JPH0378425B2 - - Google Patents

Info

Publication number
JPH0378425B2
JPH0378425B2 JP26410485A JP26410485A JPH0378425B2 JP H0378425 B2 JPH0378425 B2 JP H0378425B2 JP 26410485 A JP26410485 A JP 26410485A JP 26410485 A JP26410485 A JP 26410485A JP H0378425 B2 JPH0378425 B2 JP H0378425B2
Authority
JP
Japan
Prior art keywords
rubber
lead
powdered
present
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26410485A
Other languages
Japanese (ja)
Other versions
JPS62124133A (en
Inventor
Koji Ujiie
Teruo Ikeno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Rubber Co Ltd
Original Assignee
Showa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Rubber Co Ltd filed Critical Showa Rubber Co Ltd
Priority to JP26410485A priority Critical patent/JPS62124133A/en
Publication of JPS62124133A publication Critical patent/JPS62124133A/en
Publication of JPH0378425B2 publication Critical patent/JPH0378425B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は防音、制振、X線遮蔽、海中生物付着
防止、防食等の特性を有する粉箔鉛を含有するゴ
ム組成物に関する。 〔従来技術〕 従来、粉末、粉糸状の鉛及び鉛化合物をゴムに
配合し、例えばJIS Z−4801「X線しやへい用含
鉛ゴムシート及び含鉛塩化ビニルシート」、特公
昭60−40458号「金属箔含粉含有装飾用フイルム」
などに記載されているようにX線防護用シート、
防音シート、制振材等に用いられていることは公
知のことである。而してこうした目的に配合され
る鉛粉末は通常アトマイズ法、スタンプミル法あ
るいはボールミル法によつて製造されたものが使
用されている。このような従来の方法によつて製
造された鉛粉末は製造工程中あるいは保管中にそ
の表面が酸化されて暗灰色又は黒灰色を呈するも
のである。従つてこれら、表面に酸化皮膜を有す
る鉛粉をゴムに配合したものは配合量に限界があ
り、例えば配合ゴムに対し容積率15%以上の鉛粉
量を配合すると、生地が硬くなり均一な分散が得
られなかつた。 従つてこのような従来行われている鉛を混入し
たゴム組成物は上述の如き使用目的を達成するに
当つて当然効果の限界が存在した。 〔発明が解決しようとする問題点〕 本発明は上記の問題点を有利にを解決し、その
本来の使用目的の効果を数倍も向上せしめ、新た
な有効使用分野をも可能としたものであり、即
ち、その表面に酸化皮膜のほとんど存在しない活
性な金属表面を有する粉箔鉛を配合ゴムに配合し
多重積層配列せしめたことにより従来の鉛配合ゴ
ムに比較し、顕著に相違する特性を有するゴム組
成物としたものである。 〔問題点を解決するための手段〕 即ち本発明の要旨とするところは、配合ゴムに
対し、その表面に酸化皮膜がほとんど存在しない
粉箔鉛を容積分率が15〜85%存在し、該粉箔鉛が
ほとんど積層して配列されていることを特徴とす
るゴム組成物にある。 本発明でいう粉箔鉛とは厚さが略0.06〜1.0mm
で大きさがほぼ4〜325メツシユの間のものがほ
ぼ80%以上を占め、見掛密度はほぼ平均2.5gr/
cm3以下の鱗片状の鉛をいう。 本発明でいう配合ゴムとは主材となるゴムに対
し目的に応じて適宜常用のゴム配合剤、例えば補
強剤、充填剤、軟化剤、架橋剤、架橋助剤、滑
剤、酸化防止剤等をゴムに添加したものである。
こうした配合ゴムに対し粉箔鉛をその容積分率が
15%〜75%となるように添加して所要のゴム組成
物とするものである。 而して、本発明においてゴム内に積層せしめる
粉箔鉛はその表面に酸化皮膜が殆ど存在しない
(略0.1%以下)、銀白色の活性な金属表面を有す
る粉箔であり、このような粉箔鉛は、例えば特願
昭60−153749号(特開昭62−13504号)「鱗片粉鉛
を製造する方法」によつて得られる鱗片粉鉛を使
用するものである。これは重量の揃つた鉛を面心
立方結晶構造の滑り面に沿つて粉砕し箔を生成せ
しめるに際し、ゴム配合剤である脂肪酸類を、粉
砕助剤兼酸化防止剤(以下助砕剤という)として
使用し、鉛箔の活性な銀白色の破砕面生成と同時
にこの助砕剤で表面を被覆したものを特に使用す
るものである。 本発明において粉箔鉛を製造するさいの助砕剤
としては主として有機化合物の助砕剤を用いるも
のであつて炭化水素系として流動パラフイン、天
然パラフイン、マイクロワツクス、合成パラフイ
ン、低分子量ポリエチレン(ポリエチレンワツク
ス)塩素化炭化水素フルオロカルボン等がある。
又脂肪酸系のものとして高級脂肪酸、オキシ脂肪
酸及びそれらの誘導体等がある。又脂肪酸アミド
系のものとして脂肪酸アミド、アルキレンビス脂
肪酸アミド等がある。又エステル系のものとして
脂肪酸低級アルコールエステル、脂肪酸多価アル
コールエステル、脂肪酸ポリグリコールエステル
等がある。又アルコール系のものとして多価アル
コール、ポリグリコール、ポリグリセロール等が
ある。又金属石けんとしてステアリン酸鉛、ステ
アリン酸亜鉛、ステアリン酸アルミニウム、ステ
アリン酸カルシウム、ステアリン酸カドミウム等
がありその他には上記の混合系のものが適宜使用
できる。 更に鉱油系のミネラルスピリツト、石油系の灯
油等も使用できる。 これらの助砕剤は微粉末又は液状のものであ
り、特に微粉末においては粒子相互間において凝
集しにくいものが好ましい。また上記の助砕剤は
単独又は二種以上の複数の組み合わせによつて適
宜選択することも有効である。 粉箔鉛を製造する際に、上述の如き助砕剤を使
用するものであるが、例えばステアリン酸、ステ
アリン酸鉛、ステアリン酸アルミニウムを助砕剤
として使用した粉箔鉛を夫々ゴムに添加してゴム
組成物を作成し物性値、分散性を測定したが、ほ
ぼ同じ結果が得られ、助砕剤の種類によるゴム組
成物の影響は認められなかつた。 また、本発明に使用する粉箔鉛は、従来製造さ
れている、表面に酸化皮膜を有する暗灰色又は黒
灰色の箔片を還元処理して、酸化皮膜を除去し、
更に必要に応じ表面活性化処理を施し、銀白色の
活性な面をなした鉛箔を直ちに次記の条件を満足
する酸化防止剤で被覆したものを用いることもで
きる。即ちこの酸化防止剤としては、ゴムに配合
した場合、ゴム配合剤としても好適なものの中か
ら選択使用するものであり、例えばプロセス油、
ゴム用可塑剤、植物油等の液状ゴム用軟化剤ある
いはゴムの加工温度以下の融点をもつゴム用滑剤
例えば、高級脂肪酸類、金属石けん、パラフイン
類、ポリエイレングリコール、低分子量ポリエチ
レン等があり、またゴム溶液、例えばゴム糊、ゴ
ムラテツクス、ゴム用接着剤も含まれる。これら
の配合剤及びゴム溶液はゴム中に添加した場合、
ゴム中に均一に分散されて従来使用されているゴ
ム配合物として有効に挙動する。 また、本発明の配合ゴムとしては通常ゴム工業
において使用されるゴムはすべて使用対象となる
ものであり例えば、天然ゴム系ゴム、ブタジエン
系ゴム、ポリイソプレン系ゴム、クロロプレン系
ゴム、イソブチレン系ゴム、オレフイン系ゴム、
シリコン系ゴム、アクリル系ゴム、ウレタン系ゴ
ム、弗素系ゴム、ポリノルボーネンゴム等を適宜
選択使用する。 本発明におけるゴム組成物は、その用途、機能
性、加工性、価格等によつて必要に応じて架橋を
行うことができる。架橋を行う場合は必要に応じ
てゴム配合物の通常の架橋方法を用いることもで
きる。 更に、本発明でいう積層とは粉箔鉛を配合ゴム
中に均一に分散させる操作の結果、内部において
一定方向に粉箔鉛が多数のほぼ層状をなして配列
していることをいう。この場合、この積層化は配
合ゴムと粉箔鉛との混合時に混練ロール間を繰返
し通過する際に粉箔鉛が多数のほぼ平行する層と
なつて配列される。この他にバンバリーミキサー
ヘンシエルミキサー等による混合作業、特にカレ
ンダー等による圧延作業によつて積層率が向上す
る。これらの他に押出機による押出作業、射出成
形機による成型作業あるいは振動成形機による揺
動作業、電磁場内における極性利用による配列等
によつても有効に積層せしめることができ、適宜
必要に応じてこれらの方法を選択するものであ
る。 この積層配列の説明として、本発明の実施例に
おいて、積層率として示すが、これは粉箔鉛を含
有するゴム組成物の断面において、粉箔鉛が一定
方向乃至その方向と略30度以内の角度で層状に多
重積層配列している割合を実体顕微鏡により実測
し、その比率を%で示したものをいう。本発明に
おいてほとんど積層というのは例えば第2図に示
すように実体顕微鏡の倍率25倍において目視で観
察した結果、ほぼ70%以上の粉箔鉛の配列をい
う。 而して、本発明において上述の如き、酸化防止
皮膜であり、同時にゴム配合剤である被膜で被覆
された粉箔鉛がゴムに配合されると、それらの被
膜はゴム中に拡散し、本来のゴム配合物としての
挙動を示すものであり、同時に活性な粉箔鉛表面
がゴム成分と接触し、その界面のボイドの発生を
防止し、独自の結着力を示し独特の諸効果を示す
ものである。 本発明の粉箔鉛を配合ゴム中に添加したときの
配合ゴムと粉箔鉛との関係を説明すると、この粉
箔鉛は配合ゴム中への分散が極めて容易で、練ゴ
ムの未加硫時の硬さが硬くならず(即ちムーニー
粘度がアトマイズ法によるものと比べて低く、か
つ鉛量が増加してもあまり増加しない)、配合ゴ
ムに対して粉箔鉛が容積分率で略75%程度まで容
易に添加可能であり、ゴムとしての柔軟性を示
