JPH0378423A - Electric power system circuit - Google Patents

Electric power system circuit

Info

Publication number
JPH0378423A
JPH0378423A JP1214032A JP21403289A JPH0378423A JP H0378423 A JPH0378423 A JP H0378423A JP 1214032 A JP1214032 A JP 1214032A JP 21403289 A JP21403289 A JP 21403289A JP H0378423 A JPH0378423 A JP H0378423A
Authority
JP
Japan
Prior art keywords
capacitance
voltage
inductance
phenomenon
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1214032A
Other languages
Japanese (ja)
Inventor
Hidekazu Hagimori
萩森 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1214032A priority Critical patent/JPH0378423A/en
Publication of JPH0378423A publication Critical patent/JPH0378423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a ferroresonant phenomenon stably for a prolonged term by setting natural frequency by the inductance of the saturated region of a transformer for an instrument and capacitance connected at a terminal to the half or less of commercial frequency. CONSTITUTION:The circuit of a transformer 4 for an instrument is installed, and an external ground capacitance 5, a coupling capacitance 6 and voltage 7 related with induction are provided. The inductance of the saturated region of the transformer 4 for the instrument and capacitance 5 connected at a terminal are set so that natural frequency by these inductance and capacitance 5 may be the half or less of commercial frequency. Accordingly, a countermeasure is considered so that a ferroresonant phenomenon is not generated theoretically on the basis of the fundamental principle of the ferroresonant phenomenon, thus stably preventing the ferroresonant phenomenon for a prolonged term without losing an effect even by a quantity of condition change.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、電力系統回路に係り、特に、計器用変圧器が
接続された回路で時折発生する、いわゆる鉄共振現象を
防止するための技術に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to power system circuits, and in particular, to solving the so-called ferroresonance phenomenon that sometimes occurs in circuits to which potential transformers are connected. Regarding technology for prevention.

(従来の技術) 従来、このような鉄共振現象の原理は、充分には解明さ
れていないため、この現象を防止するにあたっても、理
論・原理に基づくというよりは、推論や仮定に基づいて
防止手段を考案し、数値計算或いは実測にて共振のない
ことを確かめることによって、適当な防止手段を決定し
、実施している。このような防止手段を実施している各
種の電力回路においては、回路定数がわずかに変っただ
けでも、鉄共振現象防止効果が大きく変ることがあり、
また、毎回の現象のばらつきも大きい。従って、従来の
鉄共振現象防止手段においては、計算や実測の条件の範
囲で鉄共振現象を防止可能であっても、実際の使用にお
いて、多少の条件変化に対応して長期的に鉄共振現象を
防止することは困難であった。
(Prior art) Conventionally, the principle of this type of fero-resonance phenomenon has not been fully elucidated, and therefore prevention efforts have been made based on inferences and assumptions rather than on theories and principles. Appropriate preventive measures are determined and implemented by devising means and confirming the absence of resonance through numerical calculations or actual measurements. In various power circuits that implement such prevention measures, even a slight change in the circuit constants can significantly change the effect of preventing ferroresonance phenomenon.
Furthermore, there is a large variation in the phenomenon each time. Therefore, even if conventional means for preventing ferroresonance phenomena can prevent ferroresonance within the range of calculation and actual measurement conditions, in actual use, ferroresonance will continue to occur over a long period of time in response to slight changes in conditions. It was difficult to prevent this.

(発明が解決しようとする課題) 本発明は、上記のような従来技術の課題を解決するため
に提案されたものであり、その目的は、鉄共振現象の基
本原理に基づき、理論的に鉄共振現象が発生しないよう
な対応策を施すことにより、多少の条件変化によっても
効果を失うことなく、長期的に安定して鉄共振現象を防
止し得るような優れた電力系統回路を提供することであ
る。
(Problems to be Solved by the Invention) The present invention was proposed in order to solve the problems of the prior art as described above, and its purpose is to theoretically solve the problems of iron To provide an excellent power system circuit that can stably prevent ferroresonance over a long period of time without losing its effectiveness even with slight changes in conditions by taking countermeasures to prevent resonance from occurring. It is.

