JPH0377697A - Sequestering agent for water system of boiler - Google Patents

Sequestering agent for water system of boiler

Info

Publication number
JPH0377697A
JPH0377697A JP21052389A JP21052389A JPH0377697A JP H0377697 A JPH0377697 A JP H0377697A JP 21052389 A JP21052389 A JP 21052389A JP 21052389 A JP21052389 A JP 21052389A JP H0377697 A JPH0377697 A JP H0377697A
Authority
JP
Japan
Prior art keywords
meth
boiler
terpolymer
sequestering agent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21052389A
Other languages
Japanese (ja)
Other versions
JPH0642959B2 (en
Inventor
Kenichi Ito
賢一 伊藤
Naoko Togo
藤後 直子
Hideki Takahashi
秀樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKUTOU KAGAKU KK
Original Assignee
HAKUTOU KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKUTOU KAGAKU KK filed Critical HAKUTOU KAGAKU KK
Priority to JP21052389A priority Critical patent/JPH0642959B2/en
Publication of JPH0377697A publication Critical patent/JPH0377697A/en
Publication of JPH0642959B2 publication Critical patent/JPH0642959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To prevent the formation of scale in the water system of a boiler by preparing a sequestering agent contg. a terpolymer of (meth)acrylic acid with (meth)acrylamide and itaconic acid or a specified itaconate as an effective component. CONSTITUTION:Prescribed amts. of (meth)acrylic acid, (meth)acrylamide and itaconic acid or an itaconate represented by formula I (where each of R1 and R2 is H or 1-8C alkyl) are dissolved in a solvent to about 10-60mol% total concn. to prepare a comonomer soln. A polymn. initiator is added to the soln. and mixed by stirring at about 40-120 deg.C for about 2-8hr in a flow of an inert gas to synthesize a terpolymer. A sequestering agent for the water system of a boiler is prepd. by blending the terpolymer as an effective component. The pref. wt. average mol.wt. of the terpolymer is about 1,000-100,000.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はボイラー水系におけるスケールの生成を防止し
たり、また−旦1寸着したスケールを除去するためのボ
イラー水系用イオン封鎖剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion sequestering agent for boiler water systems for preventing the formation of scale in boiler water systems and for removing scale that has once formed.

[従来の技術] ボイラー水系では給水中に含まれる溶存イオンが濃縮さ
れ、さらに150℃以上の高温にさらされるため比較的
難溶性の化合物は過飽和となりスケールとして伝熱面に
析出する。伝熱面にスケールが析出すると熱伝導率が低
下するため燃料使用量が増加したり、蒸気発生量が低下
するばかりでなく、スケール堆積により伝熱面表面の温
度が上昇し、金属材質の強度が低下することによりボイ
ラーが破裂に至る場合がある。近年、ボイラーの高性能
化により単位伝熱面あたりの蒸発量が増加する傾向にあ
り、スケール生成の傾向が増大している。
[Prior Art] In a boiler water system, dissolved ions contained in the feed water are concentrated and further exposed to high temperatures of 150° C. or higher, so relatively poorly soluble compounds become supersaturated and precipitate as scale on heat transfer surfaces. When scale is deposited on the heat transfer surface, the thermal conductivity decreases, which not only increases the amount of fuel used and reduces the amount of steam generated, but also increases the temperature of the heat transfer surface due to scale accumulation, which reduces the strength of the metal material. The boiler may explode due to a drop in the temperature. In recent years, as the performance of boilers has improved, the amount of evaporation per unit heat transfer surface has tended to increase, and the tendency for scale formation has increased.

従来はリン酸塩とアルカリを用いることによりカルシウ
ムとマグネシウムをそれぞれリン酸カルシウムや水酸化
マグネシウムの形で懸濁性固形分として不溶化させ、伝
熱面における難溶性化合物析出によるスケールトラブル
を防止し、この時発生する懸濁性固形分の沈着を防止す
るためタンニン、リグニン、スターチ等の天然高分子、
ポリ(メタ)アクリル酸、スチレンスルホン酸−マレイ
ン酸コポリマー等のアニオン性合成高分子等の分散剤を
併用する方法が採られてきた。このような処理はその作
用が缶内で固形分を発生させてスケールを防止するもの
であるから、スケール防止効果が不十分であり、また復
水系統や給水系統の腐食生成物に由来する金属成分の沈
積助走に対しては効果を示さなかった。
Conventionally, phosphates and alkalis were used to insolubilize calcium and magnesium as suspended solids in the form of calcium phosphate and magnesium hydroxide, respectively, to prevent scaling problems caused by precipitation of poorly soluble compounds on heat transfer surfaces. Natural polymers such as tannin, lignin, and starch are used to prevent the formation of suspended solids.
A method has been adopted in which dispersants such as anionic synthetic polymers such as poly(meth)acrylic acid and styrene sulfonic acid-maleic acid copolymers are used in combination. This type of treatment works by generating solids inside the can to prevent scale, so the scale prevention effect is insufficient, and metals derived from corrosion products in the condensate system and water supply system are No effect was shown on the deposition run-up of components.

有機ホスホン酸類やアニオン性合成高分子を水中のカル
シウムイオンを封鎖するのに必要な量よりもはるかに少
ない量で処理する、いわゆるスレッショルド処理はボイ
ラーのような高温水系では成功しなかった。一方、ED
TA、NTA等のキレート化剤を用いる方法はキレート
化剤が水中のカルシウム、マグネシウム、鉄等の金属イ
オンと安定なキレート化合物を形成し、可溶化するため
にスケール防止効果が優れている反面、水中の金属イオ
ンをキレート化するのに必要な量を超えてキレート化剤
を加えると、ボイラー鉄面の腐食を促進する欠点があっ
た。
So-called threshold treatments, in which organic phosphonic acids and anionic synthetic polymers are treated in amounts far lower than needed to sequester calcium ions in the water, have not been successful in high-temperature water systems such as boilers. On the other hand, ED
The method using a chelating agent such as TA or NTA has an excellent scale prevention effect because the chelating agent forms a stable chelate compound with metal ions such as calcium, magnesium, iron, etc. in water and solubilizes it. Adding a chelating agent in excess of the amount necessary to chelate metal ions in water has the disadvantage of accelerating corrosion of the boiler steel surface.