し、配合物の物性面では破断時の伸びが大きく、
硬さ及び引張応力が小さいという特徴をもつ上に
更に大きな特徴は鱗片状であるために極めて良好
な多重積層配列することである。 次に上述の如き特徴を有する粉箔鉛がゴム中に
おいていかなる挙動を示すかについて述べる。 一般にゴム用補強剤は粒子が細かく、比表面積
が大きく、また吸着能力が高いことが特徴であ
り、ゴムに対してフアーネスブラツク、シリカや
ハードクレーなどが用いられる。これに対して補
強性の低い、すなわち粒径が大きく、比表面積が
小さく吸着能力の低い、例えば重質炭酸カルシウ
ムやソフトクレーなどは増量剤と呼ばれ多量の充
填が可能である。 配合ゴム中に酸化皮膜を有する従来法による表
面に酸化皮膜のある鉛粉末あるいは鉛円
(Pb3O4)やリサージ(PbO)などの如き鉛酸化
物が存在した場合、その極性が本発明の粉箔鉛よ
り大きく、ゴム分子の拘束力が大きくなる。その
ため従来法による鉛粉末や鉛酸化物は多量充填が
困難となる。しかるに本発明の粉箔鉛では表面に
ほとんど酸化膜が存在しないので、極性が小さ
く、極性によるゴムの拘束力がなく、また上述の
如く粒子径も略4〜325メツシユが80%以上とか
なり大きいので、酸化皮膜のほとんどない新鮮な
金属面を保持したままでゴムに添加することが極
めて容易となり配合ゴムに対して粉箔鉛を容積分
率で略75%まで添加する多量配合が達成可能とな
る。而してゴムに添加された粉箔鉛はゴムと良好
な結着性を示し表面には酸化皮膜が殆ど存在せ
ず、例えば0〜40%の微小変形における動的試験
で繰返し伸長による低伸長応力の変化を測定した
結果でもその変化はごく僅少にとどまつた。 上述の如く本発明はゴムに表面に酸化皮膜を殆
ど存在しない粉箔鉛を有効に多重積層充填せしめ
たものであり、これにもとづき以下説明する如く
配合ゴムと粉箔鉛間に微小変形における良好な結
着性を示し、本発明の目的を達する有効な特性を
示すものである。 次に本発明において使用する粉箔鉛の添加量を
容積分率で略15〜75%に限定するが、その理由は
実施例の第3表及び第4表にも示すように本発明
の目的の範囲内の遮音テスト及びX線遮蔽テスト
の結果で容積分率15%以下ではその効果は顕著で
はない。また容積分率75%以上ではゴムへの添加
は可能であるが、混練後の生地が硬すぎてかつ伸
びが極端に減少しているためカレンダーなどの成
形加工が困難であり、製品としての実用性が少な
いので上限を75%と限定する。 容積分率15%以上になると多重積層された粉箔
鉛が配合ゴム中に均一に分散されていてしかも鱗
片状で形状も大きく、面としての拡がりをもち、
X線や発生音に対する遮蔽効果が顕著に大きくな
る。 本発明のゴム組成物における粉箔鉛の積層率は
練りロールによる混練り後にほぼ70%となり、混
練り後さらにカレンダー操作等による加工操作後
では90%以上となる。粉箔鉛の添加量は使用目的
と特性とを勘案して容積分率15%乃至容積分率75
%の範囲内で適宜選択する。本発明の粉箔鉛は通
常使用されるこの技術分野の混練方法及び添加順
序によつて容易に混練が可能であり、分散が均一
で多重積層配列も密にかつ理想的に配列されてい
る(第2図参照)。 こうした理想的かつ緻密な多重積層配列によ
り、ゴム中に殆ど点として存在している従来法に
よる鉛粉末と比較して遮音、制振、X線遮蔽の効
果が顕著であり、しかも、厚さが従来使用されて
いた容積分率38%の表面に酸化皮膜のある粉末鉛
を配合したゴム組成物と比べて、例えば本発明の
粉箔鉛を容積分率38%添加したゴム組成物では半
分の厚さでも十分な効果を示し、従来果たし得な
い目的も容易に達成でき、一方顕著な軽量化をも
図ることが可能である。また特筆すべき効果はこ
の配合物が柔軟性をもつための取扱いの容易さと
低周波における遮音効果である。即ち従来使用さ
れている鉛板及び鉛箔あるいはそれらを用いた積
層体は、復元性に乏しく、平滑さを保持すること
はむづかしい。それに比べて本発明のゴム組成物
は高い配合率でも、柔軟性に富み、シートを貼り
付けるときにも加工しやすく、作業性に富むので
その実用上の効果は大きい。また遮音テストでは
粉箔鉛の添加量が大きくなればなる程遮音効果が
よくなるのは積層数の増加とゴム中の鉛の密度の
増加の点から当然のことである。しかも鉛板(比
較例8参照のこと)2mmと本発明の本発明例1乃
至本発明例5の遮音テスト(第3表)を比較する
と、1mmのゴム組成物のシートは開放時のdB値
との差が大きく、特に容積分率30%以上の粉箔鉛
を含有したシートではほぼ鉛板2mmに近い性能を
示し、例えば容積分率47.9%の粉箔鉛を添加した
ゴム組成物では1/2の厚さで鉛板に匹敵する効果
を示すものである。特に周波数110Hz以下の低周
波においてその効果が著しいことがわかつた。ま
た従来法の容積分率38%の粉箔鉛を添加したゴム
配合物による厚さ1mmのシートと本発明による容
積分率38%の粉箔鉛を添加したゴム組成物の厚さ
1mmのシートを比較すると、本発明のシートとの
差は僅かであるが、低周波における遮音効果は優
れている。また前者は、前述の如く大量充填は殆
ど出来ないので、本発明の如く多量配合ゴム組成
物は従来に実現できなかつた新しい効果の分野を
開いたものである。即ち同じ厚さの鉛板と遮音
性、X線防護性、制振制において略同等に近い効
果を有すると共に、取扱い易さ、加工性作業性の
点でも柔軟性、平滑性のために数段優れた有益な
効果を有するものである。 〔発明の実施例〕 以下実施例により本発明を具体的に説明する。 実施例における遮音テストの評価方法及びX線
テストの評価方法は次記の通りである。 遮音テストの評価方法 試験装置: (1) 木箱の周面及び底面に遮音シートを貼付け、
上部は開放状態とした遮音テスト装置。その内
部に各種周波数を発生する音源を収納した。 (2) 騒音計 NA−09型 リオン(株)製 試験条件: (1) 温度:25℃ (2) 場所:密閉室内 (3) 鉛板などの硬質材については押えとは鉄製枠
を使用した試験方法:内部に音源を入れた遮音
テスト装置の上部にサンプルをのせ、装置を完
全に密閉状態とし、装置上部から70cm離れた距
離に騒音計を置いてA特性でデシベル値(dβ)
を測定した。 X線テストの評価方法 試験装置:X線回析装置JDX−7E型日本電子(株)
製 試験方法:X線が直進するように調整し、線源と
ガイガーカウンターとの間にサンプルを挿入し
た。X線を放射してガイガーカウンターとのカ
ウント数(C/秒)を測定した。 試験条件:(1) 温度:25℃ (2) 角度:0 実施例 1 第1−1表及び第2−1表に塩素化ブチルゴム
を主材とする配合ゴムに対し粉箔鉛の配合量を示
した実施例及び比較例を示す。何れも混練には6
インチミキシングロールを用いカレンダーで夫々
1mmの厚さに成形した。得られた配合物は熱プレ
スを用いて167℃で20分間加圧加熱し物性、積層
率、分散性を測定した。
[Field of Application of the Invention] The present invention relates to a rubber composition containing powdered lead having properties such as soundproofing, vibration damping, X-ray shielding, prevention of adhesion of marine organisms, and corrosion protection. [Prior art] Conventionally, powdered or thread-like lead and lead compounds are blended into rubber, for example, JIS Z-4801 "Lead-containing rubber sheet and lead-containing vinyl chloride sheet for X-ray shielding", Japanese Patent Publication No. 60-40458. No. ``Decorative film containing metal foil and powder''
X-ray protective sheets as described in
It is well known that it is used in soundproof sheets, vibration damping materials, etc. The lead powder blended for this purpose is usually produced by an atomization method, a stamp mill method, or a ball mill method. The surface of the lead powder produced by such conventional methods is oxidized during the manufacturing process or during storage, resulting in a dark gray or blackish gray color. Therefore, there is a limit to the amount of lead powder mixed with rubber that has an oxide film on the surface.For example, if a volume ratio of lead powder of 15% or more is added to the compounded rubber, the dough will become hard and uniform. No dispersion could be obtained. Therefore, the conventional rubber compositions containing lead naturally have limited effectiveness in achieving the above-mentioned purposes. [Problems to be Solved by the Invention] The present invention advantageously solves the above-mentioned