JPH0377474B2 - - Google Patents
Info
- Publication number
- JPH0377474B2 JPH0377474B2 JP57188570A JP18857082A JPH0377474B2 JP H0377474 B2 JPH0377474 B2 JP H0377474B2 JP 57188570 A JP57188570 A JP 57188570A JP 18857082 A JP18857082 A JP 18857082A JP H0377474 B2 JPH0377474 B2 JP H0377474B2
- Authority
- JP
- Japan
- Prior art keywords
- neutron
- gamma
- proportional counter
- ionization chamber
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005251 gamma ray Effects 0.000 claims description 45
- 238000005259 measurement Methods 0.000 claims description 16
- 230000004907 flux Effects 0.000 description 33
- 230000005284 excitation Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Measurement Of Radiation (AREA)
Description
【発明の詳細な説明】
この発明は原子炉の中性子束レベルを測定する
核計装装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear instrumentation device for measuring neutron flux levels in a nuclear reactor.
従来この種の装置として第1図に示すものがあ
つた。図において、1は中性子検出器アセンブ
リ、2は中性子検出器アセンブリのハウジング、
3はハウジン内に収納された中性子比例計数管、
4はハウジング内に収納されたガンマ線補償型中
性子電離箱、11は中性子比例計数管用の測定回
路、12はガンマ線補償型中性子電離箱用の測定
回路、13は測定回路12を構成する直流電圧電
源AおよびBであり直流電圧電源AとBの極性は
互いに逆になつている。21は中性子比例計数管
をその測定回路11に接続する同軸ケーブル、2
2,23および24はガンマ線補償型中性子電離
箱の信号電極、励起電極および補償電極をそれぞ
れ電流測定器A、直流高圧電源AおよびBに接続
する同軸ケーブルである。 A conventional device of this type is shown in FIG. In the figure, 1 is a neutron detector assembly, 2 is a housing of the neutron detector assembly,
3 is a neutron proportional counter housed in the housing,
4 is a gamma-ray compensated neutron ionization chamber housed in a housing; 11 is a measurement circuit for a neutron proportional counter; 12 is a measurement circuit for a gamma-ray compensation neutron ionization chamber; 13 is a DC voltage power source A constituting the measurement circuit 12. and B, and the polarities of DC voltage power supplies A and B are opposite to each other. 21 is a coaxial cable connecting the neutron proportional counter tube to its measurement circuit 11;
Coaxial cables 2, 23 and 24 connect the signal electrode, excitation electrode and compensation electrode of the gamma ray compensated neutron ionization chamber to the current measuring device A and the DC high voltage power supplies A and B, respectively.
次に機能について説明する。核計装装置は原子
炉の停止から出力運転まで約10桁にわたる中性子
束を測定する必要がある。測定範囲の下から5〜
6桁は中性子比例計数管で測定し、上の7〜8桁
をガンマ線補償型中性子電離箱とその測定回路で
測定する。そのため両者の測定範囲には2桁以上
のオーバーラツプがある。核計装装置はこのよう
にして原子炉の中性子束を測定し、第1図には示
してない機器で、そのレベルの表示や、原子炉の
安全保護に必要な信号を提供するものである。ま
た、原子炉の出力運転中の中性子束レベルのみを
測定監視するために、別途ガンマ線非補償型中性
子電離箱とその測定回路も用いられることが多
い。 Next, the functions will be explained. Nuclear instrumentation equipment needs to measure neutron flux over approximately 10 orders of magnitude from reactor shutdown to power operation. 5~ from the bottom of the measurement range
Six digits are measured with a neutron proportional counter, and the upper seven to eight digits are measured with a gamma-ray compensated neutron ionization chamber and its measurement circuit. Therefore, there is an overlap of more than two orders of magnitude in the measurement ranges of the two. The nuclear instrumentation system thus measures the reactor's neutron flux and, with equipment not shown in FIG. 1, provides an indication of its level and the signals necessary to protect the safety of the reactor. Furthermore, in order to measure and monitor only the neutron flux level during power operation of a nuclear reactor, a separate gamma-ray non-compensated neutron ionization chamber and its measurement circuit are often used.