キレート化剤による腐食問題を克服するため、既存のキ
レート化剤に替えてカルボキシレート官能基を含むアニ
オン性高分子を、水中の金属イオンの封鎖剤として用い
る試みがなされている。特開昭56−2897号にはイ
タコン酸重合体を含むスケール防除剤が開示されている
。また特開昭56−20169号には75モル%のイタ
コン酸と25モル%以下の他の不飽和単量体とからなる
イタコン酸共重合体を含むスケール防除剤が開示されて
いる。このようなイタコン酸系重合体はカルシウム系ス
ケールに対するスケール防除効果は優れているが、マグ
ネシウム系スケールに対する防除効果が劣っていた。特
開昭58−84099号にはポリアクリル酸、アクリル
酸−アクリルアミドコポリマーをボイラー用イオン封鎖
剤として用いる方法が開示されている。これらのポリマ
ーは封鎖効果が不十分であるばかりでなく、添加量が不
足するとポリマー自体がカルシウムと反応してポリマー
の難溶性カルシウム塩を形成する。
To overcome the corrosion problem caused by chelating agents, attempts have been made to use anionic polymers containing carboxylate functional groups as sequestering agents for metal ions in water, instead of existing chelating agents. JP-A-56-2897 discloses a scale control agent containing an itaconic acid polymer. Further, JP-A-56-20169 discloses a scale control agent containing an itaconic acid copolymer consisting of 75 mol% itaconic acid and 25 mol% or less of other unsaturated monomers. Such itaconic acid-based polymers had an excellent scale control effect on calcium-based scale, but were poor in their control effect on magnesium-based scale. JP-A-58-84099 discloses a method of using polyacrylic acid or an acrylic acid-acrylamide copolymer as an ion sequestering agent for boilers. Not only do these polymers have an insufficient sequestering effect, but if the amount added is insufficient, the polymer itself reacts with calcium to form a poorly soluble calcium salt of the polymer.

[発明が解決しようとする課M] 本発明の課題は前記の諸I?FYgを解消し、カルシウ
ム系スケールとマグネシウム系スケールの両者は勿論の
こと、アルカリ金属を除く金属を同時に効果的に防除で
きる改良されたボイラー水系用イオン封鎖剤を提供する
ことにある0本発明者らは合成技術を駆使して各種のモ
ノエチレン性不飽和単量体の組合わせと共重合組成比を
変えた多数の共重合体を合成し、それらの分子組成とス
クール防止効果との関係を系統的に分類し、鋭意実験研
究を重ねた結果、本発明に到達したものである。
[Problem M to be solved by the invention] Is the problem of the present invention the above-mentioned problems I? An object of the present inventor is to provide an improved ion sequestering agent for boiler water systems that eliminates FYg and can effectively control both calcium scale and magnesium scale as well as metals other than alkali metals at the same time. utilized synthetic techniques to synthesize a large number of copolymers with different combinations of monoethylenically unsaturated monomers and different copolymerization composition ratios, and investigated the relationship between their molecular compositions and school prevention effects. The present invention was arrived at as a result of systematic classification and extensive experimental research.

[課題を解決する手段] 本発明のボイラー水系用イオン封鎖剤は、(メタ)アク
リル酸、(メタ)アクリルアミド及び下式、CH,−C
−0−R。
[Means for Solving the Problems] The ion sequestering agent for boiler water systems of the present invention comprises (meth)acrylic acid, (meth)acrylamide and the following formula: CH, -C
-0-R.

C1,=C C−0−R。C1,=C C-0-R.

1 (ここでR3,R2はそれぞれ独立に水素又は炭素数l
〜8のアルキル基である。)で示されるイタコン酸類か
らなる三元共重合体を有効成分として構成する。より好
ましい構成としては、(メタ)アクリル酸の20〜80
モル%、(メタ)アクリルアミドの5〜65モル%、及
び下式 %式% (ここでR,、R,はそれぞれ独立に水素又は炭素数1
〜8のアルキル基である。)で示されるイタコン酸の5
〜40モル%、又はイタコン酸エステルの5〜30モル
%からなり、かつ第2図の三角図表のABCDEF、又
はA’BCDEF’により囲まれた区域内の組成比から
選択する三元共重合体を有効成分として構成する。
1 (Here, R3 and R2 are each independently hydrogen or carbon number l
-8 alkyl group. ) is composed of a terpolymer consisting of itaconic acids shown as the active ingredient. A more preferable configuration is 20 to 80 of (meth)acrylic acid.
mol%, 5 to 65 mol% of (meth)acrylamide, and the following formula% (where R, , R, are each independently hydrogen or carbon number 1
-8 alkyl group. ) itaconic acid 5
~40 mol%, or 5 to 30 mol% of itaconic acid ester, and a terpolymer selected from the composition ratio within the area surrounded by ABCDEF or A'BCDEF' in the triangular diagram of FIG. constitutes as an active ingredient.