problems, improves the effect of its original intended use several times, and enables new fields of effective use. In other words, by blending lead powder, which has an active metal surface with almost no oxide film on the surface, into compounded rubber and arranging it in multiple layers, it has characteristics that are significantly different compared to conventional lead compounded rubber. The rubber composition has the following properties. [Means for Solving the Problems] That is, the gist of the present invention is to provide powdered lead, which has almost no oxide film on its surface, in a volume fraction of 15 to 85% of the compounded rubber. A rubber composition characterized in that powdered lead is arranged in almost a laminated manner. The powder foil lead referred to in the present invention has a thickness of approximately 0.06 to 1.0 mm.
More than 80% of them are between 4 and 325 mesh in size, and the average apparent density is about 2.5gr/
Refers to scaly lead of cm 3 or less. The compounded rubber referred to in the present invention refers to the rubber that is the main material, to which conventional rubber compounding agents such as reinforcing agents, fillers, softeners, crosslinking agents, crosslinking aids, lubricants, antioxidants, etc. are added as appropriate depending on the purpose. It is added to rubber.
For these compounded rubbers, the volume fraction of powdered lead is
It is added in an amount of 15% to 75% to form the desired rubber composition. Therefore, the powdered lead to be laminated inside the rubber in the present invention is a powdered foil that has a silvery white active metal surface with almost no oxide film on its surface (approximately 0.1% or less). As the foil lead, for example, scaly powder lead obtained by Japanese Patent Application No. 153749/1984 (JP Patent Application No. 13504/1982) entitled "Method for Producing Powdered Scale Lead" is used. When lead of uniform weight is crushed along the sliding surface of a face-centered cubic crystal structure to produce foil, fatty acids, which are rubber compounding agents, are used as a crushing aid and antioxidant (hereinafter referred to as an auxiliary crushing agent). Particularly useful is a lead foil whose surface is coated with this auxiliary crushing agent at the same time as the active silvery-white crushed surface of the lead foil is generated. In the present invention, the auxiliary pulverizing agent used in producing powdered lead foil is mainly an organic compound auxiliary pulverizing agent, and hydrocarbon-based auxiliary agents include liquid paraffin, natural paraffin, microwax, synthetic paraffin, and low molecular weight polyethylene ( polyethylene wax) chlorinated hydrocarbon fluorocarbon, etc.
Further, fatty acid-based fatty acids include higher fatty acids, oxyfatty acids, and derivatives thereof. Further, fatty acid amide, alkylene bis fatty acid amide, etc. are examples of fatty acid amide. Further, examples of esters include fatty acid lower alcohol esters, fatty acid polyhydric alcohol esters, fatty acid polyglycol esters, and the like. Also, alcohol-based substances include polyhydric alcohols, polyglycols, polyglycerols, and the like. In addition, metal soaps include lead stearate, zinc stearate, aluminum stearate, calcium stearate, cadmium stearate, etc. In addition, mixtures of the above may be used as appropriate. Furthermore, mineral oil-based mineral spirits, petroleum-based kerosene, etc. can also be used. These auxiliary crushing agents are in the form of fine powders or liquids, and in particular, in the case of fine powders, those that do not easily aggregate between particles are preferred. It is also effective to appropriately select the above-mentioned auxiliary crushing agents alone or in combination of two or more. When producing powdered lead foil, the above-mentioned auxiliary crushing agents are used. For example, powdered lead foil using stearic acid, lead stearate, and aluminum stearate as auxiliary crushing agents is added to rubber. Rubber compositions were prepared and their physical properties and dispersibility were measured. Almost the same results were obtained, and no influence of the type of auxiliary crushing agent on the rubber composition was observed. In addition, the powdered lead foil used in the present invention is obtained by subjecting conventionally produced dark gray or blackish gray foil pieces having an oxide film on the surface to a reduction treatment to remove the oxide film.
