JPH0377440B2 - - Google Patents

Info

Publication number
JPH0377440B2
JPH0377440B2 JP59129615A JP12961584A JPH0377440B2 JP H0377440 B2 JPH0377440 B2 JP H0377440B2 JP 59129615 A JP59129615 A JP 59129615A JP 12961584 A JP12961584 A JP 12961584A JP H0377440 B2 JPH0377440 B2 JP H0377440B2
Authority
JP
Japan
Prior art keywords
coating layer
water
hydrophilicity
mixture coating
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59129615A
Other languages
Japanese (ja)
Other versions
JPS618598A (en
Inventor
Kikuro Toyose
Koichi Hatanaka
Masanobu Fukui
Manabu Nonaka
Kenzo Oomura
Hideo Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12961584A priority Critical patent/JPS618598A/en
Publication of JPS618598A publication Critical patent/JPS618598A/en
Publication of JPH0377440B2 publication Critical patent/JPH0377440B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は表面の親水性が優れた熱交換器用フイ
ン材に関し、さらに詳しくは、熱交換器用アルミ
ニウムまたはアルミニウム合金に対する脱脂性お
よび親水性の持続性が優れた被覆層を有する表面
の親水性が優れた熱交換器用フイン材に関するも
のである。 [従来技術] 一般的に、アルミニウムまたはアルミニウム合
金は熱伝導性、成形性、耐蝕性に優れていること
から、熱交換器用のフイン材として広く使用され
ている。 そして、このアルミニウムまたはアルミニウム
合金よりなる熱交換器用フイン材に親水性を付与
し、水濡れ性を良好なものとすることにより、熱
交換器として使用する際の通風抵抗を低下させ、
熱効率を向上させ、騒音の低下を図る場合があ
る。 このような親水性処理としては、珪酸塩処理、
ベーマイト処理等があり、これら従来技術として
の代表的なものに、特開昭58−106397号公報に記
載のものが提案されているが、この従来技術には
次に説明する2つの問題点がある。即ち、 (1) 成形前に処理を行なつた場合、成形時のプレ
ス油が溶剤脱脂時に除去されずに残存して揆水
性となること。 (2) 長期使用中に空気中の油分が付着して揆水性
となること。 である。 この2つの問題点について説明する。 第1の問題点は、親水性処理を成形前に行なつ
た場合、成形時の加工潤滑のためプレス油が塗布
され、成形時の脱脂工程でプレス油を洗浄除去す
るのであるが、この脱脂工程において脱脂が不充
分となり易く、プレス油がフイン表面に残存して
水はじきを起して親水性表面が得られなくなるこ
とがあり、このため、成形前に親水性処理を行な
い熱交換器を組立てた後に親水性を得るために
は、プレス油が脱脂工程で充分に脱脂されるよう
な親水性処理が必要である。 (2) 第2の問題点は、親水性処理を施した熱交換
器を運転する間に、フイン表面が結露する場合
(通常、冷房運転の室内機および暖房運転の室
外機)フイン表面は親水性を示すが、フイン表
面が結露しない乾燥運転の際に空気中の油分が
付着すると、その後フイン表面が結露する運転
を行なつてもフイン表面の油分による汚染のた
め水はじきを起して親水性表面が得られなくな
る。即ち、長期にわたつて親水性を持続させる
には結露運転と乾燥運転との繰返しによるフイ
ン表面が汚染を受けた後であつても水濡れ性を
有する高度な親水性が要求される。 [発明が解決しようとする問題点] 本発明は上記に説明したような従来技術におけ
る問題点に鑑みなされたものであり、プレス成形
後の脱脂によりプレス油を完全に除去することが
でき、かつ、熱交換器として使用する際の結露運
転と乾燥運転の繰返しによつても親水性が低下し
ない高度な親水性被覆層を有する表面の親水性が
優れた熱交換器用フイン材を提供するものであ
る。 [問題点を解決するための手段] 本発明に係る表面の親水性が優れた熱交換器用
フインの特徴とするところは、 アルミニウムまたはアルミニウム合金表面に、
スチレンマレイン酸共重合体、ポリアクリルアミ
ド、ブチレンマレイン酸共重合体、ポリアクリル
酸或いはこれらの塩のうちの1種または2種以上
の水溶性有機高分子物質と、次式 xM2O・ySiO2 (但し、M=Li、Na、K) (y/x≧2 ) で示される珪酸塩化合物との混合物被覆層が設け
られており、この混合物被覆層を構成する水溶性
有機高分子物質と珪酸塩化合物の配合比が重量比
で2:1〜1:4であり、かつ、混合物被覆層の
被覆厚さが0.05〜2μであることにある。 なお、混合物被覆層の下地として、クロメー
ト、ベーマイト、珪酸塩有機被膜のうちから選択
される被覆層を設けることができる。 本発明に係る表面の親水性が優れた熱交換器用
フイン材について以下詳細に説明する。 本発明に係る表面の親水性が優れた熱交換器用
フイン材において、アルミニウムまたはアルミニ
ウム合金表面に設けられる混合物被覆層として
は、スチレンマレイン酸共重合体、ポリアクリル
アミド、ブチレンマレイン酸共重合体、ポリアク
リル酸或いはこれらの塩のうちの1種または2種
以上の水溶性有機高分子物質の中にxM2O・
ySiO2(M=Li、Na、K)の式で示され、かつ、
y/xが2以上である珪酸塩化合物が分散した混
合物であり、この混合物は塗布した後の乾燥工程
においてゲル化して多孔質な被覆層となるもので
ある。 そして、脱脂工程において脱脂性の弱い1.1.1
トリクロルエタンのような有機溶剤を使用した場
合でも、上記した水溶性有機高分子物質がプレス
油の脱脂溶剤への溶出を助長するので、成形前に
混合物被覆層が設けられ、成形時にプレス油が塗
布されていても、溶剤脱脂によりプレス油が容易
に除去され、親水性表面が得られる。 また、混合物被覆層が多孔質であるので乾燥運
転により該被覆層表面が大気中の油分による汚染
を受けても、混合物被覆層内部に多孔質の親水性
表面を有しているので結露運転に際して水濡れ性
を示し、汚染を受けた部分も水濡れにより油分が
流されて親水性を回復する。即ち、結露運転と乾
燥運転との繰返しを行なつても長期間にわたり親
水性を保持し、優れた親水持続性を発揮する。 なお、本発明に係る表面の親水性が優れた熱交
換器用フイン材に設けられる被覆混合物は、多孔
質とするためには上記したような水溶性有機高分
子物質と上記した式により限定される珪酸塩化合
物との両者が混合されることが必要であり、この
うち何れか一つでは多孔質な混合物被覆層を得る
ことはできない。 しかして、この水溶性有機高分子物質と珪酸塩
化合物の配合比は重量比で、2:1〜1:4が好
ましい範囲である。この範囲において緻密な多孔
質皮膜が生成し、水溶性有機高分子物質がこの範
囲を大幅に越えると、プレス油の脱脂性は優れて
いるが、皮膜自体水に対し溶解し易く、長期にわ
たる親水持続性が期待できず、また、この範囲未
満ではプレス油の脱脂性が充分でない場合であ
り、好ましくない。 また、珪酸塩化合物xM2O・ySiO2(M=Li、
Na、K)の式のxとyとのy/xは2以上とし
なければならず、2未満では多孔質である混合物
被覆層を得ることができない。 この混合物被覆層をアルミニウムまたはアルミ
ニウム合金に塗布する際の濃度としては、塗布方
法により適宜選択すればよく、工業的に一般的で
