JPH0378302A - High frequency acceleration cavity - Google Patents

High frequency acceleration cavity

Info

Publication number
JPH0378302A
JPH0378302A JP21403589A JP21403589A JPH0378302A JP H0378302 A JPH0378302 A JP H0378302A JP 21403589 A JP21403589 A JP 21403589A JP 21403589 A JP21403589 A JP 21403589A JP H0378302 A JPH0378302 A JP H0378302A
Authority
JP
Japan
Prior art keywords
flexible
cooling water
connection body
flexible connection
side plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21403589A
Other languages
Japanese (ja)
Inventor
Yoshio Tanabe
義雄 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21403589A priority Critical patent/JPH0378302A/en
Publication of JPH0378302A publication Critical patent/JPH0378302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To suppress the temperature rise of a flexible connection body and to attain the input of large power by providing the entrance and exit of cooling water for permitting cooling water to flow into an area surrounded by means of the flexible connection body and a flexible board. CONSTITUTION:The outer peripheries of a guide flange 10 and an acceleration electrode 3a are welded through the flexible board 21. The cooling water entrance 22 and the cooling water exit 23 are provided in space surrounded by the flexible connection body 9 and the flexible board 21 and cooling water is permitted to flow. Thus, the flexible connection body 9 can directly be cooled, the temperature rise of the flexible connection body 9 is suppressed low and the input of large power is attained by permitting cooling water to flow into space surrounded by the flexible connection body 9 and the flexible board 21. Since the flexible board 21 has flexibility, a clearance DELTA between the acceleration electrodes 3a snd 3b becomes variable and a resonance frequency can be adjusted.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超LSI微細加工等に用いられる加速器に使
用される高周波加速空胴に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high frequency acceleration cavity used in an accelerator used in VLSI microfabrication and the like.

(従来の技術) 加速器は電子・陽子・イオンなどのビームを高エネルギ
ー状態に加速するためのものであり、磁界を作用させて
ビームの軌道を曲げるときに放射される放射光(SOR
光といわれる)が超LSI微細加工(リソグラフィ)な
ど新しい分野に応用されようとしている。
(Prior technology) Accelerators are used to accelerate beams of electrons, protons, ions, etc. to high energy states, and they emit synchrotron radiation (SOR) when bending the beam's trajectory by applying a magnetic field.
Light (also called light) is about to be applied to new fields such as ultra-LSI microfabrication (lithography).

加速器には、電子の加速やSOR光で失われるエネルギ
ー補給を行うために高周波エネルギーを電子に供給する
高周波加速空胴が設けられている。
The accelerator is provided with a high-frequency acceleration cavity that supplies high-frequency energy to electrons in order to accelerate the electrons and replenish energy lost due to SOR light.

高周波加速空胴には種々の形°式や共振周波数のものが
あるが、ここでは半共軸型加速空胴を例にとって説明す
る。
Although there are various types and resonance frequencies of high-frequency acceleration cavities, a semi-coaxial acceleration cavity will be explained here as an example.

第2図は従来の高周波加速空胴の一例で、1は外筒、2
は側板、3a、3bは側板2を貫通し、所定の空隙Δを
存して軸方向に直列配置された一対の加速電極である。
Figure 2 shows an example of a conventional high-frequency acceleration cavity, where 1 is an outer cylinder and 2 is an example of a conventional high-frequency acceleration cavity.
is a side plate, and 3a and 3b are a pair of accelerating electrodes that penetrate the side plate 2 and are arranged in series in the axial direction with a predetermined gap Δ.

9は可撓性接続体であり、電極3aは可撓性接続体9を
介して側板2に接続され、電極3bは側板2に直接固定
される。
Reference numeral 9 denotes a flexible connector, the electrode 3a is connected to the side plate 2 via the flexible connector 9, and the electrode 3b is directly fixed to the side plate 2.

外筒1には空胴内に高周波エネルギーを供給するための
アンテナ4が装着されており、図示しない高周波電源に
接続されている。また5は空胴の共振周波数を調整する
チューナーである。空胴内は加速電極3a、3bに接続
されるビームダクト6と同様1O−9Torr以上の高
真空に保持される。そのために各部材の接合面にはガス
ケット8が装着されている。
An antenna 4 for supplying high frequency energy into the cavity is attached to the outer cylinder 1, and is connected to a high frequency power source (not shown). Further, 5 is a tuner for adjusting the resonance frequency of the cavity. The inside of the cavity is maintained at a high vacuum of 10-9 Torr or more, similar to the beam duct 6 connected to the accelerating electrodes 3a and 3b. For this purpose, a gasket 8 is attached to the joining surface of each member.