Furthermore, it is also possible to use a lead foil which has been subjected to a surface activation treatment if necessary and has a silvery-white active surface and is immediately coated with an antioxidant that satisfies the following conditions. That is, the antioxidant is selected from those suitable as rubber compounding agents when blended with rubber, such as process oil,
Rubber plasticizers, liquid rubber softeners such as vegetable oil, and rubber lubricants with a melting point below the processing temperature of rubber, such as higher fatty acids, metal soaps, paraffins, polyethylene glycols, and low molecular weight polyethylene. Also included are rubber solutions such as rubber pastes, rubber latexes, and rubber adhesives. When these compounding agents and rubber solutions are added to rubber,
It is uniformly dispersed in the rubber and behaves effectively as a conventionally used rubber compound. In addition, all the rubbers normally used in the rubber industry can be used as the compounded rubber of the present invention, such as natural rubber rubber, butadiene rubber, polyisoprene rubber, chloroprene rubber, isobutylene rubber, Olefin rubber,
Silicone rubber, acrylic rubber, urethane rubber, fluorine rubber, polynorbornene rubber, etc. are appropriately selected and used. The rubber composition of the present invention can be crosslinked as necessary depending on its use, functionality, processability, price, etc. When crosslinking is carried out, a conventional crosslinking method for rubber compounds can be used if necessary. Furthermore, the term "laminated" as used in the present invention refers to the fact that as a result of the operation of uniformly dispersing the powdered lead in the compounded rubber, a large number of the powdered lead foils are arranged in a certain direction inside the rubber compound in a substantially layered manner. In this case, this lamination is achieved by repeatedly passing between kneading rolls during mixing of the compounded rubber and the powdered lead foil, so that the powdered lead foil is arranged in a large number of substantially parallel layers. In addition, the lamination rate can be improved by a mixing operation using a Banbury mixer, a Henschel mixer, etc., and especially a rolling operation using a calender, etc. In addition to these methods, layering can also be effectively carried out by extrusion work using an extruder, molding work using an injection molding machine, rocking work using a vibration molding machine, and arrangement using polarity in an electromagnetic field. These methods are to be selected. To explain this lamination arrangement, in the examples of the present invention, it is shown as a lamination ratio, which means that in the cross section of the rubber composition containing powdered lead, the powdered lead is in a certain direction or within about 30 degrees from that direction. This refers to the ratio of multiple laminated layers arranged in layers at different angles, measured using a stereomicroscope, and expressed as a percentage. In the present invention, "substantially laminated" refers to an arrangement of powdered lead of approximately 70% or more as a result of visual observation at 25x magnification using a stereomicroscope, as shown in FIG. 2, for example. Therefore, in the present invention, when powdered lead coated with a coating that is an antioxidant coating and a rubber compounding agent as described above is blended into rubber, those coatings diffuse into the rubber and are At the same time, the active lead powder surface comes into contact with the rubber component, preventing the generation of voids at the interface, exhibiting a unique binding force, and exhibiting various unique effects. It is. To explain the relationship between the compounded rubber and powdered lead when the powdered lead of the present invention is added to compounded rubber, this powdered lead is extremely easy to disperse into compounded rubber, and The hardness does not increase (that is, the Mooney viscosity is lower than that obtained by the atomization method, and it does not increase much even when the amount of lead increases), and the volume fraction of powdered lead is approximately 75% compared to the compounded rubber. %, it exhibits flexibility as a rubber, and in terms of the physical properties of the compound, it has a high elongation at break.