[発明の構成] (課題を解決するための手段) 本発明による電力系統回路は、計器用変圧器が接続され
た回路であって、電源から切離された際に、該電源或い
は他の電源と光回路の静電結合、計器用変圧器の非線形
インダクタンス、計器用変圧器端子に接続されているキ
ャパシタンスとによって、商用周波数の奇数分の1の周
波数の共振異常電圧を発生する電力系統回路において、
計器用変圧器の飽和領域のインダクタンスと端子に接続
されているキャパシタンスとを、これらのインダクタン
ス及びキャパシタンスによる固有周波数が、商用周波数
の1/2以下になるように設定したことを特徴としてい
る。
[Structure of the Invention] (Means for Solving the Problems) A power system circuit according to the present invention is a circuit to which a voltage transformer is connected, and when disconnected from a power supply, the power system circuit is connected to the power supply or another power supply. In a power system circuit that generates a resonant abnormal voltage at an odd fraction of the commercial frequency due to the capacitive coupling of the optical circuit, the nonlinear inductance of the voltage transformer, and the capacitance connected to the voltage transformer terminal, ,
It is characterized in that the inductance in the saturated region of the potential transformer and the capacitance connected to the terminal are set so that the natural frequency due to these inductances and capacitances is 1/2 or less of the commercial frequency.

(作用) 以−にのような構成を有する本発明においては、計器用
変圧器の飽和領域のインダクタンスと端子に接続されて
いるキャパシタンスとによる固有周波数を、商用周波数
の1/2以下になるように設定しているため、鉄共振現
象の基本原理に基づき、理論的に鉄共振現象の発生を防
止できるため、多少の条件変化によっても効果を失うこ
となく、長期的に安定して鉄共振現象を防止し得る。
(Function) In the present invention having the configuration as described above, the natural frequency due to the inductance in the saturation region of the potential transformer and the capacitance connected to the terminal is set to 1/2 or less of the commercial frequency. Based on the basic principle of ferroresonance, it is possible to theoretically prevent the occurrence of ferroresonance, so the effect will not be lost even with slight changes in conditions, and the ferroresonance will be stable over a long period of time. can be prevented.

すなわち、発明者は、鉄共振現象を詳細に解析して基本
原理を解明し、この基本原理に基づき、本発明を提供し
たものである。
That is, the inventor analyzed the fero-resonance phenomenon in detail to elucidate the basic principle, and based on this basic principle, provided the present invention.

以下に、発明者が解明した鉄共振現象の基本原理を説明
する。
Below, the basic principle of the iron resonance phenomenon elucidated by the inventor will be explained.

まず、第1図(a)は、計器用変圧器が接続されている
回路を示す図である。計器用変圧器(以下PTと略す)
4の回路は、−船釣にこの図のように表すことができる
。また、外部対地キャパシタンス5、カップリングキャ
パシタンス6、誘導に係る電圧7は、各々複数の場合も
あるが、そのような場合にも等価な1個のものとして集
約して示すことができる。すなわち、外部対地キャパシ
タンス5、カップリングキャパシタンス6については、
各々複数のものの和の値に一致させ、また、誘導に係る
電圧7については、計器用変圧器4、及び外部対地キャ
パシタンス5を取外した状態で、複数の電圧源と各々に
対応する結合キャパシタンスにより図中“P”点に生じ
る電圧に一致させればよいことはテブナンの定理より明
らかである。
First, FIG. 1(a) is a diagram showing a circuit to which a potential transformer is connected. Potential transformer (hereinafter abbreviated as PT)
The circuit No. 4 can be expressed as shown in this figure. Furthermore, although there may be a plurality of external ground capacitances 5, coupling capacitances 6, and voltages 7 related to induction, each of them can be collectively shown as one equivalent value. That is, regarding the external ground capacitance 5 and the coupling capacitance 6,
The voltage 7 related to induction is set to match the sum of multiple voltage sources, and with the voltage transformer 4 and external ground capacitance 5 removed, multiple voltage sources and their corresponding coupling capacitances are used. It is clear from Thevenin's theorem that it is sufficient to match the voltage generated at point "P" in the figure.