さて、原子炉においては計測すべき中性子束以
外にガンマ線が混在する。ところが中性子検出器
は僅かではあるがこのガンマ線に対しても感度を
有する。原子炉のガンマ線は必ずしも原子炉の出
力に比例しないので、原子炉の出力に比例した信
号を取り出すために中性子束レベルを測定しよう
としている核計装装置にとつては、ガンマ線によ
る信号は雑音となる。このガンマ線による雑音寄
与を減じるため次のような手段がとられている。
即ち、中性子比例計数管にあつては、中性子によ
つて生じる電気パルスの方がガンマ線によつて生
じる電気パルスよりも大きいので、波高弁別技術
を用いて一定波高より大きい電気パルスのみを信
号として計数し、単位時間当りの計数率を出力さ
せれば、これは中性子束に比例した信号となる。
ガンマ線補償型電離箱は中性子検出器においてガ
ンマ線による妨害信号を相殺してしまおうとする
ものである。その動作原理を第2図を用いて説明
する。第2図において、31は信号電極、32は
励起電極、33は補償電極であり、34はこれら
を収納するケースである。信号電極と励起電極の
対向する表面には中性子有感物質がコーテイング
されている。又、ケース内には電離用のガスが充
てんされている。従つて、信号電極と励起電極と
で中性子電離箱を形成し、この部分は中性子に有
感であり同時にガンマ線に対しても有感となる。
そこで、励起電極に正の直流高電圧を印加すると
信号電極に中性子束に比例した信号とガンマ線束
に比例した信号が流れ込む。一方、補償電極と信
号電極も電離箱を形成するが、ここには中性子有
感物質が持ち込まれていないので、この部分はガ
ンマ線に対してのみ有感となる。そこで補償電極
に負の直流高電圧を印加すると信号電極からガン
マ線束に比例した電流が流れ出す。ガンマ線補償
型中性子電離箱は、上記二つの電離箱部のガンマ
線感度が等しくなるよう設計されているので、信
号電極に励起電極から流れ込むガンマ線束に比例
した電流と、信号電極から補償電極に流れ出すガ
ンマ線束に比例した電流は等しくなり、結局信号
電極には励起電極から中性子束に比例した電流の
みが流れ込む。なお、励起電極と補償電極に印加
する高電圧の極性は互いに逆であればよく、正負
はどちらがどちらであつてもよい。 Now, in a nuclear reactor, gamma rays are present in addition to the neutron flux that should be measured. However, neutron detectors are sensitive to gamma rays, albeit to a small extent. Gamma rays from a nuclear reactor are not necessarily proportional to the reactor's output, so gamma ray signals become noise for nuclear instrumentation equipment that is trying to measure neutron flux levels in order to extract a signal proportional to the reactor's output. . The following measures are taken to reduce the contribution of noise caused by gamma rays.
In other words, in the case of a neutron proportional counter, the electric pulses generated by neutrons are larger than the electric pulses generated by gamma rays, so pulse height discrimination technology is used to count only electric pulses larger than a certain wave height as signals. However, if the counting rate per unit time is output, this becomes a signal proportional to the neutron flux.
A gamma-ray compensated ionization chamber attempts to cancel out the interference signal caused by gamma rays in a neutron detector. The principle of operation will be explained using FIG. In FIG. 2, 31 is a signal electrode, 32 is an excitation electrode, 33 is a compensation electrode, and 34 is a case that houses these electrodes. The opposing surfaces of the signal electrode and the excitation electrode are coated with a neutron-sensitive material. The case is also filled with ionizing gas. Therefore, the signal electrode and the excitation electrode form a neutron ion chamber, and this part is sensitive to neutrons and at the same time sensitive to gamma rays.
Therefore, when a positive DC high voltage is applied to the excitation electrode, a signal proportional to the neutron flux and a signal proportional to the gamma ray flux flow into the signal electrode. On the other hand, the compensation electrode and the signal electrode also form an ionization chamber, but since no neutron-sensitive substance is introduced here, this part is sensitive only to gamma rays. Therefore, when a negative high DC voltage is applied to the compensation electrode, a current proportional to the gamma ray flux flows from the signal electrode. A gamma-ray compensated neutron ionization chamber is designed so that the gamma-ray sensitivity of the two ionization chamber parts is equal, so that a current proportional to the gamma-ray flux flowing from the excitation electrode into the signal electrode and a gamma-ray flux flowing from the signal electrode to the compensation electrode are generated. The currents proportional to the flux become equal, and eventually only the current proportional to the neutron flux flows from the excitation electrode into the signal electrode. Note that the polarities of the high voltages applied to the excitation electrode and the compensation electrode need only be opposite to each other, and either positive or negative may be used.
以上のようにして、ガンマ線の混在する場にお
いて中性子束に比例した信号を広い測定範囲にわ
たり得ている。 As described above, a signal proportional to the neutron flux is obtained over a wide measurement range in a field where gamma rays are mixed.