あるロールコート方式では0.5〜10%、また、デ
イツプ方式では2〜10%の濃度とするのがよい。 この混合物被覆層の被覆厚さは、0.05〜2μとす
るのが好ましく、0.05μ未満では優れた親水性能
が得られず、また、2μを越えると親水性の効果
は飽和し、外観的にムラを生じるようになり、か
つ、不経済である。しかし、好ましくは0.1〜1μ
である。 なお、上記に詳述した混合物被覆層の下地とし
て、クロメート、ベーマイトまたは珪酸塩のうち
から選んだ被覆層を設けることにより耐蝕性およ
び親水性を兼ね備えた層とすることもできる。 [実施例] 本発明に係る表面の親水性が優れた熱交換器用
フイン材の実施例を説明する。 実施例 第1表に示す実施例1〜6は脱脂済のアルミニ
ウム材に混合物被覆層を設けた本発明の表面の親
水性が優れた熱交換器用フイン材であり、実施例
7〜10はアルミニウム材に下地処理材を設けその
上に混合物被覆層を設けた同じく本発明に係る表
面の親水性が優れた熱交換器用フイン材であり、
また、比較例は1〜5で、このうち比較例4は珪
酸塩被覆だけで、また、比較例5はベーマイト被
覆だけである。 第2表には脱脂性および親水持続性について調
査した結果を示す。 A項は脱脂性評価であり、実施例1〜10、比較
例1〜5は、共に成形前に夫々の被覆層を設けて
おき、プレス油塗布(プレス油動粘度9.9cst/40
℃)→成形→溶剤脱脂(1.1.1トリクロルエタン
温浴1分→冷浴1分→蒸気1分)→親水性評価の
順に行なつた。 親水性評価法 1) 水濡れ性;水中へ浸漬し取り出し後水はじ
きを観察。 2) 水接触角;ゴニオメータにより測定。 B項は親水持続性の評価であり、実施例1〜
10、比較例1〜5は夫々被覆層を設けたアルミニ
ウムフイン材であり、これに対して流水→乾燥の
サイクルを14回繰返した後に親水性評価を行なつ
た。 流水→乾燥サイクル 流水5l/Hr×8rs→加熱80℃×16Hrsを1サイ
クルとし、これを繰返し行なう。
[Industrial Field of Application] The present invention relates to a fin material for heat exchangers with excellent surface hydrophilicity, and more specifically, to a coating layer with excellent degreasing properties and long-lasting hydrophilicity for aluminum or aluminum alloys for heat exchangers. The present invention relates to a heat exchanger fin material having excellent surface hydrophilicity. [Prior Art] In general, aluminum or aluminum alloys are widely used as fin materials for heat exchangers because they have excellent thermal conductivity, formability, and corrosion resistance. By imparting hydrophilicity to the heat exchanger fin material made of aluminum or aluminum alloy and improving water wettability, ventilation resistance when used as a heat exchanger is reduced,
It may improve thermal efficiency and reduce noise. Such hydrophilic treatments include silicate treatment,
There are boehmite treatments, etc., and the one described in Japanese Unexamined Patent Application Publication No. 106397/1982 is a representative example of these conventional techniques, but this conventional technique has two problems as described below. be. That is, (1) If the treatment is performed before molding, the press oil during molding will remain without being removed during solvent degreasing and become water repellent. (2) During long-term use, oil in the air may adhere and become water repellent. It is. These two problems will be explained. The first problem is that when hydrophilic treatment is performed before molding, press oil is applied for processing lubrication during molding, and the press oil is washed away during the degreasing process during molding. In the process, degreasing tends to be insufficient, and press oil may remain on the fin surface, causing water repellency and making it impossible to obtain a hydrophilic surface.For this reason, hydrophilic treatment is performed before molding and the heat exchanger is In order to obtain hydrophilic properties after assembly, a hydrophilic treatment is required so that the press oil is sufficiently degreased in the degreasing process. (2) The second problem is when dew condenses on the fin surface while operating a heat exchanger that has been treated to make it hydrophilic (usually indoor units in cooling operation and outdoor units in heating operation). However, if oil in the air adheres during drying operation without condensation on the fin surface, water will repel and become hydrophilic due to contamination by oil on the fin surface even if the fin surface is subsequently operated in a drying operation in which dew condensation occurs. It becomes impossible to obtain a sexual