下流側に向って順
次減少するように形成されている。従りて、第4図に示
した従前の構成と較べ、溝群I及び■に属する円周溝3
0内の潤滑油の流速を均等化し、各溝群■及び■を具え
たライナ壁部分の冷却むらを減少して、冷却効率を改善
しかつ熱歪及び熱応力の発生を低減することができる。
(Example) Examples of the present invention will be specifically described below with reference to FIGS. 1 and 2. (It should be noted that the same reference numerals are given to members or parts that are substantially the same as or correspond to the conventional configuration explained with reference to FIGS. 1 and 3 and with reference to FIG. ) According to the present invention, as shown in particular in FIG. In this case, the width of the passage 32c in the lateral direction, that is, the width in the direction perpendicular to the cylinder axis increases sequentially from the upstream side to the downstream side,
In other words, the cross-sectional area is formed to increase sequentially. Further, the circumferential groove 3 belonging to the groove group
In the lower half portion where the lubricating oil flows into the passage 32e, the width in the lateral direction, that is, the cross-sectional area of the passage 32e is formed so as to decrease sequentially from the upstream side to the downstream side. Therefore, compared to the previous configuration shown in FIG. 4, the circumferential grooves 3 belonging to groove groups I and
It is possible to equalize the flow velocity of lubricating oil in the liner 0, reduce uneven cooling of the liner wall portion provided with each groove group ① and ②, improve cooling efficiency, and reduce the occurrence of thermal distortion and thermal stress. .

また、溝群■の円周溝30を流れる潤滑油を溝群■の円
周溝3oに導く縦方向通路32dについても第2図の構
成をそのまま適用することができる。更に、必要に応じ
、入口側オイルギヤラリ24から溝群Iの円周溝30に
潤滑油を供給する縦方向通路32aには、第2図に示し
た通路32eの下半部分と同様な構成を、また溝群■の
円周溝30から流出した潤滑油を出口側オイルギヤラリ
26に導く縦方向通路32bには、第2図に示した通路
32cの上半部分の構成を採用することができる。
Furthermore, the configuration shown in FIG. 2 can be applied as is to the vertical passage 32d that guides the lubricating oil flowing through the circumferential grooves 30 of groove group (2) to the circumferential grooves 3o of groove group (2). Furthermore, if necessary, the vertical passage 32a for supplying lubricating oil from the inlet side oil gear lary 24 to the circumferential groove 30 of groove group I may be provided with a structure similar to the lower half of the passage 32e shown in FIG. Further, the structure of the upper half of the passage 32c shown in FIG. 2 can be adopted for the vertical passage 32b that guides the lubricating oil flowing out from the circumferential groove 30 of the groove group (1) to the outlet side oil gear rally 26.

なお、上述した縦方向通路32&乃至32dにおける通
路断面積の変化は、ライナ16の性質上その壁厚を部分
的に急変させることは余り好ましくないという観点から
、第2図に示されているように主として通路の横巾を変
化させることによりて達成することが好ましいが、実用
上差支えない場合は、通路の深さを変化させ又は深さと
横巾の双方を変化させることによって、所望の通路断面
積の変化を実現することができる。
Note that the change in the cross-sectional area of the vertical passages 32 & to 32d described above is as shown in FIG. It is preferable to achieve this mainly by changing the width of the passage, but if there is no practical problem, the desired passage cut-off can be achieved by changing the depth of the passage or by changing both the depth and the width. A change in area can be realized.

なおまた、ライナ16の熱負荷は、云うまでもなくシリ
ンダヘッド14に近い上方部分で厳しくクランク軸側の
下方部分では相対的に低くなるので、ライナ上半部分の
縦方向通路例えば32a及び32cにのみ上述したよう
な通路断面積の変化を与え、ライナ下半部分の縦方向通
路は、場合によシ従来と同様に均一断面積のものとする
ことができる。
Furthermore, the thermal load on the liner 16 is, needless to say, severe in the upper part near the cylinder head 14 and relatively low in the lower part on the crankshaft side. The longitudinal passages in the lower half of the liner may optionally be of uniform cross-sectional area as is conventional, with only the variation in passage cross-sectional area as described above.