ここで(メタ)アクリル酸とはアクリル酸、メタアクリ
ル酸のいずれか又は両方であってもよいが、好ましくは
アクリル酸である。また(メタ)アクリルアミドとはア
クリルアミド、メタクリルアミドのいずれか又は両方で
あってもよいが、好ましくはアクリルアミドである。イ
タコン酸類とはイタコン酸、イタコン酸モノ又はジメチ
ルエステル、イタコン酸モノスはジエチルエステル、イ
タコン酸モノ又はジプロピルエステル、イタコン酸モノ
又はジブチルエステル、イタコン酸モノ又はジ(2−エ
チルヘキシル)エステル等があげられるが、これらは単
独、又は2種以上を組合わせて用いてもよい、第4成分
として他のモノエチレン性不飽和単量体を含む共重合体
であってもよいが、コモノマー組成比の20モル%以下
に抑えるべきである9本発明のイオン封鎖剤は公知のラ
ジカル重合法によりTA造可能である0例えば所定量の
単量体をモノマーの合計濃度が10〜60モル%になる
ように適当な溶媒に溶解したコモノマー溶液に重合開始
剤及び必要により連鎖移動剤を加えて、不活性ガスの気
流下で温度を40ないし120℃に維持しながら約2な
いし8時間撹拌部合することにより得られる。溶媒は通
常水、イソプロピルアルコール、エチルアルコール、メ
チルアルコール等の低級アルコール類及びこれらの混合
溶媒が用いられる0重合開始剤としては過硫酸塩(ナト
リウム塩、カリウム塩、アンモニウム塩を含む)、過酸
化水素、t−ブチルヒドロペルオキシド、過酸化ベンゾ
イル等の過酸化物、各種のアゾ化合物(例えば2.2′
−アゾビス(2−アミジノプロパン)ハイドロクロライ
ド)等が使用可能であり、又レドックス触媒系を用いて
もよい0重合開始剤の最適な量は、開始剤の種類によっ
て異なるが通常モノマーの合計量に対して0.1〜10
gを用いる。
Here, (meth)acrylic acid may be acrylic acid, methacrylic acid, or both, but acrylic acid is preferable. Further, (meth)acrylamide may be either acrylamide or methacrylamide or both, but acrylamide is preferable. Itaconic acids include itaconic acid, itaconic acid mono- or dimethyl ester, and itaconic acid monos include diethyl ester, itaconic acid mono- or dipropyl ester, itaconic acid mono- or dibutyl ester, itaconic acid mono- or di(2-ethylhexyl) ester, etc. However, these may be used alone or in combination of two or more, and may be a copolymer containing another monoethylenically unsaturated monomer as the fourth component, but the comonomer composition ratio The ion sequestering agent of the present invention can be produced by a known radical polymerization method.For example, a predetermined amount of monomers is added to a total monomer concentration of 10 to 60 mol%. A polymerization initiator and, if necessary, a chain transfer agent are added to a comonomer solution dissolved in a suitable solvent, and the mixture is stirred for about 2 to 8 hours while maintaining the temperature at 40 to 120°C under a stream of inert gas. It is obtained by Solvents are usually water, lower alcohols such as isopropyl alcohol, ethyl alcohol, methyl alcohol, and mixed solvents of these. Polymerization initiators include persulfates (including sodium salts, potassium salts, and ammonium salts), peroxides. Hydrogen, peroxides such as t-butyl hydroperoxide and benzoyl peroxide, and various azo compounds (e.g. 2.2'
-Azobis(2-amidinopropane) hydrochloride) etc. can be used, and a redox catalyst system may also be used.The optimal amount of polymerization initiator varies depending on the type of initiator, but is usually based on the total amount of monomers. 0.1 to 10
Use g.

共重合体の重量平均分子量は1,000〜100.00
0の範囲であることが好ましく、より好ましくはz、o
o。
The weight average molecular weight of the copolymer is 1,000 to 100.00
It is preferably in the range of 0, more preferably z, o
o.

〜50,000の範囲である。ここで重量平均分子量は
ゲルバーミエイションクロマトグラフ<a p c >
の手法により、分子量既知のポリエチレングリコールを
標準として測定される。
~50,000. Here, the weight average molecular weight is determined by gel permeation chromatography <apc>
It is measured using polyethylene glycol of known molecular weight as a standard.

共重合体の分子量は連鎖移動剤を用いて、その使用量を
調節することにより制御可能である。連鎖移動剤として
は公知の化合物、例えばチオグリコール酸及びそのエス
テル類、β−メルカプトプロピオン酸及びそのエステル
類、アルキルメルカプタン類等のメルカプト化合物、(
メタ)アリルスルホン酸、(メタ)アリルアルコール等
のアリル化合物、次亜リン酸塩、重亜硫酸塩等が用いら
れる。
The molecular weight of the copolymer can be controlled by adjusting the amount of a chain transfer agent used. As chain transfer agents, known compounds such as thioglycolic acid and its esters, β-mercaptopropionic acid and its esters, mercapto compounds such as alkylmercaptans, (
Allyl compounds such as meth)allylsulfonic acid and (meth)allyl alcohol, hypophosphites, bisulfites, and the like are used.

共重合体の分子量を制御するもう一つの方法は、コモノ
マー溶液及び重合開始剤溶液をそれぞれ別々に温度を一
定に維持した反応ベッセル中に一定流量で連続的に供給
する方法である。この方法において分子量は開始剤及び
モノマーの添加速度、反応温度、開始剤の濃度及びコモ
ノマー溶液濃度等の条件を変えることにより調節可能で
ある。
Another method for controlling the molecular weight of the copolymer is to continuously feed a comonomer solution and a polymerization initiator solution separately at a constant flow rate into a reaction vessel whose temperature is maintained constant. In this method, the molecular weight can be adjusted by changing conditions such as the rate of initiator and monomer addition, reaction temperature, initiator concentration, and comonomer solution concentration.

前記の如き、公知のラジカル重合法により製造された(
メタ)アクリル酸、(メタ)アクリルアミド及びイタコ
ン酸類からなる三元共重合体は、線状のランダム重合体
である。
Produced by the known radical polymerization method as described above (
The terpolymer consisting of meth)acrylic acid, (meth)acrylamide and itaconic acids is a linear random polymer.

本発明のイオン封鎖剤の好ましい添加量は、有効成分で
ある三元共重合体を被処理水中に含まれる金属成分1 
ppmに対して、2〜301)911の範囲であり、よ
り好ましくは4〜20ppe+の範囲である。
A preferable amount of the ion sequestering agent of the present invention is to add the terpolymer as an active ingredient to 1 part of the metal component contained in the water to be treated.
The range is from 2 to 301)911 ppm, and more preferably from 4 to 20ppe+.