しかし、従来のこのような装置には次のような
欠点があつた。中性子比例計数管は、線状陽極の
付近に強い電界を作りガス増幅を起させて電気パ
ルスを大きくして計数するものであるが、周囲の
ガンマ線レベルが高くなると、ガンマ線により大
量に生じた電荷は線状陽極付近の強い電界を弱め
結果的にガス増幅率の減少、即ち信号パルスの波
高の低下をもたらす。すると、中性子束レベルは
一定であつても、ある波高を越えるパルス信号を
計測しているとき、その計数率は低下し見かけ上
中性子比例計数管の感度が低下したかのようなふ
るまいを示す。この様子を説明したのが第3図で
あり、一定中性子束のもとでガンマ線レベルのみ
を変えたとき計数率がどのように変るか示してい
る。横軸は弁別する波高のレベル、縦軸はその波
高を越えるパルスの計数率である。曲線の左側の
急激に立上つている部分は回路雑音およびγ線の
微小パルスによるものであり、これらと区別して
中性子によるパルスのみを計測するためには、図
の場合、弁別レベルをL1以上に設定せねばなら
ない。すると、周囲の中性子束は変化していない
のに、ガンマ線レベルが高くなると計数率が低下
し、見かけ上中性子比例計数管の中性子感度が低
下したかのようになる。このように従来の核計装
装置では、その中性子比例計数管の出力計数率が
必ずしも周囲中性子束に比例しないという欠点が
あつた。 However, such conventional devices have the following drawbacks. A neutron proportional counter creates a strong electric field near a linear anode and causes gas amplification to increase the electrical pulses and count them. However, when the surrounding gamma ray level increases, a large amount of charge generated by the gamma rays increases. weakens the strong electric field near the linear anode, resulting in a decrease in the gas amplification factor, that is, a decrease in the wave height of the signal pulse. Then, even if the neutron flux level is constant, when a pulse signal exceeding a certain wave height is measured, the counting rate decreases and the neutron proportional counter appears to behave as if its sensitivity has decreased. This situation is explained in Figure 3, which shows how the counting rate changes when only the gamma ray level is changed under a constant neutron flux. The horizontal axis is the level of the wave height to be discriminated, and the vertical axis is the counting rate of pulses exceeding that wave height. The sharply rising part on the left side of the curve is due to circuit noise and minute pulses of gamma rays.In order to distinguish between these and measure only pulses caused by neutrons, in the case of the figure, the discrimination level must be set to L 1 or higher. Must be set to . Then, even though the surrounding neutron flux remains unchanged, as the gamma ray level increases, the counting rate decreases, making it appear as if the neutron sensitivity of the neutron proportional counter has decreased. As described above, conventional nuclear instrumentation devices have the drawback that the output counting rate of the neutron proportional counter is not necessarily proportional to the surrounding neutron flux.
この発明は上記のような従来のものの欠点を除
去するためになされたもので、ガンマ線補償型中
性子電離箱の補償電極に流れる電流を測定する電
流測定器を設けることにより、周囲ガンマ線束レ
ベルを知り、中性子比例計数管の出力計数率にガ
ンマ線束レベルに応じた補正を施すことにより、
中性子比例計数管の出力計数率を周囲中性子束に
比例したものとする原子炉核計装装置を提供する
ことを目的としている。 This invention was made to eliminate the drawbacks of the conventional ones as described above, and by providing a current measuring device to measure the current flowing through the compensation electrode of a gamma-ray compensated neutron chamber, it is possible to know the ambient gamma-ray flux level. , by correcting the output count rate of the neutron proportional counter according to the gamma ray flux level,
It is an object of the present invention to provide a nuclear reactor nuclear instrumentation device that makes the output counting rate of a neutron proportional counter tube proportional to the surrounding neutron flux.