In addition to being characterized by low hardness and low tensile stress, an even more significant feature is that it has a scale-like shape, which allows it to be arranged in multiple layers very well. Next, we will discuss how the powdered lead having the above-mentioned characteristics behaves in rubber. Generally, reinforcing agents for rubber are characterized by fine particles, large specific surface area, and high adsorption ability, and furnace black, silica, hard clay, etc. are used for rubber. On the other hand, materials with low reinforcing properties, ie, large particle size, small specific surface area, and low adsorption capacity, such as heavy calcium carbonate and soft clay, are called fillers and can be filled in large amounts. If there is lead powder with an oxide film on the surface of compounded rubber or lead oxide such as lead circle (Pb 3 O 4 ) or litharge (PbO), which has an oxide film on the surface of the conventional method, the polarity of the lead powder is different from that of the present invention. It is larger than powdered lead, and the binding force of the rubber molecules is greater. Therefore, it is difficult to fill a large amount of lead powder or lead oxide using conventional methods. However, since the powder foil lead of the present invention has almost no oxide film on its surface, its polarity is small and there is no binding force on the rubber due to polarity, and as mentioned above, the particle size is quite large, with approximately 4 to 325 mesh accounting for 80% or more. Therefore, it is extremely easy to add powdered lead to rubber while maintaining a fresh metal surface with almost no oxide film, and it is possible to achieve a large amount of compounded rubber by adding powdered lead to approximately 75% by volume. Become. Therefore, the powdered lead added to the rubber exhibits good adhesion to the rubber, and there is almost no oxide film on the surface. Even when the changes in stress were measured, the changes remained very small. As mentioned above, the present invention effectively fills rubber with powdered lead, which has almost no oxide film on its surface, in multiple layers, and based on this, as will be explained below, there is a good resistance to minute deformation between the compounded rubber and powdered lead. It exhibits excellent binding properties and exhibits effective properties for achieving the purpose of the present invention. Next, the amount of powdered lead used in the present invention is limited to approximately 15 to 75% in volume fraction, and the reason for this is as shown in Tables 3 and 4 of Examples, the purpose of this invention The results of sound insulation tests and X-ray shielding tests within the range of 15% and below show that the effect is not significant when the volume fraction is 15% or less. In addition, it is possible to add it to rubber at a volume fraction of 75% or more, but the dough after kneading is too hard and the elongation is extremely reduced, making it difficult to perform molding processes such as calendering, and it is difficult to put it into practical use as a product. The upper limit is set at 75% because of the low When the volume fraction is 15% or more, the multi-layered powdered lead is uniformly dispersed in the compounded rubber, and the shape is large and scaly, and it spreads out as a surface.
The shielding effect against X-rays and generated sound is significantly increased. The lamination ratio of the powdered lead in the rubber composition of the present invention is approximately 70% after kneading with a kneading roll, and becomes 90% or more after kneading and further processing operations such as calendering. The amount of lead powder added should be set at a volume fraction of 15% to 75%, taking into consideration the purpose of use and characteristics.
Select as appropriate within the range of %. The powdered lead foil of the present invention can be easily kneaded by the kneading method and addition order commonly used in this technical field, and the dispersion is uniform and the multilayer arrangement is dense and ideal ( (See Figure 2). This ideal and precise multi-layer arrangement provides remarkable sound insulation, vibration damping, and X-ray shielding effects compared to conventional lead powder, which exists almost as dots in the rubber. Compared to the conventionally used rubber composition containing powdered lead with an oxide film on the surface at a volume fraction of 38%, for example, the rubber composition containing the powdered lead of the present invention at a volume fraction of 38% has half the It exhibits sufficient effects despite its thickness, and can easily achieve objectives