更にまた、図示の実施例では、多数の円周溝30が3個
の溝群1.I[及び■に区分されているが、勿論2個の
溝群でもよく、4個もしくはそれ以上の溝群に区分して
もよい。また、図示の実施例で°は各溝群l、■及び■
が夫々4個の円周溝30を具えているが、3個或いは5
個以上等各溝群に含まれる円周溝30の個数は等しくな
くてもよい、更に、冷却液体は潤滑油に限定されず、冷
動水その他の冷却液体を使用することができ、また円周
溝30内を流れてライナ16を冷却した潤滑油は、第1
図に示されているように出口側オイルギヤラリ26に収
容せず、直接ライナ16の外周下端部分からオイル・セ
ン内に流下させることも勿論可能である。
Furthermore, in the illustrated embodiment, the plurality of circumferential grooves 30 are divided into three groove groups 1. Although it is divided into I and ■, it goes without saying that it may be divided into two groove groups, or may be divided into four or more groove groups. In addition, in the illustrated embodiment, ° represents each groove group l, ■, and ■.
each has four circumferential grooves 30, but three or five circumferential grooves 30 are provided.
The number of circumferential grooves 30 included in each groove group does not have to be equal.Furthermore, the cooling liquid is not limited to lubricating oil, and other cooling liquids such as cold water can be used. The lubricating oil that has flowed in the circumferential groove 30 and cooled the liner 16 is
As shown in the figure, it is of course possible to directly flow down into the oil sensor from the lower end portion of the outer periphery of the liner 16 without storing it in the outlet side oil gear gallery 26.

(発明の効果) 叙上のように1本発明に係るエンジン冷却構造は、クラ
ンクケースのシリンダボア部にライナを嵌装し、同ライ
ナの外壁面に冷却流体を流通させる多数の円周溝を設け
ると共に、上記円周溝を夫夫複数の溝を含む複数の溝群
に区分して各溝群の円周溝を上記ライナの外壁面に形成
した縦方向の通路に連通させ、同縦方向通路を介して上
流側の溝群から順次下流側の溝群に上記冷却液体を流通
させるように構成したものにおいて、上記溝群内の複数
の円周溝から冷却液体が流入する縦方向通路は上流側か
ら下流側に向って断面積が増大するように形成され、か
つ縦方向通路から溝群内の複数の円周溝に冷却液体が流
入する当該縦方向通路は上流側から下流側に向って断面
積が減少するように形成されていることを特徴とし、上
記溝群に属する円周溝を具えたライナ壁部分の冷却むら
を解消又は少くとも低減して冷却効率を向上し、冷却む
らに基づく熱歪及び熱応力の発生を低減し、ライナの耐
久性及び信頼性を改善し得る効果があ第2図は第1図に
おける縦方向通路32c部分の拡大正面図、第3図は第
1図の構成における冷却液体の流通態様を示した模式図
、第4図は従来の構成を示した第2図同様の拡大正面図
である。
(Effects of the Invention) As described above, the engine cooling structure according to the present invention includes a liner fitted into the cylinder bore of the crankcase, and a large number of circumferential grooves for circulating cooling fluid on the outer wall surface of the liner. At the same time, the circumferential groove is divided into a plurality of groove groups including a plurality of grooves, and the circumferential groove of each groove group is communicated with a vertical passage formed on the outer wall surface of the liner. The cooling liquid is configured to flow sequentially from the upstream groove group to the downstream groove group through The longitudinal passage is formed so that its cross-sectional area increases from the side to the downstream side, and the cooling liquid flows from the longitudinal passage into the plurality of circumferential grooves in the groove group from the upstream side to the downstream side. It is characterized by being formed to have a reduced cross-sectional area, and improves the cooling efficiency by eliminating or at least reducing the uneven cooling of the liner wall portion provided with the circumferential grooves belonging to the groove group. Fig. 2 is an enlarged front view of the longitudinal passage 32c portion in Fig. 1, and Fig. 3 is an enlarged front view of the longitudinal passage 32c in Fig. 1. FIG. 4 is an enlarged front view similar to FIG. 2 showing the conventional structure.

10・・・エンジン、12・・・クランクケース、14
・・・シリンダヘッド、16・・・ライナ、20・・・
ピストン、30・・・円周溝、32a乃至32d・・・
縦方向通路O
10...Engine, 12...Crankcase, 14
...Cylinder head, 16...Liner, 20...
Piston, 30...Circumferential groove, 32a to 32d...
Vertical passage O

Claims (1)

