JPH037783Y2 - - Google Patents

Info

Publication number
JPH037783Y2
JPH037783Y2 JP1983054661U JP5466183U JPH037783Y2 JP H037783 Y2 JPH037783 Y2 JP H037783Y2 JP 1983054661 U JP1983054661 U JP 1983054661U JP 5466183 U JP5466183 U JP 5466183U JP H037783 Y2 JPH037783 Y2 JP H037783Y2
Authority
JP
Japan
Prior art keywords
signal
vortex
phase
flow rate
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983054661U
Other languages
Japanese (ja)
Other versions
JPS59161033U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5466183U priority Critical patent/JPS59161033U/en
Publication of JPS59161033U publication Critical patent/JPS59161033U/en
Application granted granted Critical
Publication of JPH037783Y2 publication Critical patent/JPH037783Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は超音波を利用して被測定流体の流量又
は流速を測定する装置、特に、大口径の流路にお
ける流量又は流速を測定するのに好適な装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the flow rate or flow velocity of a fluid to be measured using ultrasonic waves, and particularly to a device suitable for measuring the flow rate or flow velocity in a large-diameter flow path.

周知の如く流体中に柱状渦発生体を挿入する
と、該渦発生体の両側面で流れが剥離し、該渦発
生体の下流側に交互に規則的な渦即ちカルマン渦
が発生する。このカルマン渦の生成数が流体の流
速又は流量に比例する処からカルマン渦の検出に
より流量又は流速を正確に測定することができ
る。
As is well known, when a columnar vortex generator is inserted into a fluid, the flow separates on both sides of the vortex generator, and regular vortices, that is, Karman vortices, are generated alternately on the downstream side of the vortex generator. Since the number of Karman vortices generated is proportional to the flow velocity or flow rate of the fluid, the flow rate or flow velocity can be accurately measured by detecting the Karman vortices.

上述のごときカルマン渦の生成数を計測して被
測定流体の流量又は流速を測定する装置として、
本出願人は、先に、第1図に示すごとき装置を提
案した(実公昭57−25141号公報参照)。すなわ
ち、第1図は、本出願人が先に提案した流量又は
流速測定装置を説明するための図であるが、図
中、1は流路、2は渦発生体、3は送波用振動
子、4は受波用振動子、5は発振器、6はフエイ
ズシフター、7は位相比較器、8はバンドバスフ
イルター、9はローバスフイルター、10は増巾
器、11は出力ターミナル、12は増巾器を示
し、次のごとく動作する。
As a device for measuring the number of Karman vortices generated as described above and measuring the flow rate or flow velocity of the fluid to be measured,
The present applicant previously proposed a device as shown in FIG. 1 (see Japanese Utility Model Publication No. 57-25141). That is, FIG. 1 is a diagram for explaining the flow rate or flow velocity measurement device previously proposed by the present applicant. In the figure, 1 is a flow path, 2 is a vortex generator, and 3 is a vibration for transmitting waves. 4 is a receiving oscillator, 5 is an oscillator, 6 is a phase shifter, 7 is a phase comparator, 8 is a bandpass filter, 9 is a low-pass filter, 10 is an amplifier, 11 is an output terminal, 12 indicates an amplifier and operates as follows.