surface. That is, in order to maintain hydrophilicity over a long period of time, a high level of hydrophilicity is required that allows water wettability even after the fin surface is contaminated due to repeated dew condensation and drying operations. [Problems to be Solved by the Invention] The present invention was made in view of the problems in the prior art as explained above, and it is possible to completely remove press oil by degreasing after press molding, and To provide a fin material for a heat exchanger, which has a highly hydrophilic coating layer that does not reduce its hydrophilicity even after repeated dew condensation and drying operations when used as a heat exchanger, and has an excellent surface hydrophilicity. be. [Means for Solving the Problems] The heat exchanger fins of the present invention with excellent hydrophilic surfaces are characterized by:
One or more water-soluble organic polymer substances selected from styrene-maleic acid copolymer, polyacrylamide, butylene-maleic acid copolymer, polyacrylic acid, or salts thereof, and the following formula: xM 2 O・ySiO 2 (However, M=Li, Na, K) (y/x≧2) A mixture coating layer with a silicate compound represented by The compounding ratio of the salt compound is 2:1 to 1:4 by weight, and the coating thickness of the mixture coating layer is 0.05 to 2μ. Note that a coating layer selected from chromate, boehmite, and silicate organic coatings can be provided as a base for the mixture coating layer. The heat exchanger fin material with excellent surface hydrophilicity according to the present invention will be described in detail below. In the heat exchanger fin material with excellent surface hydrophilicity according to the present invention, the mixture coating layer provided on the aluminum or aluminum alloy surface is made of styrene-maleic acid copolymer, polyacrylamide, butylene-maleic acid copolymer, polyester xM 2 O.
It is represented by the formula ySiO 2 (M=Li, Na, K), and
It is a mixture in which a silicate compound having y/x of 2 or more is dispersed, and this mixture gels in the drying process after being applied to form a porous coating layer. And, in the degreasing process, 1.1.1 with weak degreasing properties
Even when an organic solvent such as trichloroethane is used, the above-mentioned water-soluble organic polymer substances promote the elution of press oil into the degreasing solvent, so a mixture coating layer is provided before molding to prevent press oil from leaking during molding. Even if coated, the press oil is easily removed by solvent degreasing and a hydrophilic surface is obtained. In addition, since the mixture coating layer is porous, even if the surface of the coating layer is contaminated by oil in the atmosphere during drying operation, the mixture coating layer has a porous hydrophilic surface inside, so it will not cause dew condensation during operation. It exhibits water wettability, and when contaminated areas are wetted with water, oil is washed away and their hydrophilic properties are restored. That is, even if dew condensation operation and drying operation are repeated, hydrophilicity is maintained for a long period of time, and excellent hydrophilicity is maintained. In addition, in order to make the coating mixture provided on the heat exchanger fin material with excellent surface hydrophilicity according to the present invention porous, it is limited by the above-mentioned water-soluble organic polymer substance and the above-mentioned formula. It is necessary to mix both the silicate compound