ここで金属成分とはカルシウム、マグネシウム、鉄、亜
鉛、銅、マンガン、アルミニウム等のボイラー水中にイ
オン性又は微細懸濁粒子状(酸化物、水酸化物、各種塩
類等)で存在するアルカリ金属を除く金属成分を示す。
Here, metal components refer to alkali metals such as calcium, magnesium, iron, zinc, copper, manganese, aluminum, etc. that exist in the form of ionic or finely suspended particles (oxides, hydroxides, various salts, etc.) in boiler water. Indicates the metal components to be excluded.

本発明のイオン封鎖剤は水中に存在する金属イオンをイ
オン封鎖する作用だけでなく、ボイラー鉄面を腐食する
ことなく、既にボイラー内に付着しているスケールを除
去する作用をも示す0本発明のイオン封鎖剤は過剰注入
によってもボイラー鉄面の腐食を促進しない0本発明の
イオン封鎖剤は高分子電解質であり、イオン封鎖作用だ
けでなく良好な分散作用を示すため、イオン封鎖効果が
十分でない場合でも生成した沈殿粒子を分散状態に保持
するのに好適である。
The ion sequestering agent of the present invention not only has the effect of sequestering metal ions present in water, but also has the effect of removing scale that has already adhered inside the boiler without corroding the steel surface of the boiler. The ion sequestering agent of the present invention does not promote corrosion of boiler iron surfaces even when injected in excess.The ion sequestering agent of the present invention is a polymer electrolyte and exhibits not only an ion sequestering effect but also a good dispersion effect, so the ion sequestering effect is sufficient. It is suitable for maintaining the generated precipitated particles in a dispersed state even when the particles are not dispersed.

本発明のイオン封鎖剤は通常苛性ソーダ、苛性カリウム
等のアルカリ金属水酸化物、アンモニア、各種アミン類
等のアルカリ化合物により中和した形で用いられる。中
和に用いるアルカリの量はボイラー給水及び缶水のpH
が7〜12の範囲内、より好ましくは9〜12になるよ
うに調節するのが好適である。
The ion sequestering agent of the present invention is usually used in a neutralized form with an alkali metal hydroxide such as caustic soda or caustic potassium, or an alkali compound such as ammonia or various amines. The amount of alkali used for neutralization is the pH of boiler feed water and canned water.
is preferably adjusted to be within the range of 7 to 12, more preferably 9 to 12.

本発明のイオン封鎖剤は脱酸素剤、復水系中和剤、復水
系被膜性防蝕剤、分散剤、消泡剤等の公知のボイラー処
理剤と併用して用いることができる。さらに本発明のイ
オン封鎖剤と脱酸素剤とを併用した場合、脱酸素剤単独
で処理した場合と比較して、ボイラー鉄面の腐食が大巾
に減少することを見い出した。このような脱酸素剤の例
としてヒドラジン、亜硫酸塩、カルボヒドラジド、ポリ
アクリル酸ヒドラジド、エリソルビン酸、L−アスコル
ビン酸、ジエチルヒドロキシルアミン等が挙げられる。
The ion sequestering agent of the present invention can be used in combination with known boiler treatment agents such as oxygen scavengers, condensate-based neutralizing agents, condensate-based film-forming corrosion inhibitors, dispersants, and antifoaming agents. Furthermore, it has been found that when the ion sequestering agent of the present invention and an oxygen scavenger are used in combination, the corrosion of the boiler steel surface is significantly reduced compared to when the oxygen scavenger is used alone. Examples of such oxygen scavengers include hydrazine, sulfites, carbohydrazides, polyacrylic acid hydrazide, erythorbic acid, L-ascorbic acid, diethylhydroxylamine, and the like.

[実施例] 実施例1 温度計、撹拌機、窒素ガス導入管および還流冷却器を備
えたガラス製反応容器に水332.8gを仕込み、アク
リル酸22.5Lアクリルアミド45gおよびイタコン
酸ジメチル22.5.を加えて調製したコモノマー溶液
を、窒素ガス気流下で55℃に加熱した。
[Example] Example 1 332.8 g of water was charged into a glass reaction vessel equipped with a thermometer, a stirrer, a nitrogen gas inlet tube, and a reflux condenser, and 22.5 L of acrylic acid, 45 g of acrylamide, and 22.5 g of dimethyl itaconate were added. .. The comonomer solution prepared by adding was heated to 55° C. under a nitrogen gas stream.

β−メルカプトプロピオン酸2.25.および過硫酸ナ
トリウム5.02を水15gに溶解した溶液を速やかに
加えた後、反応熱を除去しながら55℃を維持した0反
応熱除去期間の終了後、さらに加熱により55℃を30
分間維持した後、80℃で2時間加熱して反応を完結さ
せた0反応物に50%苛性ソーダss、ayを加えた後
、水を加えてポリマー活性分濃度16%の水溶液562
yを得た。この溶液のpHは13.8.25℃における
ブルックフィールド粘度は15cpであった。
β-mercaptopropionic acid 2.25. After quickly adding a solution of sodium persulfate 5.02 dissolved in 15 g of water, the temperature was maintained at 55°C while removing the reaction heat.
50% caustic soda ss, ay was added to the 0 reactant, which was then heated at 80°C for 2 hours to complete the reaction, and then water was added to form an aqueous solution 562 with a polymer active content concentration of 16%.
I got y. The pH of this solution was 13. The Brookfield viscosity at 25°C was 15 cp.

実施例2 実施例1と同じガラス製反応容器に水160gを仕込み
、アクリルfi12.5g、アクリルアミド259及び
イタコン酸tz、sgを加えて調製したコモノマー溶液
にβ−メルカプトプロピオン酸1.0gおよび過硫酸ナ
トリウム3gを水20gに溶解した溶液を加え、窒素ガ
ス気流下で60℃に加熱した0反応の初期段階では反応
熱を除去しながら次いで加熱により60℃を2時間維持
し、さらに80℃で1時間加熱して反応を完結させた0
反応物に50%苛性ソーダ36.4.を加えた後、水を
加えてポリマー活性分濃度16%の水溶液312.5.
をを得た。この溶液のpHは12,9.25℃における
ブルックフィールド粘度は32cpであった。
Example 2 160 g of water was placed in the same glass reaction vessel as in Example 1, and 12.5 g of acrylic fi, 259 acrylamide, and itaconic acid tz, sg were added to a comonomer solution prepared, and 1.0 g of β-mercaptopropionic acid and persulfuric acid were added. A solution of 3 g of sodium dissolved in 20 g of water was added and heated to 60°C under a stream of nitrogen gas. At the initial stage of the reaction, 60°C was maintained by heating for 2 hours while removing the reaction heat, and then heated at 80°C for 1 hour. The reaction was completed by heating for 0
50% caustic soda to the reactant 36.4. was added, and then water was added to form an aqueous solution 312.5. with a polymer active ingredient concentration of 16%.
I got it. The pH of this solution was 12, and the Brookfield viscosity at 9.25°C was 32 cp.