先ず、発振器5が送波用振動子3の固有振動数
に一致した周波数の信号を発振し、該出力信号に
より送波用振動子3を励振させ所定の超音波信号
を発信せしめると共に、フエイズシフター6にも
前記信号を入力させる。他方、流路を伝播した超
音波信号は受波用振動子4によつて受波される
が、この超音波信号は流体中に生じているカルマ
ン渦により位相変調されている。今、増巾器12
を通過した後の受波用振動子4の出力信号波の位
相をφ2、該出力信号の平均位相をφ′2、カルマン
渦によつて生じた変動位相分を±△φとすると、
前記出力信号の位相は、φ2=φ′2±△φでありこ
れが位相比較器7の第1の入力端7aに印加され
る。この、位相比較器7の第2入力端7bにはフ
エイズシフター6を介して位相φ1なる信号が入
力されているので、該位相比較器7の出力端には
その位相差φ1−φ2に基づく信号が出力され、該
出力のうちφ1−φ′2に基づく直流信号成分のみが
ローパスフイルター9を介してフエイズシフター
6に入力されると共に、バンドパスフイルター8
からはカルマン渦による変動位相分±△φに基づ
くカルマン渦信号が得られ、出力ターミナル11
からの出力により流体の流量又は流速を測定する
ことができる。
First, the oscillator 5 oscillates a signal with a frequency matching the natural frequency of the wave transmitting vibrator 3, and the output signal excites the wave transmitting vibrator 3 to transmit a predetermined ultrasonic signal. The signal is also input to the shifter 6. On the other hand, the ultrasonic signal propagated through the flow path is received by the wave receiving transducer 4, but this ultrasonic signal is phase-modulated by the Karman vortex generated in the fluid. Now, the amplifier 12
Assuming that the phase of the output signal wave of the receiving transducer 4 after passing through is φ 2 , the average phase of the output signal is φ' 2 , and the phase fluctuation caused by the Karman vortex is ±△φ,
The phase of the output signal is φ 2 =φ' 2 ±Δφ, which is applied to the first input terminal 7a of the phase comparator 7. Since the second input terminal 7b of the phase comparator 7 receives a signal having a phase of φ 1 via the phase shifter 6, the output terminal of the phase comparator 7 receives the phase difference φ 1 −φ. 2 is output, and of the output, only the DC signal component based on φ 1 −φ′ 2 is input to the phase shifter 6 via the low-pass filter 9, and is also input to the band-pass filter 8.
A Karman vortex signal based on the fluctuation phase component ±△φ due to the Karman vortex is obtained from the output terminal 11.
The output from can measure the flow rate or velocity of the fluid.

而して、上記流量計によると、ローパスフイル
ター9からの出力即ちφ1−φ′2なる位相差に基づ
く直流信号成分はフエイズシフター6に帰環さ
れ、且つその信号により該フエイズシフター6の
位相量が制御される結果、位相比較器7の作動状
態を、その動作範囲の最適領域に略安定させるこ
とができ、従つて、位相差φ1−φ′2の流体温度や
その他の物理的条件等による変化を自動補正する
のでカルマン渦信号検出が全く上記外乱の影響を
受けず常に正確な測定が可能である。
According to the above-mentioned flowmeter, the output from the low-pass filter 9, that is, the DC signal component based on the phase difference φ 1 −φ' 2 is returned to the phase shifter 6, and the signal is transmitted to the phase shifter 6. As a result of controlling the phase amount of Since changes due to physical conditions, etc. are automatically corrected, Karman vortex signal detection is not affected by the above-mentioned disturbances, and accurate measurement is always possible.

上述のように、本出願人が先に提案した流量計
は、流体中のカルマン渦による位相変調分のみを
検出すると共に、位相比較器の動作状態を常に最
適となるよう自動補正するので正確であるばかり
か、周波数変調等を利用して測定する方式と比較
して遥かに高い出力が得られ、又、SN比も大で
あり、且つ簡素化された構成で高精度の測定がで
きる等の利点を有するものであるが、超音波発振
器を最も効率よく駆動するため、前記のごとく超
音波の発振周波数は振動子の固有振動数で駆動さ
れる。従つて、渦変動に伴なう検出可能な位相範
囲は限定され超音波面路上における渦速度成分が
超音波の1波長以内であることである。従つて、
相似形状の渦流量計において大口径になるに従つ
て波長を長く従つて超音波の発振周波数を低くし
なければならない。しかし、振動子をこのような
低周数で駆動すると効率が極度に低くなるので大
電力の発振器が必要となり効果的でない。
As mentioned above, the flowmeter previously proposed by the present applicant is accurate because it detects only the phase modulation component caused by the Karman vortex in the fluid and automatically corrects the operating state of the phase comparator to always be optimal. Not only that, but compared to measurement methods that use frequency modulation, it provides much higher output, has a higher signal-to-noise ratio, and can perform highly accurate measurements with a simplified configuration. Although it has advantages, in order to drive the ultrasonic oscillator most efficiently, the oscillation frequency of the ultrasonic wave is driven at the natural frequency of the vibrator as described above. Therefore, the detectable phase range due to vortex fluctuations is limited, and the vortex velocity component on the ultrasonic surface is within one wavelength of the ultrasonic wave. Therefore,
In vortex flowmeters with similar shapes, as the diameter increases, the wavelength must become longer and the oscillation frequency of the ultrasonic waves must be lowered. However, driving the vibrator at such a low frequency results in extremely low efficiency, requiring a high-power oscillator, which is not effective.