第1図(b)は、現象をより明確にするために、(b)
の“X”で示す範囲(カップリングに係わる部分)に再
度テブナンの定理を適用し、簡潔にしたものであり、こ
こで、合成キャパシタンス12は、外部対地キャパシタ
ンス5、カップリングキャパシタンス、及びPT4内部
のキャパシタンスの和に等しいものになる。誘導電圧1
1は、スイッチ3を開き、仮に、PT4の非線形インダ
クタンス21、直列抵抗22、及び相当並列抵抗23を
取外した状態で生じる商用周波数の誘導電圧に一致する
ものである。すなわち、11は静電結合による誘導電圧
である。
Figure 1(b) shows (b) to make the phenomenon more clear.
The Thevenin's theorem is again applied to the range indicated by "X" (the part related to coupling) to simplify it. Here, the composite capacitance 12 is the external ground capacitance 5, the coupling capacitance, and the internal is equal to the sum of the capacitances. induced voltage 1
1 corresponds to the commercial frequency induced voltage that would occur if the switch 3 were opened and the nonlinear inductance 21, series resistance 22, and equivalent parallel resistance 23 of the PT 4 were removed. That is, 11 is an induced voltage due to capacitive coupling.

第2図は第1図(b)の回路でスイッチ3を開いた後の
現象の例である。現象の解析にはEMTP(過渡現象解
析プログラム)を適用した。ここで、定数は、500k
V電力系統での実際的な値の例として次のように選んだ
FIG. 2 is an example of the phenomenon after opening the switch 3 in the circuit of FIG. 1(b). EMTP (Transient Phenomenon Analysis Program) was applied to analyze the phenomenon. Here, the constant is 500k
The following was chosen as an example of a practical value for a V power system.

電源電圧波高値=449000V 誘導電圧=0.15X449000V 合成キャパシタンス=1320pF 直列抵抗=200にΩ 相当並列抵抗=2GΩ 非線形リアクタの特性 電流(A)     磁束(Wb) −9,32−0,77E5 −1.54E−2−0,43E4 1.54E−20,43E4 9.32      0.77E5 第2図のAはPT4の端子での電圧、Cは誘導電圧、ま
た、Bは、AからCを差引いたものであり、これは、合
成キャパシタンス12の充電電圧に等しい。DはPT4
及び合成キャパシタンス12を流れる電流である。“Y
″部分、共振条件が崩れて徐々に減衰する期間(共振の
減衰期間)、“Z″部分共振が再度立ち上がっていく期
間(共振の増大期間)である。
Power supply voltage peak value = 449000V Induced voltage = 0.15X449000V Combined capacitance = 1320pF Series resistance = 200Ω Equivalent parallel resistance = 2GΩ Characteristic current of nonlinear reactor (A) Magnetic flux (Wb) -9, 32-0, 77E5 -1. 54E-2-0, 43E4 1.54E-20, 43E4 9.32 0.77E5 In Figure 2, A is the voltage at the terminal of PT4, C is the induced voltage, and B is the value obtained by subtracting C from A. , which is equal to the charging voltage of the composite capacitance 12. D is PT4
and the current flowing through the composite capacitance 12. “Y
'' part, a period in which the resonance conditions are broken and the resonance gradually attenuates (resonance decay period), and a period in which the "Z" part resonance rises again (resonance increase period).

第3図は第2図の“Y”部分の時間軸を大幅に拡大した
もので、AI、Bl、C1,DIは第2図のA、B、C
,Dと各々同じものを示している。
Figure 3 is a greatly expanded time axis of the "Y" part in Figure 2, and AI, Bl, C1, DI are A, B, and C in Figure 2.
, D, respectively.