that could not be accomplished conventionally, while also making it possible to significantly reduce weight. Also noteworthy are the ease of handling due to the flexibility of this compound and its sound insulation effect at low frequencies. That is, conventionally used lead plates and lead foils, or laminates using them, have poor restorability and are difficult to maintain smoothness. In comparison, the rubber composition of the present invention has great flexibility even at a high blending ratio, is easy to process when pasting a sheet, and is highly workable, so it has great practical effects. Furthermore, in sound insulation tests, it is natural that the greater the amount of lead powder added, the better the sound insulation effect, considering the increase in the number of laminated layers and the increase in the density of lead in the rubber. Moreover, when comparing the sound insulation test (Table 3) of the lead plate (see Comparative Example 8) of 2mm and the invention examples 1 to 5 of the present invention, the dB value of the 1mm rubber composition sheet when opened is In particular, sheets containing lead powder with a volume fraction of 30% or more show performance close to that of a 2 mm lead plate.For example, a rubber composition containing lead powder with a volume fraction of 47.9% has a performance of 1 mm. /2 thickness and exhibits an effect comparable to that of a lead plate. It was found that the effect is particularly remarkable at low frequencies below 110Hz. Also, a 1 mm thick sheet made of a rubber compound containing powdered lead at a volume fraction of 38% by the conventional method and a 1 mm thick sheet made from a rubber composition containing powdered lead at a volume fraction of 38% according to the present invention. When compared, the difference with the sheet of the present invention is slight, but the sound insulation effect at low frequencies is excellent. Furthermore, since the former cannot be filled in large amounts as mentioned above, the large amount compounded rubber composition of the present invention opens up a new field of effects that could not be achieved in the past. In other words, it has almost the same effect as a lead plate of the same thickness in terms of sound insulation, X-ray protection, and vibration damping, and is also superior in terms of ease of handling and workability due to its flexibility and smoothness. It has excellent beneficial effects. [Examples of the Invention] The present invention will be specifically described below with reference to Examples. The evaluation method of the sound insulation test and the evaluation method of the X-ray test in Examples are as follows. Evaluation method of sound insulation test Test equipment: (1) A sound insulation sheet is pasted on the circumference and bottom of the wooden box.
Sound insulation test equipment with the top open. A sound source that generates various frequencies was housed inside. (2) Sound level meter NA-09 model manufactured by Rion Co., Ltd. Test conditions: (1) Temperature: 25℃ (2) Location: Closed room (3) For hard materials such as lead plates, an iron frame was used as the presser. Test method: Place the sample on top of a sound insulation test device with a sound source inside, make the device completely sealed, place a sound level meter at a distance of 70 cm from the top of the device, and measure the decibel value (dβ) with A weighting.
was measured. Evaluation method of X-ray test Test equipment: X-ray diffraction device JDX-7E model JEOL Ltd.
Manufacturing test method: The X-rays were adjusted to travel straight, and the sample was inserted between the radiation source and the Geiger counter. X-rays were emitted and the number of counts (C/sec) with a Geiger counter was measured. Test conditions: (1) Temperature: 25°C (2) Angle: 0 Example 1 Tables 1-1 and 2-1 show the amount of lead powder mixed into compounded rubber based on chlorinated butyl rubber. Examples and comparative examples shown are shown below. 6 for kneading
Each was molded to a thickness of 1 mm using a calender using an inch mixing roll. The resulting mixture was heated under pressure at 167°C for 20 minutes using a hot press, and its physical properties, lamination ratio, and dispersibility were measured.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1−1表及び第1−2表に示す本発明例1〜
6及び比較例1〜9のシートを用い、第3表の測
定値を得た。
[Table] Invention examples 1 to 1 shown in Tables 1-1 and 1-2
Using the sheets of No. 6 and Comparative Examples 1 to 9, the measured values shown in Table 3 were obtained.

