JPH0377261A - Square-type battery - Google Patents

Square-type battery

Info

Publication number
JPH0377261A
JPH0377261A JP1211898A JP21189889A JPH0377261A JP H0377261 A JPH0377261 A JP H0377261A JP 1211898 A JP1211898 A JP 1211898A JP 21189889 A JP21189889 A JP 21189889A JP H0377261 A JPH0377261 A JP H0377261A
Authority
JP
Japan
Prior art keywords
battery
press
welded
stage
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1211898A
Other languages
Japanese (ja)
Inventor
Shigeru Yamashita
茂 山下
Takeshi Tamura
田村 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1211898A priority Critical patent/JPH0377261A/en
Publication of JPH0377261A publication Critical patent/JPH0377261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To form a proper press depth while preventing damage of a welded part by press-molding a part to be processed of an outer can in a prescribed position for improvement of battery properties. CONSTITUTION:An outer can 1 is made of a cold-rolled steel sheet and a battery cover 2 is welded in the open part of the can. To improve the properties of a battery, a concaved part with press depth X is formed by press-machining in the side of the outer can 1 in the layered direction. The press depth X is determined properly according to the thickness of the battery can, etc. The distance Y between the welded part and the end of press-machined part and the press depth X satisfy the following relations so as not to damage the welded part; Y>=AX+C, 10<A<15, A=14t+6.1 where C is a constant number and 0<C<0.18 and (t) represents thickness of the outer can.

Description

【発明の詳細な説明】 皮果≧旦祉且光互 本発明は、冷間圧延鋼板から戒り内部空間に電池発電要
素が収納された外装缶と、この外装缶の開口部に全周溶
接された電池蓋とから成り、上記電池発電要素の積層方
向に上記外装缶がプレス加工された角型電池に関する。
[Detailed Description of the Invention] The present invention provides an exterior can made of cold-rolled steel plate in which a battery power generating element is housed in the interior space, and an opening of the exterior can that is welded all around. The present invention relates to a prismatic battery comprising a battery lid and a battery lid, the outer can being pressed in the stacking direction of the battery power generation elements.

従来生技班 上記角型電池においては、電池発電要素に一定の圧力を
加えて電池性能(容量、サイクル特性)の向上を図るべ
く、特開昭62−126566号公報に示すように、外
装缶を電池発電要素の積層方向にプレス加工するような
製造方法が開示されている。
Conventional Production Engineering Team In the above-mentioned prismatic batteries, in order to improve battery performance (capacity, cycle characteristics) by applying a certain pressure to the battery power generation element, an outer can was used as shown in Japanese Patent Application Laid-Open No. 126566/1983. A manufacturing method is disclosed in which the battery power generating element is pressed in the stacking direction of the battery power generating element.

ここで、電池蓋を外装缶と一体化するに際して、角型電
池は円筒型電池に比べて均一なカシメが難しいので溶接
により両者を固定する。そして、しかる後に上記プレス
加工を行っていた。
Here, when integrating the battery lid with the exterior can, since it is difficult to swage uniformly a prismatic battery compared to a cylindrical battery, the two are fixed by welding. After that, the above-mentioned press working was performed.

<”しよ゛と る1且 しかしながら上記従来の構造では、溶接部から溶接部側
寄りプレス端部までの距離とプレス深さとの関係により
、プレス加工時に溶接部の破損が生じることがあるとい
う課題を有していた。
However, with the conventional structure described above, damage to the weld may occur during press processing due to the relationship between the distance from the weld to the press end closer to the weld and the press depth. I had an issue.

本発明はかかる現状に鑑みてなされたものであり、溶接
部の破損を防止して密閉性の向上を図ることができるこ
とになる角型電池を提供することを目的とする。
The present invention has been made in view of the current situation, and it is an object of the present invention to provide a prismatic battery that can prevent damage to welded parts and improve sealing performance.

i   ゛ るための 本発明は上記目的を達成するために、冷間圧延鋼板から
成り内部空間に電池発電要素が収納された外装缶と、こ
の外装缶の開口部に全周溶接された電池蓋とから成り、
上記電池発電要素の積層方向に上記外装缶がプレス加工
された角型電池において、溶接部から溶接部側寄りプレ
ス端部までの距離Yを、プレスの深さX(!:の関係に
おいて、下記式の条件に設定したことを特徴とする。
In order to achieve the above object, the present invention includes an outer can made of cold-rolled steel plate in which a battery power generating element is housed in the inner space, and a battery lid welded all around the opening of the outer can. It consists of
In a square battery in which the outer can is pressed in the stacking direction of the battery power generation element, the distance Y from the welding part to the pressed end closer to the welding part is determined by the following relationship between the pressing depth X (!: It is characterized by setting the condition of the expression.