共振が減衰していく様子は、この第3図のB1により明
確に示される。B1の水平期間では、Dl、すなわちP
T4及び合成キャパシタンス12に電流は流れず(実際
には微小の電流が流れている)、PT4については、電
流−磁束特性曲線上の非飽和領域の極めて高いインダク
タンスの部分をたどっていることがわかる。この時、合
成キャパシタンス12には(はとんど)電流が流れず、
その電荷が変化しないため、電圧が一定になるものであ
る。また、B1の電圧極性の反転する期間においては、
Dlの電流が大きく流れている。この期間はPTの電流
−磁束特性曲線上の飽和領域をたどる期間であり、飽和
領域のインダクタンスが比較的小さいために、電流が流
れるものである。第3図の■乃至■はこのような電圧反
転期間を示している。第1図(b)と対照すると明確で
あるが、B1の電圧が一定である期間は、PT4のイン
ダクタンスが大変に高い状態であるために、C1の誘導
電圧によっても電流が流れず、合成キャパシタンス12
の電圧も変化しないために、共振の減衰、立上がりとは
関連のない期間である。一方■〜■の期間は、PT4が
比較的低インダクタンスであるために、電流が流れ、C
1の誘導電圧とDlのPT・キャパシタンス電流の極性
が一致する程電流が増大して、極性反転時にB1の振幅
が増大し、すなわち共振が立上がり、極性が不一致な程
、減衰していくものである。ここで、第3図の各電圧反
転期間■〜■について、極性と振幅との関係は次の通り
である。
B1 in FIG. 3 clearly shows how the resonance is attenuated. In the horizontal period of B1, Dl, i.e. P
It can be seen that no current flows through T4 and the composite capacitance 12 (in fact, a minute current flows), and PT4 traces the extremely high inductance part in the non-saturation region on the current-magnetic flux characteristic curve. . At this time, no current (almost) flows through the composite capacitance 12,
Since the charge does not change, the voltage remains constant. In addition, during the period when the voltage polarity of B1 is reversed,
A large current flows through Dl. This period is a period in which the current-magnetic flux characteristic curve of the PT traces the saturation region, and since the inductance in the saturation region is relatively small, current flows. 3 to 3 in FIG. 3 indicate such voltage inversion periods. It is clear when compared with Fig. 1(b) that during the period when the voltage of B1 is constant, the inductance of PT4 is in a very high state, so no current flows even due to the induced voltage of C1, and the combined capacitance is 12
This is a period that is unrelated to the attenuation and rise of resonance because the voltage of On the other hand, during the period from ■ to ■, since PT4 has a relatively low inductance, current flows and C
The more the polarities of the induced voltage of 1 and the PT/capacitance current of Dl match, the more the current increases, and when the polarity is reversed, the amplitude of B1 increases, that is, the resonance rises, and the more the polarities do not match, the more it attenuates. be. Here, the relationship between polarity and amplitude for each of the voltage inversion periods (1) to (2) in FIG. 3 is as follows.

期間    極性       振幅 ■・・・前半一致、後半不一致−わずかに自由減衰■・
・・前半一致、後半不一致−わずかに自由減衰■・・・
不一致       −減衰大■・・・はぼ一致   
   →振幅増大■・・・不一致       −減衰
大また、第4図は、第2図の“Z”部分の時間軸を大幅
に拡大したもので、A2. B2. C2,B2は第2
図のA、B、C,Dと各々同じものを示している。第4
図の■〜0は、第3図の■〜■と同様の電圧反転期間で
あり、各電圧反転期間■〜■について、極性と振幅との
関係は以下の通りである。
Period Polarity Amplitude■...First half matched, second half inconsistent - Slightly free decay■・
・・First half matching, second half not matching – Slightly free decay ■・・・・
Mismatch - Large attenuation■...Possible match
→Amplitude increase■...Inconsistency -Large attenuation Also, Figure 4 is a greatly expanded time axis of the "Z" portion of Figure 2, and shows A2. B2. C2 and B2 are the second
The same items as A, B, C, and D in the figure are shown. Fourth
2 to 0 in the figure are voltage inversion periods similar to 2 to 2 in FIG. 3, and the relationship between polarity and amplitude for each voltage inversion period 2 to 3 is as follows.

期間    極性       振幅 ■・・・一致        →振幅増大■・・・前半
一致、後半不一致−わずかに自由減衰■・・・はぼ一致
      →振幅増大■・・・一致        
−振幅増大[株]・・・やや不一致     →やや減
衰0・・・前半一致、後半不一致→わずかに自由減衰以
上のように、PT4の飽和領域で電流の大きく流れる時
刻と誘導電圧の極性の関係で共振の立上がり具合は左右
される。しかし、第3図及び第4図から、B1の極性の
反転する時刻の間隔は、電圧値によって変ることがわか
り、前記の極性との関係を意図的に調整して共振を回避
することは困難である。
Period Polarity Amplitude■...Consistent→Amplitude increase■...First half coincide, second half mismatch - Slightly free decay■...Habo coincidence →Amplitude increase■・・・Concurrence
- Amplitude increase [stock]...Slightly inconsistent → Slightly attenuated 0...First half consistent, second half inconsistent →Slightly more than free decay, the relationship between the time when the current flows greatly in the PT4 saturation region and the polarity of the induced voltage The degree to which resonance rises depends on this. However, from Figures 3 and 4, it is clear that the time interval at which the polarity of B1 is reversed changes depending on the voltage value, and it is difficult to avoid resonance by intentionally adjusting the relationship with the polarity. It is.