の整数倍である。is an integer multiple of

ここでCは空胴の静電容量、Lはインダクタンスであり
、Cは一対の加速電極3a、3bの隙間Δで定まる。し
かし共振周波数が設計値通りになるように製作する事は
難しく、かつ運転時の温度上昇や、外圧による変形等で
も変化する。この様な要因による共振周波数のずれを調
整するためにチューナー5が設けられているわけで、チ
ューナー5は挿入するとLが小となって共振周波数が上
がり、引抜くと共振周波数は下がる。
Here, C is the capacitance of the cavity, L is the inductance, and C is determined by the gap Δ between the pair of accelerating electrodes 3a and 3b. However, it is difficult to manufacture a device so that the resonance frequency matches the designed value, and it also changes due to temperature rise during operation, deformation due to external pressure, etc. The tuner 5 is provided to adjust the deviation of the resonance frequency due to such factors. When the tuner 5 is inserted, L becomes small and the resonance frequency increases, and when the tuner 5 is removed, the resonance frequency decreases.

製作誤差がチューナー5の調整範囲内にない時は、加速
電極3a、3bの隙間Δを調整する。すなわちΔが大き
くなると静電容量Cが小さくなって共振周波数は上昇し
、Δを小さくすると共振周波数は低下する。このため可
撓性接続体9は可撓性でなければならず、かつ可撓性接
続体9は真空壁の役目もするので、加速電極3aおよび
側板2とは溶接等で完全に真空シールしなければならな
い。
When the manufacturing error is not within the adjustment range of the tuner 5, the gap Δ between the accelerating electrodes 3a and 3b is adjusted. That is, as Δ increases, the capacitance C decreases and the resonant frequency increases, and as Δ decreases, the resonant frequency decreases. For this reason, the flexible connecting body 9 must be flexible, and since the flexible connecting body 9 also serves as a vacuum wall, it must be completely vacuum sealed with the accelerating electrode 3a and the side plate 2 by welding or the like. There must be.

加速電極3aには調整フランジ12が取付けられ、また
側板2にはガイドフランジ10が取付けられている。こ
の2つのフランジの間隔を調整ネジ11、およびロック
ナツト13で調整することにより加速電極3a、 3b
の隙間Δを所定の値とする。なお、側板2および外筒1
には冷却のための冷却孔14が設けられている。
An adjustment flange 12 is attached to the accelerating electrode 3a, and a guide flange 10 is attached to the side plate 2. By adjusting the distance between these two flanges with the adjusting screw 11 and lock nut 13, the accelerating electrodes 3a, 3b
Let the gap Δ be a predetermined value. In addition, the side plate 2 and the outer cylinder 1
A cooling hole 14 is provided for cooling.

(発明が解決しようとする課題) この様な構成の高周波加速空胴では可撓性接続体9に必
要な可撓性を持たせるためには薄くなければならない。
(Problems to be Solved by the Invention) In a high frequency acceleration cavity having such a configuration, the flexible connector 9 must be thin in order to have the necessary flexibility.

一方、可撓性接続体9は加速電極3aから側板2へと流
れる高周波電流が通り、大きな発熱が生ずる。可撓性接
続体9の発熱は側板2と同じく冷却孔14で冷却される
が、前述のように可撓性接続体9は薄く、熱伝導面積が
とれないばかりか、冷却孔14との距離があるため大き
な温度上昇が生じてしまう。このため大きな高周波電力
を入力できず、また可撓性接続体9の異常な温度上昇に
より放出ガス量が増加して真空劣化を起す等、性能上、
信頼性の面で多々問題がある。
On the other hand, a high frequency current flowing from the accelerating electrode 3a to the side plate 2 passes through the flexible connector 9, and a large amount of heat is generated. The heat generated by the flexible connecting body 9 is cooled down by the cooling holes 14 in the same way as the side plate 2, but as mentioned above, the flexible connecting body 9 is thin and not only does not have enough heat conduction area, but also has a large distance from the cooling holes 14. This causes a large temperature rise. As a result, large high-frequency power cannot be input, and an abnormal temperature rise in the flexible connector 9 increases the amount of released gas, causing vacuum deterioration.
There are many problems with reliability.

このようなことから本発明は、従来の高周波加速空胴で
問題となる可撓性接続体の温度上昇を抑え、大電力入力
が可能な高性能で高信頼性の高周波加速空胴を提供する
ことを目的とする。
Therefore, the present invention provides a high-performance and highly reliable high-frequency acceleration cavity that suppresses the temperature rise of the flexible connecting body, which is a problem with conventional high-frequency acceleration cavities, and is capable of inputting large amounts of power. The purpose is to

[発明の構成] (課題を解決するための手段) 本発明は上記目的を達成するために、ガイドフランジ1
0と加速電極3aの外周を可撓性板21を介して溶接す
る。そして可撓性接続体9と可撓性板21とで囲まれる
空間に冷却水人口22、冷却水出口23を設けて冷却水
を流す。
[Structure of the invention] (Means for solving the problem) In order to achieve the above object, the present invention provides a guide flange 1.
0 and the outer periphery of the accelerating electrode 3a are welded together via a flexible plate 21. A cooling water outlet 22 and a cooling water outlet 23 are provided in a space surrounded by the flexible connector 9 and the flexible plate 21 to allow cooling water to flow.