本考案は、上述のごとき実情に鑑みなされたも
ので、送受波振動子3,4を最も効率よく駆動す
る振動子の固有振動数で駆動し、これを搬送波と
し渦信号の位相検出は別に設けられた低周波発振
出力を変調波とした振幅変調(以下AM変調と呼
ぶ)信号とし、渦の検出をAM変調信号に含まれ
る低周波信号による位相検波により行ない低周波
発振周波数を選択することにより固有振動数に限
定された従来方式に比べ実質的に広範囲の流量検
出を可能とすることを目的とするものである。
The present invention was developed in view of the above-mentioned circumstances. The transmitter/receiver oscillators 3 and 4 are driven at the natural frequency of the oscillator that drives them most efficiently, and this is used as a carrier wave. Phase detection of the vortex signal is separately provided. The low frequency oscillation output is used as an amplitude modulation (hereinafter referred to as AM modulation) signal as a modulating wave, and the vortex is detected by phase detection using the low frequency signal included in the AM modulation signal, and the low frequency oscillation frequency is selected. The purpose of this method is to enable flow rate detection over a substantially wider range than conventional methods which are limited to natural frequencies.

第2図は、本考案のブロツク図をしめすもの
で、第1図の構成要素と同一のものは第1図の場
合と同一の符号を付しその説明を省く。第2図に
おいて、13は低周波発振器でカルマン渦の単位
時間当りの数に比べ10〜50倍の範囲で任意に可変
でき、発振器5の周波数に比べて充分低いもので
ある。第3図のa,bは発振器5および低周波発
振器13の出力波形を概念的に図示したものであ
る。cは発振器5の出力aを搬送波とし、低周波
発振器13の出力bを変調波としてAM変調する
AM変調器14の出力波形で、送波用振動子3に
印加される。AM変調波cは送波用振動子3から
受波用振動子4に伝播され、流路1内に渦発生体
2より流出する渦により位相変調される。この受
波用振動子4の位相変調されたAM変調波は増幅
器12により増幅後、復調器15により検波整形
され位相比較器7の一方に入力される。d,eお
よびe′の波形は復調器15内における検波信号1
1、復調信号152および整形出力された信号7
aである。位相比較器7の他方の入力信号7bは
フエイズシフター6により低周波発振器13の出
力信号bの変調波を最適な位相に偏移した矩形信
号b′である。位相比較器7、ローパスフイルタ
9、バンドパスフイルタ8、アンプ10の回路動
作はは第1図の場合と同様で出力ターミナル11
より渦信号が出力される。以上に述べたように、
本考案によれば、発振器5の出力波aは送受波用
振動子3,4の感度を低下させることのない固有
振動数で駆動するための搬送波となるもので、搬
送波そのものは渦による変調は受けても復調器1
5内のローパスフイルタ(図示せず)において消
去され、渦検出には関係はなくなり、低周波の変
調信号により位相変調された渦検出が行われるこ
とになり、周波数の低い分検出位相マージンが増
し実質的に広範囲の位相を検出するので大口径の
渦流量計にも適用することが可能となる。更に、
低周波発振周波数を任意に変更することにより適
用範囲を選択できる特徴が得られる。
FIG. 2 shows a block diagram of the present invention. Components that are the same as those in FIG. 1 are given the same reference numerals as in FIG. 1, and their explanations will be omitted. In FIG. 2, reference numeral 13 denotes a low frequency oscillator which can be arbitrarily varied within a range of 10 to 50 times the number of Karman vortices per unit time, and is sufficiently lower than the frequency of the oscillator 5. 3A and 3B conceptually illustrate the output waveforms of the oscillator 5 and the low frequency oscillator 13. c performs AM modulation using the output a of the oscillator 5 as a carrier wave and the output b of the low frequency oscillator 13 as a modulation wave.
The output waveform of the AM modulator 14 is applied to the wave transmitting vibrator 3. The AM modulated wave c is propagated from the wave transmitting vibrator 3 to the wave receiving vibrator 4, and is phase-modulated by the vortex flowing out from the vortex generator 2 into the flow path 1. The phase-modulated AM modulated wave of the wave receiving transducer 4 is amplified by the amplifier 12, then detected and shaped by the demodulator 15, and input to one side of the phase comparator 7. The waveforms of d, e and e' are the detection signal 1 in the demodulator 15.
5 1 , demodulated signal 15 2 and shaped output signal 7
It is a. The other input signal 7b of the phase comparator 7 is a rectangular signal b' obtained by shifting the modulated wave of the output signal b of the low frequency oscillator 13 to an optimum phase by the phase shifter 6. The circuit operations of the phase comparator 7, low-pass filter 9, band-pass filter 8, and amplifier 10 are the same as in the case of FIG.