ここで、第1図(b)と、第3図、第4図の■〜 のP
T4に電流が大きく流れる状態を考える。
Here, P in Figure 1(b), and ■~ in Figures 3 and 4.
Consider a state in which a large current flows through T4.

もし誘導電圧11がないとすると、合成キャパシタンス
12の電荷がPT4の飽和領域のインダクタンスを通し
て、両者の値で決まる固有周期の]/2の時間流れ、合
成キャパシタンス12の電荷及び電圧の極性が反転する
。この時の電圧の絶対値はわずかな減衰があるのみでほ
とんど変化しない。−万病導電圧11が存在する時は、
重畳の理により、誘導電圧11のみによって合成キャパ
シタンス12の電圧が充電される分だけ、振幅が増加す
る。第5図(a)は電源電圧e1キャパシタンスC1飽
和領域のインダクタンスしのみを抽出した回路図である
。この第5図(a)において、キャパシタンスCの初期
電荷なしの状態で、インダクタンスLとキャパシタンス
Cで決まる固有周期の1/2の間、スイッチを閉じ、電
源電圧eでキャパシタンスCを充電した際の充電電圧V
cは、先に述べた極性と最も良く一致し、振幅が最大に
増大するものに対応する。第5図(b)の横軸はインダ
クタンスLとキャパシタンスCによる固有周波数fo 
 (fo =1/ (2πJLC))に対する電源電圧
eの周波数fsの比率fs/foを示し、縦軸は、イン
ダクタンスLとキャパシタンスCによる固有周期の1/
2の間、電源電圧eを印加した際の電源電圧eに対する
充電電圧Vcの比率を示している。電源電圧eの印加期
間に対する電源電圧eの位相も、印加後の充電電圧Vc
に影響を与えるが、第5図(b)は充電電圧Vcが最も
高くなる位相に係わるものである。第5図(b)かられ
かるように、周波数比率fs/foが小さい場合(すな
わちfsは常に商用周波数であるので、インダクタンス
LとキャパシタンスCによる固有周波数が商用周波数よ
り充分に高い場合)、例えば1/2以下(すなわちイン
ダクタンスLとキャパシタンスCによる固有周波数が商
用周波数の2倍以上)では、充電電圧Vcは電源電圧e
の2倍となり、共振の立上がりが大きくなる可能性があ
る。一方、周波数比率fs/foが2以上(すなわちイ
ンダクタンスLとキャパシタンスCによる固有周波数が
商用周波数の1/2以下)では、Veはほぼ零であり、
他の全ての条件が整っても共振は立上がらず、減衰して
いくことになる。
If there is no induced voltage 11, the charge on the composite capacitance 12 passes through the inductance in the saturation region of PT4, and the polarity of the charge and voltage on the composite capacitance 12 is reversed over a time period of ]/2 of the natural period determined by the values of both. . The absolute value of the voltage at this time hardly changes, with only slight attenuation. -When the universal conductive voltage 11 exists,
According to the principle of superposition, the amplitude increases by the amount that the voltage of the composite capacitance 12 is charged only by the induced voltage 11. FIG. 5(a) is a circuit diagram in which only the inductance in the saturation region of the power supply voltage e1 and the capacitance C1 is extracted. In Fig. 5(a), when the capacitance C has no initial charge, the switch is closed for 1/2 of the natural period determined by the inductance L and the capacitance C, and the capacitance C is charged with the power supply voltage e. Charging voltage V
c corresponds to the one that best matches the polarity mentioned above and increases the amplitude the most. The horizontal axis in Fig. 5(b) is the natural frequency fo due to the inductance L and capacitance C.
The ratio fs/fo of the frequency fs of the power supply voltage e to (fo = 1/ (2πJLC)) is shown, and the vertical axis is 1/of the natural period due to the inductance L and capacitance C.
2 shows the ratio of charging voltage Vc to power supply voltage e when power supply voltage e is applied. The phase of the power supply voltage e with respect to the application period of the power supply voltage e is also the charging voltage Vc after application.
FIG. 5(b) concerns the phase in which the charging voltage Vc becomes the highest. As can be seen from FIG. 5(b), when the frequency ratio fs/fo is small (that is, when fs is always the commercial frequency, the natural frequency due to the inductance L and capacitance C is sufficiently higher than the commercial frequency), for example At 1/2 or less (that is, the natural frequency due to inductance L and capacitance C is more than twice the commercial frequency), charging voltage Vc is equal to power supply voltage e
, and there is a possibility that the rise of resonance will become large. On the other hand, when the frequency ratio fs/fo is 2 or more (that is, the natural frequency due to inductance L and capacitance C is 1/2 or less of the commercial frequency), Ve is almost zero,
Even if all other conditions are met, resonance will not rise and will attenuate.