(作 用) 上記のように可撓性接続体9と可撓性板21とで囲まれ
る空間に冷却水を流せば可撓性接続体9を直接冷却でき
るので、可撓性接続体9の温度上昇を低く抑えられ大電
力入力が可能となる。可撓性板21は可撓性があるので
従来例と同様に加速電極3a、3b間の隙間Δを変えら
れ、共振周波数の調整が可能である。
(Function) As described above, the flexible connecting body 9 can be directly cooled by flowing cooling water into the space surrounded by the flexible connecting body 9 and the flexible plate 21. Temperature rise can be suppressed to a low level and large power input is possible. Since the flexible plate 21 is flexible, the gap Δ between the accelerating electrodes 3a and 3b can be changed as in the conventional example, and the resonance frequency can be adjusted.

(実施例) 以下、本発明の実施例について第1図を用いて説明する
。第1図の縦断面図においては1は外筒、2は側板でそ
の外周はガスケット8を介して外筒1にボルト15で気
密に接続されている。
(Example) Hereinafter, an example of the present invention will be described using FIG. 1. In the longitudinal sectional view of FIG. 1, 1 is an outer cylinder, and 2 is a side plate, the outer periphery of which is hermetically connected to the outer cylinder 1 with a bolt 15 via a gasket 8.

側板2の内周側には加速電極3a、3bが挿入されてい
る。なお、4は空胴内に高周波エネルギーを供給するた
めのアンテナ、5は共振周波数を調整するチューナーで
ある。
Accelerating electrodes 3a and 3b are inserted into the inner peripheral side of the side plate 2. Note that 4 is an antenna for supplying high frequency energy into the cavity, and 5 is a tuner for adjusting the resonance frequency.

側板2の内側と加速電極3aの外周を可撓性接続体9を
介して完全に真空シールしている。またガイドフランジ
lOと加速電極3aの外周は可撓性板21を介して溶接
されている。可撓性接続体9と可撓性板21で囲まれた
空間に冷却水を流すための冷却水人口22と冷却水出口
23とが設けられている。
The inside of the side plate 2 and the outer periphery of the accelerating electrode 3a are completely vacuum-sealed via a flexible connector 9. Further, the guide flange lO and the outer periphery of the accelerating electrode 3a are welded via a flexible plate 21. A cooling water outlet 22 and a cooling water outlet 23 are provided for flowing cooling water into a space surrounded by the flexible connector 9 and the flexible plate 21.

次に上記のように構成された高周波加速空胴の作用を説
明する。チューナー5で調整しきれないような大きな共
振周波数のずれが生じた場合には加速電極3a、3b間
の隙間Δを変えて共振周波数のずれを補正する。Δが大
きくなると共振周波数は上昇し、逆にΔを小さくすると
共振周波数は低下する。隙間Δの調整は加速電極3aに
取付けられた調整フランジ12と側板2に取付けられた
ガイドフラン910間の間隔を調整ネジ11およびロッ
クナツト13で調整することにより行う。
Next, the operation of the high frequency acceleration cavity configured as described above will be explained. If a large shift in resonance frequency occurs that cannot be fully adjusted by the tuner 5, the gap Δ between the accelerating electrodes 3a and 3b is changed to correct the shift in resonance frequency. As Δ increases, the resonant frequency increases, and conversely, as Δ decreases, the resonant frequency decreases. The gap Δ is adjusted by adjusting the distance between the adjusting flange 12 attached to the accelerating electrode 3a and the guide flange 910 attached to the side plate 2 using the adjusting screw 11 and the lock nut 13.

ガイドフランジ10と加速電極3aの外周間に溶接され
ている可撓性板21は可撓性を有するので隙間Δの調整
を妨げず、かつ冷却通路を形成しており、冷却水を冷却
水人口22、冷却水出口23より出入させることにより
、可撓性接続体9の発熱を効率よく除去できる。なお、
可撓性板21には、可撓性接続体9と異なり高周波電流
は流れないので発熱はなく、かつ材料は非導電性のもの
でも構わない。
The flexible plate 21 welded between the guide flange 10 and the outer periphery of the accelerating electrode 3a is flexible, so it does not interfere with the adjustment of the gap Δ, and forms a cooling passage, allowing the cooling water to flow through the cooling water population. 22. By letting the cooling water enter and exit through the cooling water outlet 23, heat generated by the flexible connector 9 can be efficiently removed. In addition,
Unlike the flexible connector 9, no high-frequency current flows through the flexible plate 21, so no heat is generated, and the material may be non-conductive.