A vortex signal is output. As mentioned above,
According to the present invention, the output wave a of the oscillator 5 becomes a carrier wave for driving the wave transmitting/receiving oscillators 3 and 4 at a natural frequency that does not reduce their sensitivity, and the carrier wave itself is not modulated by eddies. Demodulator 1 even if received
5 is eliminated by a low-pass filter (not shown), and it has no relation to vortex detection, and vortex detection is performed by phase modulating it with a low frequency modulation signal, and the detection phase margin increases due to the lower frequency. Since it detects phases over a substantially wide range, it can also be applied to large-diameter vortex flowmeters. Furthermore,
By arbitrarily changing the low frequency oscillation frequency, it is possible to select the applicable range.

従つて、本考案によると、高口径流路管におい
てもカルマン渦による位相変化を正確に測定する
ことができ、大流量の流体を精度よく測定するこ
とができる。
Therefore, according to the present invention, phase changes caused by Karman vortices can be accurately measured even in high-diameter flow pipes, and large flow rates of fluid can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の渦流量計の一例を示す図、第
2図は、本考案による渦流量計の一実施例を説明
するための構成図、第3図は、本考案の動作説明
をするための波形図である。 1……流路、2……渦発生体、3……送波用振
動子、4……受波用振動子、5……発振器、6…
…フエイズシフター、7……位相比較器、8……
バンドパスフイルター、9……ローパスフイルタ
ー、10……増幅器、11……出力ターミナル、
12……増幅器、13……低周波発振器、14…
…AM変調器、15……復調器。
Fig. 1 is a diagram showing an example of a conventional vortex flowmeter, Fig. 2 is a configuration diagram for explaining an embodiment of the vortex flowmeter according to the present invention, and Fig. 3 is a diagram illustrating the operation of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Channel, 2... Vortex generator, 3... Transmitting transducer, 4... Receiving transducer, 5... Oscillator, 6...
...Phase shifter, 7... Phase comparator, 8...
Band pass filter, 9...Low pass filter, 10...Amplifier, 11...Output terminal,
12...Amplifier, 13...Low frequency oscillator, 14...
...AM modulator, 15...demodulator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定流体中に挿入された渦発生体の後流側に
流路を介して対設した一対の超音波の送受波素子
を有し、前記送波素子より送波された超音波が渦
発生体によつて生成されたカルマン渦によつて受
ける位相変化を検出して被測定流体の流量又は流
速を測定する流量又は流速測定装置において、前
記送波素子を、送受波素子の固有振動数を搬送波
とし、この搬送波の周波数よりも小さく、単位時
間当りの渦の数に相当する周波数よりも充分大き
い変調波とによる振幅変調波で駆動し、受波信号
を復調し、この復調信号と前記変調波との位相差
信号によりカルマン渦を検知することを特徴とす
る流量又は流速測定装置。
A pair of ultrasonic wave transmitting/receiving elements are provided on the downstream side of the vortex generator inserted into the fluid to be measured, which are arranged opposite each other via a flow path, and the ultrasonic wave transmitted from the wave transmitting element generates a vortex. In a flow rate or flow velocity measuring device that measures the flow rate or flow velocity of a fluid to be measured by detecting a phase change caused by a Karman vortex generated by a body, the wave transmitting element is configured to adjust the natural frequency of the wave transmitting and receiving element. The received signal is demodulated, and the received signal is demodulated, and the demodulated signal and the modulated signal are A flow rate or flow rate measuring device characterized by detecting a Karman vortex by a phase difference signal with a wave.
JP5466183U 1983-04-12 1983-04-12 Flow rate or velocity measuring device Granted JPS59161033U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5466183U JPS59161033U (en) 1983-04-12 1983-04-12 Flow rate or velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5466183U JPS59161033U (en) 1983-04-12 1983-04-12 Flow rate or velocity measuring device