以上を総合して、鉄共振現象の発生する基本原理に基づ
いて述べれば、PTの飽和領域のインダクタンスと、並
列に接続されている全キャパシタンスとによる固有周波
数が商用周波数より高いと共振が発生し易く、商用周波
数の1/2以下であれば、共振の立上がりがないことが
解明された。
Taking all of the above into account, and based on the basic principle of how fero-resonance occurs, resonance occurs when the natural frequency of the inductance in the PT saturation region and the total capacitance connected in parallel is higher than the commercial frequency. It has been found that there is no resonance rise when the frequency is less than 1/2 of the commercial frequency.

従って、前述の通り、計器用変圧器の飽和領域のインダ
クタンスと端子に接続されているキャパシタンスとによ
る固有周波数を、商用周波数の1/2以下になるように
設定することにより、鉄共振現象の発生を効果的に防止
でき、多少の条件変化によっても効果を失うことなく、
長期的に安定して鉄共振現象を防止し得る。
Therefore, as mentioned above, by setting the natural frequency due to the inductance in the saturated region of the potential transformer and the capacitance connected to the terminals to be less than 1/2 of the commercial frequency, the ferroresonance phenomenon can be generated. It can effectively prevent
Ferro-resonance phenomenon can be prevented stably over a long period of time.

(実施例) 以下に、本発明による電力系統回路の実施例を説明する
(Example) Below, an example of the power system circuit according to the present invention will be described.

まず、PTの飽和領域のインダクタンスと、PTに接続
されている全キャパシタンスの和による固有周波数を低
くするためには、キャパシタンスを増加させるか、或い
はPTの飽和領域のインダクタンスを増加させることが
必要である。
First, in order to lower the natural frequency due to the sum of the inductance in the PT saturation region and all capacitances connected to the PT, it is necessary to increase the capacitance or increase the inductance in the PT saturation region. be.

このうち、キャパシタンスを増加させるための実施例と
しては、電力系統回路のキャパシタンスの大きい箇所、
例えば母線であれば、長さの長い箇所にPTを接続した
り、或いはまた、キャパシタンスが比較的大きい機器の
接続されている回路にPTを接続する構成が考えられる
Among these, examples of increasing capacitance include locations with large capacitance in power system circuits,
For example, in the case of a bus bar, a configuration can be considered in which the PT is connected to a long point, or the PT is connected to a circuit to which a device with relatively large capacitance is connected.

これに対し、PTの飽和領域のインダクタンスを増加さ
せるための実施例としては、例えば、コイルの直径を太
き(する構成が容易に考えられる。
On the other hand, as an example of increasing the inductance in the saturation region of the PT, for example, a configuration in which the diameter of the coil is increased can be easily considered.

この場合、鉄心の断面積を増すことは必ずしも要求され
ない。
In this case, it is not necessarily required to increase the cross-sectional area of the core.

また、上記の実施例を組合せて、キャパシタンス及びP
Tの飽和領域のインダクタンスの両方を増加させる構成
も勿論可能である。
Also, by combining the above embodiments, the capacitance and P
Of course, a configuration in which both the inductances in the saturation region of T are increased is also possible.