and the silicate compound, and it is not possible to obtain a porous mixture coating layer with either one of them. Therefore, the mixing ratio of the water-soluble organic polymer substance and the silicate compound is preferably in the range of 2:1 to 1:4 in terms of weight ratio. In this range, a dense porous film is formed, and if the water-soluble organic polymer substance significantly exceeds this range, the press oil has excellent degreasing properties, but the film itself is easily soluble in water and has a long-term hydrophilicity. Sustainability cannot be expected, and if it is less than this range, the press oil may not have sufficient degreasing properties, which is not preferable. In addition, silicate compound xM 2 O・ySiO 2 (M=Li,
y/x of x and y in the formula (Na, K) must be 2 or more; if it is less than 2, a porous mixture coating layer cannot be obtained. The concentration when applying this mixture coating layer to aluminum or aluminum alloy may be selected as appropriate depending on the coating method, and is 0.5 to 10% in the industrially common roll coating method, and 2 to 2% in the dip method. A concentration of 10% is recommended. The coating thickness of this mixture coating layer is preferably 0.05 to 2μ; if it is less than 0.05μ, excellent hydrophilic performance cannot be obtained, and if it exceeds 2μ, the hydrophilic effect is saturated and the appearance is uneven. It is also uneconomical. But preferably 0.1~1μ
It is. In addition, by providing a coating layer selected from chromate, boehmite, or silicate as a base for the mixture coating layer detailed above, a layer having both corrosion resistance and hydrophilicity can be obtained. [Example] An example of a heat exchanger fin material with excellent surface hydrophilicity according to the present invention will be described. Examples Examples 1 to 6 shown in Table 1 are fin materials for heat exchangers with excellent hydrophilicity on the surface of the present invention, in which a mixture coating layer is provided on a degreased aluminum material, and Examples 7 to 10 are aluminum materials. A fin material for a heat exchanger with excellent surface hydrophilicity according to the present invention, in which a base treatment material is provided on the material and a mixture coating layer is provided thereon.
Comparative Examples 1 to 5 are Comparative Examples 1 to 5, among which Comparative Example 4 has only a silicate coating, and Comparative Example 5 has only a boehmite coating. Table 2 shows the results of an investigation on degreasing properties and hydrophilicity. Section A is a degreasing property evaluation, and in Examples 1 to 10 and Comparative Examples 1 to 5, respective coating layers were provided before molding, and press oil was applied (press oil kinematic viscosity 9.9cst/40
°C) → molding → solvent degreasing (1.1.1 trichloroethane hot bath for 1 minute → cold bath for 1 minute → steam for 1 minute) → hydrophilicity evaluation. Hydrophilicity evaluation method 1) Water wettability: Immerse in water and observe water repellency after taking out. 2) Water contact angle; measured with a goniometer. Section B is an evaluation of hydrophilicity sustainability, and includes Examples 1-
10. Comparative Examples 1 to 5 were aluminum fin materials each provided with a coating layer, and the hydrophilic properties were evaluated after repeating the cycle of running water and drying 14 times. Running water → drying cycle One cycle is running water 5L/Hr x 8rs → heating 80℃ x 16Hrs, and repeat this cycle.