【表】【table】

【表】 以上のデータから本発明のゴム組成物は2mmの
鉛板と比べて、1mmのシートにおいてもかなりの
効果を有し、同じ2mmのシートではほぼ同等の遮
音効果を有する。シートとしての取扱いでは鉛は
鉄製のワクを使用しないと装置との間に隙間があ
つて効果が発揮できず、取扱いがむづかしい。こ
れに対して本願のゴム組成物によるシートは極め
て柔軟性と可撓性に富み取扱いが簡単であつた。
また、低周波数における効果が特に優れており、
鉛板と同等の効果を有し、一般市販のウレタン遮
音材と比べると著しい効果を有することがわか
る。第1図に本試験の装置を示す。 図中1は音源、2は遮音測定用箔、3は内張し
た鉛板、4は試料シート、5は騒音計を示す。 遮音テストに用いたゴム組成物シート断面(実
施例2)の実体顕微鏡の写真図を第2図に又比較
例4の同写真を第3図に示す。 第1−1表及び第1−2表に示す本発明例1〜
5及び比較例1〜8のシートを用い夫々厚さを
0.25mm及び0.1mmに調整して第4表の測定値を得
た。
[Table] From the above data, the rubber composition of the present invention has a considerable effect on a 1 mm sheet compared to a 2 mm lead plate, and has almost the same sound insulation effect on the same 2 mm sheet. When handling lead as a sheet, it is difficult to handle unless an iron workpiece is used, as there is a gap between it and the equipment, making it ineffective. In contrast, the sheet made of the rubber composition of the present invention was extremely soft and flexible and easy to handle.
In addition, the effect at low frequencies is particularly excellent,
It can be seen that it has the same effect as a lead plate, and has a remarkable effect compared to general commercially available urethane sound insulation materials. Figure 1 shows the equipment used in this test. In the figure, 1 is a sound source, 2 is a foil for sound insulation measurement, 3 is a lined lead plate, 4 is a sample sheet, and 5 is a sound level meter. A stereoscopic microscope photograph of a cross section of the rubber composition sheet (Example 2) used in the sound insulation test is shown in FIG. 2, and the same photograph of Comparative Example 4 is shown in FIG. Invention examples 1 to 1 shown in Tables 1-1 and 1-2
Using the sheets of No. 5 and Comparative Examples 1 to 8, the thickness was adjusted respectively.
The measured values in Table 4 were obtained by adjusting to 0.25 mm and 0.1 mm.

【表】【table】

【表】 X線遮断テストの結果、300部以上の粉箔鉛を
添加すると、かなりの遮断効果を有し500部以上
添加すると、鉛板の遮蔽効果にほぼ近い数値を示
すことがわかつた。 実施例 2 助砕剤の種類による粉箔鉛と塩素化ブチルとの
配合例及び物性値を第5表に示す。
[Table] As a result of the X-ray shielding test, it was found that when 300 parts or more of powdered lead was added, it had a considerable shielding effect, and when 500 parts or more was added, the shielding effect was almost close to that of a lead plate. Example 2 Table 5 shows blending examples and physical property values of powdered lead and chlorinated butyl depending on the type of auxiliary crushing agent.

【表】【table】

【表】 以上の結果より助砕剤の種類による粉箔鉛の影
響は全くないことが認められた。 実施例 3 塩素化ブチルゴムのカーボンブラツク配合例及
び物性値を第6表に示す。 下記配合にもとづき、6インチミキシングロー
ルを用いて混練を行い、同ロールを用いて厚さ2
mmのシートに成形し、熱プレスを用いて167℃の
温度で20分間加圧加熱した。測定値は下記の第6
表に示す。
[Table] From the above results, it was confirmed that the type of auxiliary crushing agent had no effect on lead powder. Example 3 Table 6 shows a carbon black formulation example and physical property values of chlorinated butyl rubber. Based on the following formulation, knead using a 6-inch mixing roll, and use the same roll to mix the mixture to a thickness of 2.
It was formed into a sheet of 1.0 mm thick, and heated under pressure for 20 minutes at a temperature of 167°C using a heat press. The measured value is the 6th below.
Shown in the table.

【表】【table】

【表】 実施例 4 クロロプレンゴムのカーボン配合物と粉箔鉛と
の配合例及び物性値を第7表に示す。下記の配合
例によつて、6インチミキシングロールを用いて
混練を行い、同ロールで2mmシートに成形した。
得られた配合物シートは熱プレスを用いて167℃
の温度で20分間加圧加熱した。
[Table] Example 4 Table 7 shows a blending example and physical property values of a carbon blend of chloroprene rubber and powdered lead. According to the following formulation example, kneading was performed using a 6-inch mixing roll, and the mixture was formed into a 2 mm sheet using the same roll.
The resulting compound sheet was heated to 167°C using a heat press.
The mixture was heated under pressure for 20 minutes at a temperature of .

【表】【table】

【表】 実施例 5 クロロプレンゴムと粉箔鉛のカーボン配合物に
おける架橋剤の種類の比較例及びその特性値を第
8表に示す。下記の配合例にもとづき6インチミ
キシングロールを用いて混練を行い、同じロール
で2mmシートに成形した。得られた配合物シート
は熱プレスを用いて167℃の温度で10分間加圧加
熱した。
[Table] Example 5 Table 8 shows a comparative example of the type of crosslinking agent in a carbon compound of chloroprene rubber and powdered lead and its characteristic values. Based on the formulation example below, kneading was carried out using a 6-inch mixing roll, and the mixture was formed into a 2 mm sheet using the same roll. The obtained compound sheet was heated under pressure at a temperature of 167° C. for 10 minutes using a heat press.

【表】【table】

【表】 リン酸鉛使用
実施例 6 シリコンゴムと粉箔鉛との配合例及び物性値を
第9表に示す。下記の配合例にもとづき、6イン
チミキシングロールを用いて混練を行い、同ロー
ルで厚さ2mmのシートに成形した。得られた配合
物シートは熱プレスを用いて170℃の温度で20分
間加圧加熱した。
[Table] Example of using lead phosphate 6 Table 9 shows a blending example and physical property values of silicone rubber and powdered lead. Based on the following formulation example, kneading was performed using a 6-inch mixing roll, and the mixture was formed into a sheet with a thickness of 2 mm using the same roll. The obtained compound sheet was heated under pressure at a temperature of 170° C. for 20 minutes using a heat press.

【表】【table】

【表】【table】

【表】 実施例 7 塩素化ブチルゴムを主材とする配合ゴムと酸化
鉛との配合例と物性値を第10表に示す。下記の配
合例にもとづき6インチミキシングロールを用い
て混練を行い、同じロールで2mmシートに成形し
た。得られた配合物シートは熱プレスを用いて
167℃の温度で20分間加圧加熱した。
[Table] Example 7 Table 10 shows a compounding example and physical property values of compounded rubber mainly composed of chlorinated butyl rubber and lead oxide. Based on the formulation example below, kneading was carried out using a 6-inch mixing roll, and the mixture was formed into a 2 mm sheet using the same roll. The resulting compound sheet was heated using a heat press.
It was heated under pressure at a temperature of 167°C for 20 minutes.