[発明の効果] 以上説明した通り、本発明においては、鉄共振現象を基
本原理的に解明して、この原理に基づき、計器用変圧器
の飽和領域のインダクタンスと端子に接続されているキ
ャパシタンスとによる固有周波数を、商用周波数の1/
2以下になるように設定したことにより、従来に比べて
、多少の条件変化によっても効果を失うことなく、長期
的に安定して鉄共振現象を防止し得るような優れた電力
系統回路を提供できる。
[Effects of the Invention] As explained above, in the present invention, the ferro-resonance phenomenon is explained based on the basic principle, and based on this principle, the inductance in the saturation region of the potential transformer and the capacitance connected to the terminal are calculated. The natural frequency is set to 1/1 of the commercial frequency.
By setting the value to 2 or less, we have provided an excellent power system circuit that can stably prevent ferroresonance over a long period of time without losing its effectiveness even with slight changes in conditions compared to conventional circuits. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、PT(計器用変圧器)の接続されている回路
を示す回路図であり、第1図(a)は、PT(計器用変
圧器)の接続されている全ての回路を代表する回路、第
1図(b)は第1図(a)を鉄共振現象に関して等価に
簡略化した回路である。 第2図は、第1図(b)の回路において、PTの部分を
電源から切離した後に、鉄共振現象発生と消滅を繰返す
際の電圧・電流波形を示す波形図、第3図は、第2図の
共振の減衰期間“Y”の時間軸を拡張して示す波形図、
第4図は、第2図の共振の増大期間“Z“の時間軸を拡
張して示す波形図である。 第5図は、鉄共振の立上がり条件を説明するための図で
あり、第5図(a)は、電源電圧、キャパシタンス、飽
和領域のインダクタンスのみを抽出した回路図、第5図
(b)は、キャパシタンスとインダクタンスによる固有
周期の1/2の間、各種周波数の交流電圧を印加した際
の、キャパシタンス充電電圧特性を示す図である。 1・・・電源電圧、2・・・電源インピーダンス、3・
・・スイッチ、4・・・計器用変圧器、5・・・外部対
地キャパシタンス、6・・・カップリングキャパシタン
ス、7・・・誘導に係る電圧、11・・・誘導電圧、1
2・・・合成キャパシタンス、21・・・非線形インダ
クタンス、22・・・直列抵抗、23・・・相当並列抵
抗。 “X”・・・カップリングに係わる部分、“X1″・・
・“X”部分の等価回路、“Y”・・・共振の減衰期間
、“Z”・・・共振の増大期間。 A (Al、A2)・・・計器用変圧器の端子電圧、B
 (Bl、B2)・・・AからCを差引いた電圧、C(
C1,C2)・・・誘導電圧、D (DI、D2)・・
・計器用変圧器及び合成キャパシタンスを流れる電流。 ■〜0・・・電圧反転期間。
Figure 1 is a circuit diagram showing the circuits to which the PT (potential transformer) is connected, and Figure 1 (a) is representative of all the circuits to which the PT (potential transformer) is connected. The circuit shown in FIG. 1(b) is an equivalent simplified circuit of FIG. 1(a) with respect to the fero-resonance phenomenon. Figure 2 is a waveform diagram showing the voltage and current waveforms when the fero-resonance phenomenon occurs and disappears repeatedly after the PT section is disconnected from the power supply in the circuit of Figure 1(b). A waveform diagram showing an expanded time axis of the resonance attenuation period “Y” in Figure 2,
FIG. 4 is a waveform diagram showing an expanded time axis of the resonance increase period "Z" in FIG. 2. FIG. Figure 5 is a diagram for explaining the rising conditions of fero-resonance. Figure 5 (a) is a circuit diagram in which only the power supply voltage, capacitance, and inductance in the saturation region are extracted, and Figure 5 (b) is a diagram for explaining the rising conditions of fero-resonance. , is a diagram showing capacitance charging voltage characteristics when AC voltages of various frequencies are applied during 1/2 of the natural period due to capacitance and inductance. 1...Power supply voltage, 2...Power supply impedance, 3.
... Switch, 4... Potential transformer, 5... External ground capacitance, 6... Coupling capacitance, 7... Voltage related to induction, 11... Induction voltage, 1
2...Combined capacitance, 21...Nonlinear inductance, 22...Series resistance, 23...Equivalent parallel resistance. "X"... Part related to coupling, "X1"...
・Equivalent circuit of "X" part, "Y"...resonance decay period, "Z"...resonance increase period. A (Al, A2)...terminal voltage of the voltage transformer, B
(Bl, B2)...Voltage obtained by subtracting C from A, C(
C1, C2)...Induced voltage, D (DI, D2)...
- Current flowing through the potential transformer and composite capacitance. ■~0... Voltage inversion period.