以下、この発明の一実施例を図について説明す
る。第4図において、1は中性子検出器アセンブ
リ、2は中性子検出器アセンブリのハウジング、
3はハウジング内に収納された中性子比例計数
管、4はハウジング内に収納されたガンマ線補償
型中性子電離箱、11は中性子比例計数管用の測
定回路、12はガンマ線補償型中性子電離箱用の
測定回路、13は測定回路12を構成する電流測
定器A、14および15は測定回路12を構成す
る直流高圧電源AおよびB、16は測定回路12
を構成する電流測定器Bである。直流高圧電源A
とBの極性は互いに逆である。21は中性子比例
計数管とその測定回路11を接続する同軸ケーブ
ル、22,23および24はガンマ線補償型中性
子電離箱の信号電極、励起電極および補償電極を
それぞれ電流測定器A、直流高圧電源AおよびB
に接続する同軸ケーブルである。電流測定器Bは
直流高圧電源Bとグランド間に接続されている。 An embodiment of the present invention will be described below with reference to the drawings. In FIG. 4, 1 is a neutron detector assembly, 2 is a housing of the neutron detector assembly,
3 is a neutron proportional counter housed in a housing, 4 is a gamma ray compensated neutron ion chamber housed in the housing, 11 is a measurement circuit for the neutron proportional counter, and 12 is a measurement circuit for a gamma ray compensated neutron ion chamber. , 13 is a current measuring device A which constitutes the measuring circuit 12, 14 and 15 are DC high voltage power supplies A and B which constitute the measuring circuit 12, and 16 is a current measuring device A which constitutes the measuring circuit 12.
This is current measuring device B that constitutes the. DC high voltage power supply A
The polarities of and B are opposite to each other. 21 is a coaxial cable connecting a neutron proportional counter and its measurement circuit 11; 22, 23 and 24 are a signal electrode, an excitation electrode and a compensation electrode of a gamma ray compensated neutron ionization chamber; respectively, a current measuring device A, a DC high voltage power supply A and a B
It is a coaxial cable that connects to the Current measuring device B is connected between DC high voltage power source B and ground.
ここで、補償電極に接続された電流測定器に流
れる電流の性格を説明するため第5図を用いる。
第5図は、第4図のうちガンマ線補償型中性子電
離箱とその測定回路を取り出し、説明のためガン
マ線補償型中性子電離箱の内部の電極を模式的に
示したものである。補償電極33は、信号電極3
1との間及びケース34との間でそれぞれ電離箱
を形成する。従つて補償電極に流れ込む電流は、
信号電極からのIγ′、ケースからのIγ″の2つにな
るが、いずれもガンマ線のみに比例するので電流
測定器Bに流れる電流はガンマ線束に比例した信
号となる。従つてあらかじめこの部分のガンマ線
感度を求めておけば、補償電極に流れる電流を電
流測定器Bで測定すれば、周囲のガンマ線束が求
まる。原子炉においては、このガンマ線束と中性
子比例計数管の周囲のγ線束はほぼ同レベルと考
えてよい。ところで、中性子比例計数管の出力計
数率は周囲のガンマ線束に応じて変るが、この依
存性もあらかじめ測定しておくことにより、ガン
マ線補償型中性子電離箱を用いて上記のように周
囲ガンマ線束レベルがわかる。そこで、上記中性
子比例計数管の出力計数率を上記電流測定器の測
定出力に応じて補正手段(図示せず)で補正する
ことにより、ガンマ線の影響を受ける前の周囲中
性子束に正しく比例した出力計数率を得ることが
できる。 Here, FIG. 5 will be used to explain the characteristics of the current flowing through the current measuring device connected to the compensation electrode.
FIG. 5 is a diagram showing the gamma-ray compensated neutron ion chamber and its measurement circuit from FIG. 4, and schematically shows the electrodes inside the gamma-ray compensated neutron ion chamber for explanation. The compensation electrode 33 is the signal electrode 3
1 and case 34, respectively, to form an ionization chamber. Therefore, the current flowing into the compensation electrode is
There are two signals, Iγ' from the signal electrode and Iγ'' from the case, but both are proportional to gamma rays only, so the current flowing to current measuring device B becomes a signal proportional to the gamma ray flux. Once the gamma ray sensitivity has been determined, the surrounding gamma ray flux can be determined by measuring the current flowing through the compensation electrode with current measuring device B. In a nuclear reactor, this gamma ray flux and the gamma ray flux around the neutron proportional counter tube are approximately equal to each other. By the way, the output counting rate of a neutron proportional counter changes depending on the surrounding gamma ray flux, but by measuring this dependence in advance, it is possible to The ambient gamma ray flux level can be determined as follows. Therefore, by correcting the output counting rate of the neutron proportional counter tube with a correction means (not shown) according to the measured output of the current measuring device, it is possible to detect the influence of gamma rays. An output count rate that is properly proportional to the previous ambient neutron flux can be obtained.