実施例3〜8 実施例1と同様の反応容器及び方法を用いて、アクリル
酸、アクリルアミド、イタコン酸ジメチルのコモノマー
組成比、連鎖移動剤の種類(β−メルカプトプロピオン
酸、次亜リン酸ナトリウムのいずれか)および連鎖移動
剤の濃度を変えた共重合体を合成した。
Examples 3 to 8 Using the same reaction vessel and method as in Example 1, the comonomer composition ratio of acrylic acid, acrylamide, and dimethyl itaconate, and the type of chain transfer agent (β-mercaptopropionic acid, sodium hypophosphite, We synthesized copolymers with varying concentrations of either of the following) and chain transfer agents.

実施例9〜14 実施例1と同様の反応容器及び方法を用いて、アクリル
酸、アクリルアミド、イタコン酸のコモノマー組成比及
び連鎖移動剤の濃度を変えて共重合体を合成した。
Examples 9 to 14 Using the same reaction vessel and method as in Example 1, copolymers were synthesized by changing the comonomer composition ratios of acrylic acid, acrylamide, and itaconic acid and the concentration of the chain transfer agent.

実施例1〜14により合成した共重合体、及び下表に示
すコモノマー組成比で同様に合成した比較例1〜11の
共重合体の組成及び物理的性状を下記の第1表にまとめ
て示す。
The compositions and physical properties of the copolymers synthesized in Examples 1 to 14 and the copolymers of Comparative Examples 1 to 11 synthesized in the same manner with the comonomer composition ratios shown in the table below are summarized in Table 1 below. .

■、 粘度測定法は下記の通りである。(2) The viscosity measurement method is as follows.

測定に使用した粘度計は(株)東京計器製BL形粘度計
を用いてN0120−夕で60rpmの条件で測定した
The viscometer used for the measurement was a BL type viscometer manufactured by Tokyo Keiki Co., Ltd., and the measurement was carried out under the conditions of No. 120-Y and 60 rpm.

■、 キレート化価の測定は下記の方法による。■, The chelation value is measured by the following method.

l 実験器具 1) オリオン・IJI−チ社 イオンアナライザーE
^940型2)ツノ     カルシウム測定用電極9
3−20型3)    77    2価陽イオン測定
用を極93−32型4)    17     Ag/
^9 C1比較電極90−02型5) 東亜電゛波 p
Hメーター 88−18ET型6〉   ツノ  pH
スタット ll5M−10^型A、カルシラ14キレー
ト化価測定法 a、試薬 1〉 カルシウム標準液−+CaCj!2 、z112
oの45.7971溶液をN/100 EDT^により 標定し、この溶液のCa濃 度を求めた。この溶液も Ca濃度として10000ppet (CaCO3として)になるよ うに純水で希釈する。ま た希釈の隙にKClを62/l になるよう加える。
l Experimental equipment 1) Orion IJI-CH Ion Analyzer E
^940 type 2) Horn Calcium measurement electrode 9
3-20 type 3) 77 Pole for divalent cation measurement 93-32 type 4) 17 Ag/
^9 C1 reference electrode 90-02 type 5) Toa Denpa p
H meter 88-18ET type 6〉 Horn pH
Stat ll5M-10^ type A, Calcilla 14 chelation value measurement method a, reagent 1> Calcium standard solution - +CaCj! 2, z112
A 45.7971 solution of O was standardized by N/100 EDT^, and the Ca concentration of this solution was determined. This solution is also diluted with pure water so that the Ca concentration is 10,000 ppet (as CaCO3). Also, add KCl to 62/l during dilution.

2)検量線作成用標準液→カルシウム標準液をにC4(
6g#)溶液で希釈し てカルシウム硬度として 10、100.1000pp論を含む 溶液を作成する。
2) Standard solution for creating a calibration curve → Add calcium standard solution to C4 (
6g #) solution to create a solution containing 10,100.1000 pp theory as calcium hardness.

3)ポリマー溶液→  合成品52を精秤しKCl(6
g#り溶液で50社にメス アップする。
3) Polymer solution → Precisely weigh synthetic product 52 and add KCl (6
50 companies with g#resolution.

b、測定 N/1O−KOHを加えpl(を10に調整後イオン濃
度を測定し記録する。ポリマー添加量対イオン濃度の関
係をグラフ上にプロットしカーブの初期勾配の傾きによ
りキレート化1(ポリマー1gによって錯体化されたカ
ルシウムのCaCO3換算叶)を求めた。
b. Add N/1 O-KOH to measure and record the ion concentration after adjusting pl() to 10. Plot the relationship between the amount of polymer added and the ion concentration on a graph, and determine the chelation 1( The amount of calcium complexed by 1 g of polymer (in terms of CaCO3) was determined.

Δ[Ca”]]/Δ−1:初期勾 配:サンプル採取 1?150wfX0.18 B、マグネシウムキレート化価測定法 a、試薬 l)マグネシウム標準液→HgC116HzOを純水に
溶解して14gHとして10000 ρp鏑になるように調製 する。
Δ[Ca”]]/Δ-1: Initial gradient: Sample collection 1?150wfX0.18 B, Magnesium chelation value measurement method a, Reagent l) Magnesium standard solution → Dissolve HgC116HzO in pure water and make 14gH as 10000 ρp Prepare it so that it becomes a kabura.