Claims (1)

【特許請求の範囲】 計器用変圧器が接続された回路であって、電源から切離
された際に、該電源或いは他の電源と当回路の静電結合
、計器用変圧器の非線形インダクタンス、計器用変圧器
端子に接続されているキャパシタンスとによって、商用
周波数の奇数分の1の周波数の共振異常電圧を発生する
電力系統回路において、 計器用変圧器の飽和領域のインダクタンスと端子に接続
されているキャパシタンスとを、これらのインダクタン
ス及びキャパシタンスによる固有周波数が、商用周波数
の1/2以下になるように設定したことを特徴とする電
力系統回路。
[Scope of Claims] A circuit to which a potential transformer is connected, which when disconnected from a power source, includes capacitive coupling between the power source or another power source and the circuit, nonlinear inductance of the potential transformer, In a power system circuit that generates a resonant abnormal voltage with a frequency of an odd fraction of the commercial frequency due to the capacitance connected to the terminal of the voltage transformer, the inductance in the saturation region of the voltage transformer and the A power system circuit characterized in that the inductance and capacitance are set such that a natural frequency due to these inductances and capacitances is 1/2 or less of a commercial frequency.
JP1214032A 1989-08-22 1989-08-22 Electric power system circuit Pending JPH0378423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214032A JPH0378423A (en) 1989-08-22 1989-08-22 Electric power system circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214032A JPH0378423A (en) 1989-08-22 1989-08-22 Electric power system circuit

Publications (1)

Publication Number Publication Date
JPH0378423A true JPH0378423A (en) 1991-04-03

Family

ID=16649147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214032A Pending JPH0378423A (en) 1989-08-22 1989-08-22 Electric power system circuit

Country Status (1)

Country Link
JP (1) JPH0378423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053334A (en) * 2006-08-23 2008-03-06 Kansai Denki Hoan Kyokai Voltage transformer for gage, electric facility using the same, high pressure load switching box, and voltage/current transformer for gage
JP2014017938A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Ferro-resonance arrester and power substation using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053334A (en) * 2006-08-23 2008-03-06 Kansai Denki Hoan Kyokai Voltage transformer for gage, electric facility using the same, high pressure load switching box, and voltage/current transformer for gage
JP4615490B2 (en) * 2006-08-23 2011-01-19 財団法人 関西電気保安協会 Instrument transformer and electrical equipment, high-voltage load switch and instrument transformer
JP2014017938A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Ferro-resonance arrester and power substation using the same

Similar Documents

Publication Publication Date Title
Piasecki et al. Mitigating ferroresonance in voltage transformers in ungrounded MV networks
Hope Adaptive ground fault protection schemes for turbo-generator based on third harmonic voltages
Abu Bakar et al. A review of ferroresonance in capacitive voltage transformer
US5508623A (en) Apparatus and method to identify harmonic producing loads
Li et al. A parameter identification technique for metal-oxide surge arrester models
Sanati et al. Avoid current transformer saturation using adjustable switched resistor demagnetization method
Firouzi et al. THD reduction of PCC voltage by using bridge‐type fault current limiter
Mak Propagation of transients in a distribution network
Saied A study on the inrush current phenomena in transformer substations
Corrodi et al. Influence of system transients on the residual flux of an unloaded transformer
De et al. A study on the impact of low-amplitude oscillatory switching transients on grid connected EHV transformer windings in a longitudinal power supply system
McCoy et al. Characteristics and measurements of capacitor switching at medium voltage distribution level
Khan et al. Analysis of ferroresonance suppression and transient response performances for various ferroresonance suppression circuits in capacitive voltage transformers
JPH0378423A (en) Electric power system circuit
Solovev et al. Study of transients in measuring circuits for negative sequence currents based on using rogowski coils
Mattei et al. Response of power system protective relays to solar and HEMP MHD-E3 GIC
Xukai et al. Study on ferroresonance due to electromagnetic PT in ungrounded neutral system
Ito et al. Instability of DC arc in SF/sub 6/circuit breaker
Wu et al. A novel protection scheme for VSC‐HVDC transmission lines based on current integral autocorrelation
Belkhayat et al. Transients in Power Systems
Moses et al. Modeling and analysis of the suppression of ferroresonance in nonlinear three-phase three-leg transformers
JPH044814B2 (en)
CN109921404A (en) A kind of full compensation device of controllable current source earth current and method
Wang et al. Frequency response analysis of a Rogowski coil transducer for railgun pulse current measurement
Lu et al. A novel insulation monitoring technique for converter transformers using common-mode characteristic harmonics of VSCs