Publications (2)

Publication Number Publication Date
JPS59161033U JPS59161033U (en) 1984-10-29
JPH037783Y2 true JPH037783Y2 (en) 1991-02-26

Family

ID=30185004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5466183U Granted JPS59161033U (en) 1983-04-12 1983-04-12 Flow rate or velocity measuring device

Country Status (1)

Country Link
JP (1) JPS59161033U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110374A (en) * 1973-02-20 1974-10-21
JPS5557109A (en) * 1978-10-24 1980-04-26 Mitsubishi Electric Corp Phase demodulator circuit for ultrasonic detection system vortex flowmeter
JPS589026A (en) * 1981-07-09 1983-01-19 Mitsubishi Electric Corp Measuring device of flow rate or flow velocity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110374A (en) * 1973-02-20 1974-10-21
JPS5557109A (en) * 1978-10-24 1980-04-26 Mitsubishi Electric Corp Phase demodulator circuit for ultrasonic detection system vortex flowmeter
JPS589026A (en) * 1981-07-09 1983-01-19 Mitsubishi Electric Corp Measuring device of flow rate or flow velocity

Also Published As

Publication number Publication date
JPS59161033U (en) 1984-10-29

Similar Documents

Publication Publication Date Title
JP3028723B2 (en) Ultrasonic fluid flow meter
US4576047A (en) Apparatus for determining the transit time of ultrasonic pulses in a fluid
RU2186399C2 (en) Ultrasonic device measuring flow velocity
USRE28686E (en) Measurement of fluid flow rates
EP0060128B1 (en) Ultrasonic doppler flowmeter
JPH037783Y2 (en)
JPH0569192B2 (en)
GB2155635A (en) Monitoring fluid flow
JP3215847B2 (en) Flow velocity measurement method
JP2710399B2 (en) Flow measurement method
JP3235637B2 (en) Ultrasonic fluid flow meter
JP3077570B2 (en) Ultrasonic fluid flow meter
JPH0324607B2 (en)
JP3036800B2 (en) Vortex flow meter
JPS5914731Y2 (en) Flow velocity flow measuring device
JP3144177B2 (en) Vortex flow meter
JP3024312B2 (en) Vortex flow meter
JP3183133B2 (en) Vortex flow meter
JP2723291B2 (en) Ultrasonic sensor
JPH07294299A (en) Vortex flowmeter
JPS5918364Y2 (en) current meter
JP2760079B2 (en) Ultrasonic sensor
JP2991211B2 (en) Ultrasonic sensor
JPS6326731Y2 (en)
JPS6135310A (en) Vortex flowmeter