2〉検量線作成用標準液→マグネシウム標準液を純水で
希釈してMgH10゜ 100pp−溶液を作成する。
2> Standard solution for creating a calibration curve → Dilute the magnesium standard solution with pure water to create a 10° 100 pp solution of MgH.

3)ポリマー溶液→   合成品5gを精秤し純水で5
0−1にメスアップす る。
3) Polymer solution → Accurately weigh 5 g of the synthetic product and add 5 g of pure water.
Increase to 0-1.

b、測定 N/1O−NaOflを加え98を9に調整後イオン濃
度を測定し記録する。カルシウムキレート化価と同様に
初期勾配よりマグネシウムキレート化価を求める。
b. Measurement After adding N/1O-NaOfl and adjusting 98 to 9, measure and record the ion concentration. The magnesium chelation value is determined from the initial slope in the same way as the calcium chelation value.

実施例15 100mfの脱イオン水に第2表に示す濃度の供試剤を
加え、以下に示す試薬を溶解した0次いで0.5規定水
酸化ナトリウムによりpHを11.8に調節した。
Example 15 Test agents having the concentrations shown in Table 2 were added to 100 mf of deionized water, and the pH was adjusted to 11.8 with 0 and 0.5N sodium hydroxide in which the reagents shown below were dissolved.

HgC1z、6tL0    30.6mg#!NaH
COz        840+*y#Na25iO,
,511□0    1060B/1Na2SOa  
      444tag/lFeCl3      
  29Arag/lこの溶液はカルシウム硬度22p
pm(カルシウムとして8.8pp−) 、マグネシウ
ム硬度14ppm(マグネシウムとして3.4pp輪)
、全鉄9.5ppm、シリカ300pp紬、硫酸イオン
300pp輪、Mアルカリ度500pp−を含んでいる
HgC1z, 6tL0 30.6mg#! NaH
COz 840+*y#Na25iO,
,511□0 1060B/1Na2SOa
444tag/lFeCl3
29Arag/l This solution has a calcium hardness of 22p
pm (8.8pp- as calcium), magnesium hardness 14ppm (3.4pp- as magnesium)
Contains 9.5 ppm total iron, 300 ppm silica, 300 ppm sulfate ion, and 500 ppm alkalinity.

この溶液はオートクレーブにセットし温度180℃に維
持した恒温油槽中で静置した。18時間後、オートクレ
ーブを冷却して内容液を取り出し、0.45μメンブラ
ンフィルタ−でr過したp液について原子吸光分析法に
よりカルシウム及びマグネシウムの濃度を測定し、下記
式により抑止率を算出した。
This solution was set in an autoclave and allowed to stand in a constant temperature oil bath maintained at a temperature of 180°C. After 18 hours, the autoclave was cooled and the contents were taken out, and the concentration of calcium and magnesium in the p liquid that was filtered through a 0.45μ membrane filter was measured by atomic absorption spectrometry, and the inhibition rate was calculated using the following formula.

ここでCA:供試剤添加時のカルシウム又はマグネシウ
ムの測定値 CB:供試剤無添加時のカルシウム又はマグネシウム測
定値 Co:カルシウム又はマグネシウムの初期濃度 試験結果を第2表に示す。
Here, CA: Measured value of calcium or magnesium when the test agent is added. CB: Measured value of calcium or magnesium when the test agent is not added. Co: The initial concentration test results of calcium or magnesium are shown in Table 2.

実施例16 実験は第1図に示す実験用ボイラーを用いて行なった。Example 16 The experiment was conducted using the experimental boiler shown in Figure 1.

ボイラー伝熱管(9)は直径28mm、長さ345m−
の円筒形で材質は炭素鋼(S25C)である。
Boiler heat exchanger tube (9) has a diameter of 28 mm and a length of 345 m.
It has a cylindrical shape and is made of carbon steel (S25C).

伝熱管の内側に3.5に−の電気ヒーターを挿入して連
続的に加熱した。ボイラーの圧力は10kyf/ell
”に制御され、蒸気発生量は約3.71/h、缶水温度
は180℃であった。補給水として第3表に示す水質の
ものを使用した。
An electric heater of 3.5 to 10 mm was inserted inside the heat exchanger tube to continuously heat the tube. Boiler pressure is 10kyf/ell
The amount of steam generated was approximately 3.71/h, and the temperature of the canned water was 180°C. Water having the quality shown in Table 3 was used as make-up water.

第3表 混合され給水ポンプ(4〉により液面が一定に維持され
るように実験用ボイラー(8〉に自動的に供給された。
Table 3 Mixed water was automatically fed to the experimental boiler (8) by a feed pump (4) to maintain a constant liquid level.

連続的なブローダウンは実施せず、一定時間ごとにボイ
ラー缶水をサンプリングして濃縮度〈給水対缶水の塩素
イオン濃度の比〉および実施例15と同様の方法により
カルシウムとマグネシウムの抑止率を求めた。試験時間
は8時間であった。第4表に伝熱管(9)に付着したス
ケール重量の結果を示す、また第5表に缶水の濃縮度数
と抑止率の結果を示す。
Continuous blowdown was not carried out, but boiler can water was sampled at regular intervals to determine the concentration (ratio of chloride ion concentration of feed water to can water) and the suppression rate of calcium and magnesium using the same method as in Example 15. I asked for The test time was 8 hours. Table 4 shows the results of the scale weight attached to the heat transfer tube (9), and Table 5 shows the results of the concentration degree and inhibition rate of canned water.

補給水は給水タンク(3)で第4表に示す処理剤と実施
例17 実施例16と同じ実験装置を用いてボイラー圧力20k
gf/am”、缶水温度210℃における評価を実施し
た。補給水として第6表に示す水質のものを使用した。
Make-up water was provided in the water supply tank (3) using the treatment agent shown in Table 4 and the same experimental equipment as in Example 17 and Example 16 at a boiler pressure of 20 k.
gf/am” and a can water temperature of 210° C. The water quality shown in Table 6 was used as make-up water.