なお、上記実施例では、中性子比例計数管の出
力計数率の補正は別途行うようにしたが、ガンマ
線補償型中性子電離箱の電流測定器Bの信号を用
い、この信号を入力とする補正係数発生回路とこ
の回路の出力と中性子比例計数管の出力計数率を
乗ずる掛算回路を設けることにより、周囲ガンマ
線束の影響を取り除き周囲中性子束に正しく比例
する信号を自動的に得ることもできる。 In the above embodiment, the output count rate of the neutron proportional counter is corrected separately, but the correction coefficient can be generated by using the signal from the current measuring device B of the gamma ray compensated neutron ionization chamber and using this signal as input. By providing a circuit and a multiplication circuit that multiplies the output of this circuit by the output counting rate of the neutron proportional counter tube, it is possible to remove the influence of the ambient gamma ray flux and automatically obtain a signal that is correctly proportional to the ambient neutron flux.
また、上記実施例では、電流測定器Bは直流高
圧電源Bとグランド間に挿入したが、両者の位置
を入れ換えて電流測定器Bを直接、ケーブルで補
償電極に接続し、直流高圧電源Bを電流測定器B
とグランド間に配置してもよい。 In the above embodiment, the current measuring device B was inserted between the DC high voltage power source B and the ground, but the positions of the two were swapped and the current measuring device B was directly connected to the compensation electrode with a cable, and the DC high voltage power source B was connected to the compensation electrode. Current measuring device B
It may be placed between the ground and ground.
さらに、中性子比例計数管とガンマ線補償型中
性子電離箱は同じ中性子検出器アセンブリのハウ
ジング内に収納されている必要はなく、別個の容
器に収納してもよいし、特別の容器も必ずしも必
要でない。 Furthermore, the neutron proportional counter and gamma-compensated neutron ionization chamber need not be housed within the same neutron detector assembly housing, but may be housed in separate containers, and no special enclosure is necessarily required.
以上のように、この発明にれば、ガンマ線補償
型中性子電離箱の補償電極に流れる電流測定器を
設けたので、別個にガンマ線検出器を用いずとも
周囲のガンマ線束レベルの測定ができ、これを用
いてガンマ線レベルに依存する中性子比例計数管
の出力計数率の補正ができるので、常に周囲中性
子束に正しく比例する出力計数率が得られる効果
がある。 As described above, according to the present invention, since the current measuring device flowing through the compensation electrode of the gamma ray compensated neutron ion chamber is provided, the surrounding gamma ray flux level can be measured without using a separate gamma ray detector. Since the output counting rate of the neutron proportional counter, which depends on the gamma ray level, can be corrected using
第1図は従来の核計装装置を示す模式図、第2
図はガンマ線補償型中性子電離箱の動作原理説明
図、第3図は中性子比例計数管の出力計数率のガ
ンマ線束レベル依存性を示す図、第4図はこの発
明の一実施例を示す模式図、第5図は第4図の発
明の実施例の動作原理説明図である。
1…中性子検出器アセンブリ、2…ハウジン
グ、3…中性子比例計数管、4…ガンマ線補償型
中性子電離箱、11…中性子比例計数管用測定回
路、12…ガンマ線補償型電離箱用測定回路、1
3…電流測定器A、14…直流高圧電源A、15
…直流高圧電源B、20,22,23,24…同
軸ケーブル、16…電流測定器B、31…信号電
極、32…励起電極、33…補償電極、34…ケ
ース。なお、図中同一符号は同一又は相当部分を
示す。
Figure 1 is a schematic diagram showing a conventional nuclear instrumentation device, Figure 2
The figure is a diagram explaining the operating principle of a gamma-ray compensated neutron ionization chamber, Figure 3 is a diagram showing the gamma-ray flux level dependence of the output count rate of a neutron proportional counter, and Figure 4 is a schematic diagram showing an embodiment of the present invention. , FIG. 5 is an explanatory diagram of the operating principle of the embodiment of the invention shown in FIG. DESCRIPTION OF SYMBOLS 1... Neutron detector assembly, 2... Housing, 3... Neutron proportional counter, 4... Gamma ray compensated neutron ionization chamber, 11... Measurement circuit for neutron proportional counter, 12... Measurement circuit for gamma ray compensated ionization chamber, 1
3...Current measuring device A, 14...DC high voltage power supply A, 15
...DC high-voltage power supply B, 20, 22, 23, 24... Coaxial cable, 16... Current measuring device B, 31... Signal electrode, 32... Excitation electrode, 33... Compensation electrode, 34... Case. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
中性子電離箱を中性子検出器として用いる原子炉
核計装装置において、上記ガンマ線補償型中性子
電離箱の補償電極に流れる電流を測定する電流測
定器と、上記比例計数管の出力計数率を上記電流
測定器の測定出力に応じて補正する補正手段とを
具備したことを特徴とする原子炉核計装装置。 2 少くとも中性子比例計数管とガンマ線補償型
中性子電離箱を中性子検出器として用いる原子炉
核計装装置において、上記ガンマ線補償型中性子
電離箱の補償電極に流れる電流を測定する電流測
定器と、上記電流測定器の測定出力に応じてある
決められた補正係数を発生させる補正係数発生回
路と、この補正係数発生回路の出力と上記中性子
比例計数管の出力計数率とを乗ずる掛算回路を具