【表】【table】

【表】 ※1:水溶性有機高分子物質/珪酸塩化合物
[Table] *1: Water-soluble organic polymer substances/silicate compounds

【表】【table】

【表】 水濡れ性〓○〓〓良、△〓〓少し悪、×〓〓悪。
[発明の効果] 以上説明したように、本発明に係る表面の親水
性が優れた熱交換器用フイン材は上記の構成を有
しているものであるから、プレス成形後の脱脂に
よりプレス油を完全に除去することができる優れ
た脱脂性と結露運転と乾燥運転の繰返しによつて
も親水性が低下しない優れた親水持続性を有する
熱交換器用フイン材である。
[Table] Water wettability〓○〓〓Good, △〓〓Slightly bad, ×〓〓Poor.
[Effects of the Invention] As explained above, since the fin material for a heat exchanger according to the present invention having an excellent surface hydrophilicity has the above structure, press oil can be removed by degreasing after press molding. This fin material for heat exchangers has excellent degreasing properties that can be completely removed, and excellent hydrophilicity that does not deteriorate even after repeated dew condensation and drying operations.

Claims (1)

【特許請求の範囲】 1 アルミニウムまたはアルミニウム合金表面
に、スチレンマレイン酸共重合体、ポリアクリル
アミド、ブチレンマレイン酸共重合体、ポリアク
リル酸或いはこれらの塩のうちの1種または2種
以上の水溶性有機高分子物質と、次式 xM2O・ySiO2 (但し、M=Li、Na、K) (y/x≧2) で示される珪酸塩化合物との混合物被覆層が設け
られており、この混合物被覆層を構成する水溶性
有機高分子物質と珪酸塩化合物の配合比が重量比
で2:1〜1:4であり、かつ、混合物被覆層の
被覆厚さが0.05〜2μであることを特徴とする表面
の親水性が優れた熱交換器用フイン材。 2 混合物被覆層の下地として、クロメート、ベ
ーマイト、珪酸塩のうちから選択される被覆層が
設けられていることを特徴とする特許請求の範囲
第1項記載の表面の親水性が優れた熱交換器用フ
イン材。
[Claims] 1. Water-soluble one or more of styrene-maleic acid copolymer, polyacrylamide, butylene-maleic acid copolymer, polyacrylic acid, or their salts on the surface of aluminum or aluminum alloy. A mixture coating layer of an organic polymer substance and a silicate compound represented by the following formula xM 2 O・ySiO 2 (where M=Li, Na, K) (y/x≧2) is provided. The blending ratio of the water-soluble organic polymer substance and silicate compound constituting the mixture coating layer is 2:1 to 1:4 by weight, and the coating thickness of the mixture coating layer is 0.05 to 2μ. Fin material for heat exchangers with excellent surface hydrophilicity. 2. A heat exchanger with excellent surface hydrophilicity according to claim 1, characterized in that a coating layer selected from chromate, boehmite, and silicate is provided as a base of the mixture coating layer. Dexterous Finn material.
JP12961584A 1984-06-23 1984-06-23 Fin material for heat exchanger whose surface hydrophilic nature is excellent Granted JPS618598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12961584A JPS618598A (en) 1984-06-23 1984-06-23 Fin material for heat exchanger whose surface hydrophilic nature is excellent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12961584A JPS618598A (en) 1984-06-23 1984-06-23 Fin material for heat exchanger whose surface hydrophilic nature is excellent

Publications (2)

Publication Number Publication Date
JPS618598A JPS618598A (en) 1986-01-16
JPH0377440B2 true JPH0377440B2 (en) 1991-12-10