[発明の効果] 以上説明したように本発明によれば、可撓性接続体9を
直接効率よく水冷却ができるので可撓性接続体9の温度
上昇に起因する入力電力の限界を大幅に向上でき、大電
力入力が可能となる。また異常発熱に伴う放出ガス量の
増大も抑えられ、高性能の高周波加速空胴を提供できる
[Effects of the Invention] As explained above, according to the present invention, the flexible connecting body 9 can be directly and efficiently cooled with water, so the limit of input power due to the temperature rise of the flexible connecting body 9 can be greatly reduced. This enables high power input. Furthermore, an increase in the amount of gas released due to abnormal heat generation is suppressed, and a high-performance high-frequency acceleration cavity can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の加速器用高周波加速空胴の一実施例を
示す部分破断立面図、第2図は従来の高周波加速空胴を
示す断面図である。
FIG. 1 is a partially cutaway elevational view showing an embodiment of a high frequency acceleration cavity for an accelerator according to the present invention, and FIG. 2 is a sectional view showing a conventional high frequency acceleration cavity.

Claims (1)

【特許請求の範囲】[Claims]  外筒と、この外筒の両開口端に取付けられた側板と、
この側板を貫通し所定の空隙を存して軸方向に直列配置
された一対の加速電極と、この加速電極の外周部と前記
側板の内周部とを電気接続し真空境界となる可撓性接続
体と、前記側板に取付けられたガイドフランジと加速電
極の外周部とを接続する可撓性板から成り、可撓性接続
体と可撓性板で囲まれた領域に冷却水を流すための冷却
水入口と出口とを備えたことを特徴とする高周波加速空
胴。
an outer cylinder; side plates attached to both open ends of the outer cylinder;
A pair of accelerating electrodes that penetrate this side plate and are arranged in series in the axial direction with a predetermined gap, and a flexible electrode that electrically connects the outer periphery of this accelerating electrode and the inner periphery of the side plate to form a vacuum boundary. It consists of a connecting body, a flexible plate that connects the guide flange attached to the side plate, and the outer periphery of the accelerating electrode, and for flowing cooling water into an area surrounded by the flexible connecting body and the flexible plate. A high frequency acceleration cavity characterized by having a cooling water inlet and an outlet.
JP21403589A 1989-08-22 1989-08-22 High frequency acceleration cavity Pending JPH0378302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21403589A JPH0378302A (en) 1989-08-22 1989-08-22 High frequency acceleration cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21403589A JPH0378302A (en) 1989-08-22 1989-08-22 High frequency acceleration cavity

Publications (1)

Publication Number Publication Date
JPH0378302A true JPH0378302A (en) 1991-04-03

Family

ID=16649199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21403589A Pending JPH0378302A (en) 1989-08-22 1989-08-22 High frequency acceleration cavity

Country Status (1)

Country Link
JP (1) JPH0378302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124074A1 (en) * 2010-04-09 2011-10-13 长飞光纤光缆有限公司 Cylindrical plasma resonant cavity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124074A1 (en) * 2010-04-09 2011-10-13 长飞光纤光缆有限公司 Cylindrical plasma resonant cavity

Similar Documents

Publication Publication Date Title
US5811943A (en) Hollow-beam microwave linear accelerator
US7423381B2 (en) Particle accelerator and methods therefor
US3169206A (en) High frequency tube method and apparatus
JP4647166B2 (en) Linear accelerator
KR102568214B1 (en) Heat dissipation in vacuum
JPH0378302A (en) High frequency acceleration cavity
JP4636468B2 (en) Drift tube accelerator for ion packet acceleration
JP2005050646A (en) High-frequency electron gun
JP2519293B2 (en) High-frequency acceleration cavity for accelerator
JP2567892B2 (en) Plasma processing device
GB2277195A (en) Electron beam tube arrangements
US3284660A (en) High frequency electron discharge device
CN212677436U (en) Charged particle acceleration device
JPH0532960Y2 (en)
Batchelor Microwave undulator
JPH01264200A (en) Standing wave linear accelerator
JP2610311B2 (en) Multi-link high-frequency accelerating cavity
Zhang et al. Study of a novel compact standing wave RF linac
JPH04162400A (en) High frequency accelerating cavity
JPH03179698A (en) High frequency accelerating cavity
Zaplatin et al. Advanced RF Cavity Design for COSY SC Linac
JPS63264898A (en) High frequency accelerating cavity for accelerator
JPH0240900A (en) Antenna for high frequency accelerating cavity
JP2000156299A (en) High-frequency acceleration cavity, synchrotron, corpuscular beam curing device and radiant-ray generation device
JPH0210633A (en) Microwave tube