備したことを特徴とする原子炉核計装装置。[Scope of Claims] 1. In a nuclear reactor nuclear instrumentation system that uses at least a neutron proportional counter and a gamma-ray compensated neutron ionization chamber as a neutron detector, a current that measures the current flowing through the compensation electrode of the gamma-ray compensated neutron ionization chamber. A nuclear reactor nuclear instrumentation device comprising: a measuring device; and a correction means for correcting the output counting rate of the proportional counter according to the measured output of the current measuring device. 2. In a nuclear reactor nuclear instrumentation system that uses at least a neutron proportional counter and a gamma-ray compensated neutron ionization chamber as a neutron detector, a current measuring device that measures the current flowing through the compensation electrode of the gamma-ray compensated neutron ionization chamber; A correction coefficient generation circuit that generates a predetermined correction coefficient according to the measurement output of the measuring instrument, and a multiplication circuit that multiplies the output of the correction coefficient generation circuit by the output counting rate of the neutron proportional counter tube. Features of nuclear reactor instrumentation equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57188570A JPS5977375A (en) | 1982-10-25 | 1982-10-25 | Nucleus instrumentation apparatus for nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57188570A JPS5977375A (en) | 1982-10-25 | 1982-10-25 | Nucleus instrumentation apparatus for nuclear reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5977375A JPS5977375A (en) | 1984-05-02 |
JPH0377474B2 true JPH0377474B2 (en) | 1991-12-10 |
Family
ID=16225995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57188570A Granted JPS5977375A (en) | 1982-10-25 | 1982-10-25 | Nucleus instrumentation apparatus for nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5977375A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110488342B (en) * | 2019-08-26 | 2021-11-16 | 兰州大学 | Measuring system for shortening signal response time of self-powered neutron detector |
CN112462411A (en) * | 2020-11-10 | 2021-03-09 | 中国核动力研究设计院 | Out-of-pile neutron detector assembly and application method thereof |
-
1982
- 1982-10-25 JP JP57188570A patent/JPS5977375A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5977375A (en) | 1984-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4086490A (en) | Wide range neutron detection system | |
US7368726B2 (en) | Method and apparatus for detecting high-energy radiation using a pulse mode ion chamber | |
US4071764A (en) | Gamma and alpha compensated fission chamber | |
US5192490A (en) | Extended range neutron detection device for monitoring and control of nuclear reactors | |
JP6124663B2 (en) | Dose rate measuring device | |
US3311770A (en) | Gamma compensated neutron ion chamber | |
JPH0377474B2 (en) | ||
US3198945A (en) | Radiation dosimeter providing a visual representation of total dose | |
JPS59163585A (en) | Ionization chamber type radiation detector | |
US3621238A (en) | Gamma insensitive air monitor for radioactive gases | |
Cumming et al. | Efficient Low‐Level Counting System for C11 | |
JPH01100493A (en) | Nuclear fission type neutron detector | |
US4655994A (en) | Method for determining the operability of a source range detector | |
JPH0434828A (en) | Gamma-ray compensated neutron detector | |
US3221165A (en) | Device for measuring biological effect of radiation | |
JPS6340244A (en) | Neutron detector for atomic reactor | |
SU1076849A1 (en) | Wide-range pulse-current radiometric channel | |
JPS599594A (en) | Radiation monitoring device | |
Thurlow | Gamma and alpha compensated fission chamber | |
US8415638B2 (en) | Method for detecting high-energy radiation using low voltage optimized ion chamber | |
SU426572A1 (en) | Gas proportion inner filling counter | |
JP2023059468A (en) | Neutron detector, neutron monitor, and sensitivity calibration method for neutron detector | |
Todt Sr | Wide range neutron detection system | |
JP3728220B2 (en) | Γ-ray sensitivity test method for proportional counter neutron detector | |
JPH0418637B2 (en) |