Family

ID=15013842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12961584A Granted JPS618598A (en) 1984-06-23 1984-06-23 Fin material for heat exchanger whose surface hydrophilic nature is excellent

Country Status (1)

Country Link
JP (1) JPS618598A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093541A1 (en) 2008-01-24 2009-07-30 Nippon Light Metal Company, Ltd. Coated metal material
JP2011163714A (en) * 2010-02-12 2011-08-25 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2012187607A (en) * 2011-03-10 2012-10-04 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger
WO2018207416A1 (en) 2017-05-08 2018-11-15 日本軽金属株式会社 Aluminum coated material and method for producing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297143A (en) * 1986-06-16 1987-12-24 株式会社神戸製鋼所 Aluminum fin material for heat exchanger having excellent hydrophilic nature and corrosion resistance
JPH01240688A (en) * 1988-03-18 1989-09-26 Kobe Steel Ltd Aluminum fin material for heat exchanger
JPH0225580A (en) * 1988-07-15 1990-01-29 Kobe Steel Ltd Surface-treated aluminum sheet for heat exchanger and production thereof
JP2748027B2 (en) * 1989-08-22 1998-05-06 三菱アルミニウム株式会社 Heat exchanger and method of manufacturing the same
US5350791A (en) * 1992-07-02 1994-09-27 Henkel Corporation Hydrophilicizing treatment for metal objects
JP2000256579A (en) * 1999-03-08 2000-09-19 Nippon Light Metal Co Ltd Hydrophilic coating material composition and hydrophilic coating film formed from the same composition
JP2010223520A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP5793046B2 (en) * 2011-10-06 2015-10-14 三菱アルミニウム株式会社 Aluminum fin material for heat exchanger and heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528443A (en) * 1978-08-18 1980-02-29 Matsushita Refrigeration Cooler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528443A (en) * 1978-08-18 1980-02-29 Matsushita Refrigeration Cooler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093541A1 (en) 2008-01-24 2009-07-30 Nippon Light Metal Company, Ltd. Coated metal material
JP2011163714A (en) * 2010-02-12 2011-08-25 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2012187607A (en) * 2011-03-10 2012-10-04 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger
WO2018207416A1 (en) 2017-05-08 2018-11-15 日本軽金属株式会社 Aluminum coated material and method for producing same

Also Published As

Publication number Publication date
JPS618598A (en) 1986-01-16

Similar Documents

Publication Publication Date Title
JPH0377440B2 (en)
JPH09502924A (en) Non-abrasive, corrosion-resistant hydrophilic coating on aluminum surface, coating method and coating
JPH03252461A (en) Lubricative treating agent for making hydrophilic and treatment
JPS60205194A (en) Fin member material for heat exchanger
EP1425083B1 (en) Enthalpy exchanger
JP2000239895A (en) Aluminum surface treated material excellent in water repellent property and its production
JPS61264040A (en) Treatment solution for forming hydrophilic film
JPH05322469A (en) Aluminum fin material for heat exchanger of air conditioner, whose surface is treated with hydrophilic coating
JPH05125555A (en) Precoated fin material excellent in press formability
JPH02103133A (en) Aluminum fin material for heat exchanger
JPH1183384A (en) Pre-coated fin material for heat exchanger
JPS63262238A (en) Heat-exchanger fin material
JPS62297143A (en) Aluminum fin material for heat exchanger having excellent hydrophilic nature and corrosion resistance
JPS61185570A (en) Composition for coating fin materials
JPH1143777A (en) Aluminum or aluminum alloy material excellent in water repellency and frosting preventability and its production
JPH0424632B2 (en)
JPS63238285A (en) Production of heat exchange medium
JPH07151489A (en) Hydrophilic surface-treated aluminum fin material corresponding to volatile oil, and hydrophilic coating agent
JPH07188585A (en) Fine fiber-containing hydrophilic treating agent, and fin material made of al or al alloy treated with the same treating agent for heat exchanger
JPH07316443A (en) Water-base resin composition
JP2002161377A (en) Fin material for heat exchanger with non-chromate coating type primary coating layer, and heat exchanger having the same
JPS60221582A (en) Aluminum fin material for heat exchanger
JPH0223265B2 (en)
JPS63262239A (en) Heat-exchanger fin material
JPH04251193A (en) Material of self-lubricating aluminum fin for heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term