【特許請求の範囲】[Claims]  クランクケースのシリンダボア部にライナを嵌装し、
同ライナの外壁面に冷却流体を流通させる多数の円周溝
を設けると共に、上記円周溝を夫々複数の溝を含む複数
の溝群に区分して各溝群の円周溝を上記ライナの外壁面
に形成した縦方向の通路に連通させ、同縦方向通路を介
して上流側の溝群から順次下流側の溝群に上記冷却液体
を流通させるように構成したものにおいて、上記溝群内
の複数の円周溝から冷却液体が流入する縦方向通路は上
流側から下流側に向って断面積が増大するように形成さ
れ、かつ縦方向通路から溝群内の複数の円周溝に冷却液
体が流入する当該縦方向通路は上流側から下流側に向っ
て断面積が減少するように形成されていることを特徴と
するエンジン冷却構造。
Fit the liner into the cylinder bore of the crankcase,
A large number of circumferential grooves are provided on the outer wall surface of the liner for circulating the cooling fluid, and the circumferential grooves are divided into a plurality of groove groups each including a plurality of grooves, and the circumferential grooves of each groove group are divided into the circumferential grooves of the liner. The cooling liquid is communicated with a vertical passage formed on the outer wall surface and is configured to flow sequentially from an upstream groove group to a downstream groove group via the longitudinal passage, wherein The longitudinal passage into which the cooling liquid flows from the plurality of circumferential grooves is formed so that the cross-sectional area increases from the upstream side to the downstream side, and the cooling liquid flows from the longitudinal passage into the plurality of circumferential grooves in the groove group. An engine cooling structure characterized in that the longitudinal passage into which liquid flows is formed so that its cross-sectional area decreases from the upstream side to the downstream side.
JP21262589A 1989-08-18 1989-08-18 Cooling structure for engine Pending JPH0378518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21262589A JPH0378518A (en) 1989-08-18 1989-08-18 Cooling structure for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21262589A JPH0378518A (en) 1989-08-18 1989-08-18 Cooling structure for engine

Publications (1)

Publication Number Publication Date
JPH0378518A true JPH0378518A (en) 1991-04-03

Family

ID=16625776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21262589A Pending JPH0378518A (en) 1989-08-18 1989-08-18 Cooling structure for engine

Country Status (1)

Country Link
JP (1) JPH0378518A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318258A (en) * 1991-04-16 1992-11-09 Mitsubishi Motors Corp Oil-cooled multi-cylinder engine
JPH04127848U (en) * 1991-05-09 1992-11-20 三菱自動車工業株式会社 oil-cooled multi-cylinder engine
US5199390A (en) * 1991-05-09 1993-04-06 Teikoku Piston Ring Co., Ltd. Cylinder liner
US5207189A (en) * 1991-07-08 1993-05-04 Toyota Jidosha Kabushiki Kaisha Cooling system for an internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318258A (en) * 1991-04-16 1992-11-09 Mitsubishi Motors Corp Oil-cooled multi-cylinder engine
JPH04127848U (en) * 1991-05-09 1992-11-20 三菱自動車工業株式会社 oil-cooled multi-cylinder engine
US5199390A (en) * 1991-05-09 1993-04-06 Teikoku Piston Ring Co., Ltd. Cylinder liner
US5207189A (en) * 1991-07-08 1993-05-04 Toyota Jidosha Kabushiki Kaisha Cooling system for an internal combustion engine

Similar Documents

Publication Publication Date Title
US5207188A (en) Cylinder for multi-cylinder type engine
US9341104B2 (en) Impingement cooling of cylinders in opposed-piston engines
US5086733A (en) Cooling system for multi-cylinder engine
US4428330A (en) Piston for internal combustion engines
JPS6252135B2 (en)
US4582028A (en) Internal combustion, reciprocating piston, liquid cooling engine
CN102536494A (en) Cooling water jacket structure of diesel engine cylinder body
JPH0378518A (en) Cooling structure for engine
KR100319179B1 (en) Internal combustion engine block with cylinder liner decentralized flow cooling system and its cooling method
US5199390A (en) Cylinder liner
US11187181B2 (en) Combustion engine housing having cylinder cooling
US5596954A (en) Internal combustion engine block having a cylinder liner shunt flow cooling system and method of cooling same
US6289855B1 (en) Engine block for internal combustion engine
US6167848B1 (en) Water-cooled internal combustion engine
US5176113A (en) Cylinder liner
CN210660326U (en) Internal combustion engine and engine body thereof
CN220336984U (en) Piston of diesel engine
JPS6217347A (en) Piston for internal-combustion engine
JPH05149134A (en) Cooling device for internal combustion engine
CN109139220A (en) A kind of diesel engine cooling system and cooling means
CN219388022U (en) Wet cylinder sleeve of engine cylinder
JP2849962B2 (en) Cylinder liner cooling structure
CN217002075U (en) Compact diesel engine body cooling water jacket
JP2876828B2 (en) Internal combustion engine cooling system
JPH0329560Y2 (en)