第6表 補給水は給水タンク(3)で第7表に示す処理剤と脱酸
素剤としてヒドラジン3.5ppmとが混合され実験用
ボイラー(8〉に供給された1缶水の濃縮度が5倍にな
るように連続ブローダウンを実施した。
The make-up water in Table 6 is mixed with the treatment agent shown in Table 7 and 3.5 ppm of hydrazine as an oxygen scavenger in the water supply tank (3), and the concentration of one can of water supplied to the experimental boiler (8>) is 5. Continuous blowdown was performed to double the amount.

試験時間は10時間であった。第7表に実験結果を示す
The test time was 10 hours. Table 7 shows the experimental results.

第2表から明らかなとおりアクリル酸とアクリルアミド
とイタコン酸系単量体とからなる三元共重合体はカルシ
ウムとマグネシウムの両方のイオンに対して顕著なイオ
ン封鎖効果を示した。−カニ元共重合体を構成する単量
体のうちのいずれか一つが欠けた二元共重合体はカルシ
ウムかマグネシウムのいずれか一方のイオンに対しての
みしか効果を示さなかった。
As is clear from Table 2, the terpolymer consisting of acrylic acid, acrylamide, and itaconic acid monomers exhibited a remarkable ion sequestering effect on both calcium and magnesium ions. - A binary copolymer lacking any one of the monomers constituting the crab copolymer was only effective against either calcium or magnesium ions.

第4表、第5表及び第7表より本発明のイオン封鎖剤は
水中の硬度物質の濃度が極めて高いボイラー水の条件で
用いても良好なスケール防止効果を示すことが分かる。
From Tables 4, 5, and 7, it can be seen that the ion sequestering agent of the present invention exhibits a good scale prevention effect even when used in boiler water conditions where the concentration of hard substances in the water is extremely high.

第5表及び第7表で本発明のイオン封鎖剤のカルシウム
抑止率が100%を超えているが、これはボイラー内に
既に付着していたスケールが除去されたことを示してい
る。−方、マグネシウム抑止率は50%前後であったが
ボイラー伝熱管にスケールが全く認められなかったこと
から、イオン封鎖作用とともに分散作用が働いているも
のと考えられる。
In Tables 5 and 7, the calcium suppression rate of the ion sequestering agent of the present invention exceeds 100%, which indicates that the scale that had already adhered inside the boiler was removed. - On the other hand, the magnesium inhibition rate was around 50%, but since no scale was observed in the boiler heat exchanger tubes, it is thought that the dispersion effect was at work in addition to the ion sequestration effect.

また第7表より実施fiI42の共重合体とヒドラジン
とを併用した場合、ヒドラジンのみで処理した場合と比
較して腐食の改善効果が認められた。
Furthermore, from Table 7, when the copolymer of Example fiI42 and hydrazine were used in combination, a corrosion improving effect was observed compared to when treated with hydrazine alone.

[発明の効果] 実施例が示すとおり本発明のイオン封鎖剤は、従来の公
知のスケール防止剤と比較して高温水系におけるスケー
ル防止効果が優れており、ボイラーの安全操業に寄与し
、かつ伝熱効率を改善するとともにボイラー缶水の濃縮
度を上昇させることができるため燃料使用量を大巾に節
減することができる。またスケールを防止するだけでな
く既存のスケールを除去する作用をも示すため化学洗浄
に要する費用及び工期を節減することができる。
[Effects of the Invention] As shown in the examples, the ion sequestering agent of the present invention has a superior scale prevention effect in high-temperature water systems compared to conventional known scale inhibitors, contributes to the safe operation of boilers, and improves transmission. Since it is possible to improve thermal efficiency and increase the concentration of boiler canned water, it is possible to significantly reduce fuel consumption. Furthermore, since it not only prevents scale but also removes existing scale, it is possible to reduce the cost and construction period required for chemical cleaning.

さらに公知の脱酸素剤と併用することによりボイラー鉄
面の腐食を改善することができる。
Furthermore, by using it in combination with a known oxygen scavenger, corrosion of the boiler iron surface can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例および比較例に用いた実験用
ボイラーのフローチャートを示す。 第2図は、本発明のボイラー水系用イオン封鎖剤の好ま
しい三元共重合体の共重合体組成比を示す。 (1〉・・・補給水タンク   (2)・・・補給水ポ
ンプ(3〉・・・給水タンク    (4)・・・給水
ポンプ(5)・・・給水加熱器   (6〉・・・薬液
タンク(7〉・・・薬注穴ポンプ  (8)・・・実験
用ボイラー(9)・・・伝熱管     (10)・・
・電気ヒーター(11)・・・液面計     (12
)・・・自動液面調節器(13)・・・ブロー水冷却器 (14)・・・ミストセパレーター (15)・・・圧力計     (16)・・・自動圧
力調節器(17)・・・圧力調節弁   (18〉・・
・復水器稟2 図 イダ〕ン白萱住ステル)
FIG. 1 shows a flowchart of an experimental boiler used in Examples and Comparative Examples of the present invention. FIG. 2 shows the copolymer composition ratio of the preferred terpolymer of the ion sequestering agent for boiler water systems of the present invention. (1>... Makeup water tank (2)... Makeup water pump (3>... Water tank (4)... Water supply pump (5)... Feed water heater (6>... Chemical solution Tank (7>...Chemical injection hole pump (8)...Experimental boiler (9)...Heat transfer tube (10)...
・Electric heater (11)...Liquid level gauge (12)
)...Automatic liquid level regulator (13)...Blow water cooler (14)...Mist separator (15)...Pressure gauge (16)...Automatic pressure regulator (17)...・Pressure control valve (18>...
・Condenser 2 (Figure Ida)

Claims (1)