〔発明の効果〕〔Effect of the invention〕

本発明のゴム組成物は上述の如く、活性な金属
鉛表面を有する粉箔鉛を多量にしかも均一に多重
積層配列せしめると同時に、ゴム分子と粉箔鉛と
の間に微小変形における良好な結着力を生ずる効
果により、柔軟性、屈曲性等のゴムとしての特性
を損うことなく、防音、制振、X線遮蔽、放射線
遮蔽、海中生物付着防止、防食等において、従来
のものでは果し得ない極めて顕著な効果を示すも
のである。
As mentioned above, the rubber composition of the present invention allows a large amount of powdered lead foil having an active metallic lead surface to be uniformly arranged in multiple layers, and at the same time provides good bonding between the rubber molecules and the powdered lead foil during minute deformation. Due to the effect of creating adhesion, it is superior to conventional products in soundproofing, vibration damping, X-ray shielding, radiation shielding, prevention of marine organisms adhesion, corrosion prevention, etc., without impairing the properties of rubber such as flexibility and flexibility. This shows an extremely remarkable effect that cannot be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で用いた遮音テスト試験装置の
断面図、第2図は本発明によつて得られた粉箔鉛
500重量部含有したゴム組成物(実施例2)の断
面組織を示す実体顕微鏡写真図(×25)、第3図
は従来例で市販鉛粉末(アトマイズ法、200メツ
シユ通過)500重量部を含有したゴム組成物(比
較例4)の断面組織を示す実体顕微鏡写真図(×
25)である。 1:音源、2:遮音測定用箱、3:内張した鉛
板、4:試料シート、5:騒音計。
Fig. 1 is a cross-sectional view of the sound insulation test equipment used in the examples, and Fig. 2 is the powdered lead obtained by the present invention.
A stereoscopic micrograph (x25) showing the cross-sectional structure of the rubber composition (Example 2) containing 500 parts by weight. Figure 3 is a conventional example containing 500 parts by weight of commercially available lead powder (atomized method, passed through 200 meshes). A stereoscopic micrograph showing the cross-sectional structure of the rubber composition (Comparative Example 4) (×
25). 1: Sound source, 2: Sound insulation measurement box, 3: Lead plate lined, 4: Sample sheet, 5: Sound level meter.

Claims (1)

【特許請求の範囲】[Claims] 1 配合ゴムに対しその表面に酸化皮膜がほとん
ど存在しない粉箔鉛をその容積分率で15乃至75%
存在し、該粉箔鉛がほとんど積層して配列されて
いることを特徴とする粉箔鉛を含有するゴム組成
物。
1 The volume fraction of powdered lead, which has almost no oxide film on its surface, is 15 to 75% of the compounded rubber.
1. A rubber composition containing powdered lead, characterized in that the powdered lead is arranged in a substantially laminated manner.
JP26410485A 1985-11-25 1985-11-25 Rubber composition containing flaky lead powder Granted JPS62124133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26410485A JPS62124133A (en) 1985-11-25 1985-11-25 Rubber composition containing flaky lead powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26410485A JPS62124133A (en) 1985-11-25 1985-11-25 Rubber composition containing flaky lead powder

Publications (2)

Publication Number Publication Date
JPS62124133A JPS62124133A (en) 1987-06-05
JPH0378425B2 true JPH0378425B2 (en) 1991-12-13

Family

ID=17398567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26410485A Granted JPS62124133A (en) 1985-11-25 1985-11-25 Rubber composition containing flaky lead powder

Country Status (1)

Country Link
JP (1) JPS62124133A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557864B2 (en) * 1996-09-24 2004-08-25 住友電気工業株式会社 Radiation shielding material and its manufacturing method

Also Published As

Publication number Publication date
JPS62124133A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US2996710A (en) Electromagnetic radiation absorptive article
JP5330969B2 (en) Sliding layer material and multilayer material
DE112017000751T5 (en) elastomer compounds
JP5953014B2 (en) Flame retardant resin composition, flame retardant resin sheet and flame retardant multilayer sheet
DE2263361A1 (en) PLASTICS / RESINS
Maya et al. A comprehensive study on the impact of RGO/MWCNT hybrid filler reinforced polychloroprene rubber multifunctional nanocomposites
JP5329921B2 (en) Polymer composition and noise suppression sheet containing the polymer composition
JP7056121B2 (en) Method for manufacturing decorative sheet base material and decorative sheet base material, and method for manufacturing decorative sheet and decorative sheet
JPH0378425B2 (en)
JP2847829B2 (en) Expanded graphite dispersed composite resin molding
EP1193051A2 (en) Fire-retardant antistatic vinyl chloride resin moldings
Nuñez‐Figueredo et al. Influence of ionic liquid on graphite/silver nanoparticles dispersion and antibacterial properties against Escherichia coli of PP/EPDM composite coatings
DE60108882T2 (en) ANTISTATIC IONOMER MIXTURE
JP3190241B2 (en) Conductive composite plastic sheets and containers for packaging electronic components
TW201132799A (en) Conductive precoated aluminum alloy sheet
JP3574426B2 (en) Sheet-like molded body
JPS62212465A (en) Apparatus with built-in electronic control device placed in housing coated with high-molecular composition layer containing flaky lead
JPH0582862B2 (en)
JP2011091095A (en) Electromagnetic-wave absorber, and electromagnetic-wave absorbing and thermally-conductive elastomer composition
JP2505461B2 (en) Composite plastic sheet
DE10197400B4 (en) Use of a butyl rubber composition as a molding composition for use in a carbon dioxide coolant
JP7119440B2 (en) Composite sheet manufacturing method
JPS62179568A (en) Electrically conductive high-molecular material composition
JPS5975931A (en) Metallic powder for use as filler for synthetic resin
DE69926185T2 (en) Conductive plate, method of manufacture, and molding