【特許請求の範囲】 1、(メタ)アクリル酸、(メタ)アクリルアミド及び
下式、 ▲数式、化学式、表等があります▼ (ここでR_1、R_2、はそれぞれ独立に水素又は炭
素数1〜8のアルキル基である。)で示されるイタコン
酸類からなる三元共重合体を有効成分として含有するこ
とを特徴とするボイラー水系用イオン封鎖剤。 2、(メタ)アクリル酸の20〜80モル%、(メタ)
アクリルアミドの5〜65モル%、及び下式▲数式、化
学式、表等があります▼ (ここでR_1、R_2はそれぞれ独立に水素又は炭素
数1〜8のアルキル基である。)で示されるイタコン酸
の5〜40モル%からなり、かつ第2図の三角図表のA
BCDEFにより囲まれた区域内の組成比から選択する
好ましい三元共重合体を有効成分として含有することを
特徴とするボイラー水系用イオン封鎖剤。 3、(メタ)アクリル酸の20〜80モル%、(メタ)
アクリルアミドの5〜65モル%、及び下式▲数式、化
学式、表等があります▼ (ここでR_1、R_2はそれぞれ独立に水素又は炭素
数1〜8のアルキル基である。)で示されるイタコン酸
エステルの5〜30モル%からなり、かつ第2図の三角
図表のA′BCDEF′により囲まれた区域内の組成比
から選択する好ましい三元共重合体を有効成分として含
有することを特徴とするボイラー水系用イオン封鎖剤。 4、前記請求項1〜3のいずれかに記載のボイラー水系
用イオン封鎖剤の有効成分である三元共重合体を、被処
理水中に含まれる金属成分(アルカリ金属を除く)1p
pmに対して2〜30ppmの範囲で使用することを特
徴とするボイラーのスケールを防止する方法。
[Claims] 1. (meth)acrylic acid, (meth)acrylamide, and the following formula, ▲ Numerical formula, chemical formula, table, etc. ▼ (Here, R_1 and R_2 each independently represent hydrogen or carbon number 1 to 8 An ion sequestering agent for boiler water systems, characterized in that it contains as an active ingredient a terpolymer of itaconic acids (which is an alkyl group of ). 2. 20-80 mol% of (meth)acrylic acid, (meth)
5 to 65 mol% of acrylamide, and itaconic acid represented by the following formula ▲ Numerical formula, chemical formula, table, etc. ▼ (Here, R_1 and R_2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms.) A of the triangular diagram in Figure 2.
An ion sequestering agent for boiler water systems, characterized in that it contains as an active ingredient a preferable terpolymer selected from the composition ratio within the area surrounded by BCDEF. 3. 20-80 mol% of (meth)acrylic acid, (meth)
5 to 65 mol% of acrylamide, and itaconic acid represented by the following formula ▲ Numerical formula, chemical formula, table, etc. ▼ (Here, R_1 and R_2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms.) It is characterized by containing as an active ingredient a preferable terpolymer consisting of 5 to 30 mol% of ester and selected from the composition ratio within the area surrounded by A'BCDEF' in the triangular diagram of FIG. An ion sequestering agent for boiler water systems. 4. The terpolymer, which is an active ingredient of the ion sequestering agent for boiler water systems according to any one of claims 1 to 3, is added to 1 p of metal components (excluding alkali metals) contained in the water to be treated.
A method for preventing scale in a boiler, characterized in that the amount is used in a range of 2 to 30 ppm based on pm.
JP21052389A 1989-08-15 1989-08-15 Ion blocking agent for boiler water system Expired - Lifetime JPH0642959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21052389A JPH0642959B2 (en) 1989-08-15 1989-08-15 Ion blocking agent for boiler water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21052389A JPH0642959B2 (en) 1989-08-15 1989-08-15 Ion blocking agent for boiler water system

Publications (2)

Publication Number Publication Date
JPH0377697A true JPH0377697A (en) 1991-04-03
JPH0642959B2 JPH0642959B2 (en) 1994-06-08

Family

ID=16590777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21052389A Expired - Lifetime JPH0642959B2 (en) 1989-08-15 1989-08-15 Ion blocking agent for boiler water system

Country Status (1)

Country Link
JP (1) JPH0642959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947224A (en) * 2023-09-21 2023-10-27 山东上远环保科技有限公司 Circulating water treatment agent and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947224A (en) * 2023-09-21 2023-10-27 山东上远环保科技有限公司 Circulating water treatment agent and preparation method thereof

Also Published As

Publication number Publication date
JPH0642959B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4711725A (en) Method of stabilizing aqueous systems
KR100904789B1 (en) Method for controlling scale formation and deposition in aqueous systems
AU690755B2 (en) Prevention of scale formation in aqueous systems
US4818506A (en) Gypsum scale inhibitors for flue gas desulfurization systems
US5282976A (en) Terpolymer useful as a scale inhibitor
US5716529A (en) Water-treating agent and method for treating water
JPH07100492A (en) Preventing deposition of sticking layer in water containing system
WO1983002607A1 (en) Process for inhibiting scale
US6001264A (en) Water-treating agent and method for treating water
JPS63258697A (en) Corrosion inhibitor also for suppressing scale of metals in aqueous system
AU593082B2 (en) A composition for inhibiting corrosion in industrial cooling waters and a method for improving the performance of corrosion inhibitors in same
AU2012289049B2 (en) Process for producing maleic acid-isoprenol copolymers
JPH0377697A (en) Sequestering agent for water system of boiler
US4765921A (en) Acid composition with high concentrations of active materials for the treatment of water and/or cleaning installations containing same
JPH04309511A (en) Copolymer consisting of diallyl aminoalkylene phosphonate and unsaturated carboxylic acid
EP0172154B1 (en) Inhibition of scale formation with a maleate polymer
EP0274733B1 (en) Water treatment polymer
JPS6260000B2 (en)
EP1088794A2 (en) Polymers containing styrene and unsaturated polycarboxylates as monomers for high stressed water treatment application
RU2660651C1 (en) Low-molecular copolymers of monoethylenically unsaturated carboxylic acids and their use as scaling inhibitors in water rotation systems
BR112014002935B1 (en) copolymer, method for the production of acids, and use of the copolymer
JP2001254191A (en) Corrosion inhibitor
JPH03257180A (en) Sequestering agent for boiler water system and treatment of boiler water system with same
JPS63107800A (en) Scale preventive for water system
EP0122789A1 (en) Use of an acrylic polymer for combatting particulate matter formation, and for dispersing mud, silt and/or clay particles present in an aqueous system