Y≧AX+C 〔但し、io<A<15、A=1.4t+6.1(t:
外装缶の厚み)C:定数〕 在−一一里 上記の如く、Y;f:Xに関連付けて設定する場合には
、冷間圧延鋼板の引っ張り強度と伸びとの関係において
、冷間圧延鋼板が伸びても引っ張り強度は余り変化しな
い。したがって、プレス加工が施された部分がその周辺
部に与える力学的影響が少なくなるので、溶接部におい
て剥離等の不具合が発生するのを防止することができる
Y≧AX+C [However, io<A<15, A=1.4t+6.1(t:
Thickness of outer can) C: Constant] As mentioned above, when setting in relation to Y; f: Even when stretched, the tensile strength does not change much. Therefore, the mechanical influence of the press-formed part on the surrounding area is reduced, so that problems such as peeling at the welded part can be prevented from occurring.

裏−一施一一拠 〔予備実験I〕 深絞り用冷間圧延鋼板(以下、5PCEと称する)の厚
みtを変化させ(0,25fl、0. 4mm、0.6
B)−ζ引っ張り試験を行い、引っ張り強度と伸び率と
の関係を調べたので、その結果を第2図に示す。
Ura-Ichi-ichi-ichi [Preliminary Experiment I] The thickness t of the cold-rolled steel plate for deep drawing (hereinafter referred to as 5PCE) was varied (0.25 fl, 0.4 mm, 0.6
B)-ζ A tensile test was conducted to examine the relationship between tensile strength and elongation, and the results are shown in FIG.

第2図に示すように、何れの厚みの5PCBであっても
、引っ張り強度と伸び率との関係は3段階に分割できる
ことが認められる。第1段階及び第3段階では引っ張り
強度と伸びが略比例しているが、第2段階は引っ張り強
度は余り変化せず伸び率のみ変化していることが分かる
As shown in FIG. 2, it is recognized that the relationship between tensile strength and elongation rate can be divided into three stages for any thickness of 5PCB. It can be seen that in the first and third stages, the tensile strength and elongation are approximately proportional, but in the second stage, the tensile strength does not change much and only the elongation rate changes.

ここで、第1段階は引っ張り強度が小さいので問題なく
、また第2段階も引っ張り強度が余り大きくないので問
題はない。これに対して、第3段階では引っ張り強度が
大きくなり過ぎる。したがって、少なくとも5PCBの
プレス時の伸びが第2段階となるように、第1図に示す
溶接部から溶接部側寄りプレス端部までの距離Yをプレ
スの深さXと関係付ければよい。
Here, there is no problem in the first stage because the tensile strength is low, and there is no problem in the second stage because the tensile strength is not so large. On the other hand, in the third stage, the tensile strength becomes too large. Therefore, the distance Y from the weld to the press end closer to the weld as shown in FIG. 1 may be related to the press depth X so that the elongation of at least 5 PCBs during pressing is at the second stage.

ここで、上記関係を角型電池に適用した場合について、
第3図(’a)(b)を用いて説明する。
Here, when the above relationship is applied to a square battery,
This will be explained using FIGS. 3('a) and (b).

尚、第3図(a)(b)において、1は外装缶、2は電
池蓋、3は溶接部、4はプレス型である。
In addition, in FIGS. 3(a) and 3(b), 1 is an exterior can, 2 is a battery lid, 3 is a welding part, and 4 is a press mold.

第3図(a)に示すように、プレス型4を外装缶面に押
圧して、第3図(、b )に示すようにamだけ外装缶
1を電池内部方向に変形させる。そうすると、溶接部か
ら溶接部側寄りプレス端部までの距離Yは、bllmか
らa”+b2に伸びる。ここで、伸び率αは下記(1)
式のように定義する。
As shown in FIG. 3(a), the press die 4 is pressed against the surface of the outer can to deform the outer can 1 by an amount am inward toward the inside of the battery as shown in FIG. 3(,b). Then, the distance Y from the weld to the press end closer to the weld extends from bllm to a''+b2.Here, the elongation rate α is given by the following (1).
Define it as in Eq.

σセ         ・・・(1) また、上記プレス時において、引っ張り強度は、プレス
機の外装缶への加圧力Pと溶接部30反発力Rとの合成
角Qによって与えられるが、溶接部の反発力Rを小さく
し且つ安定した値にするためには、上記の如く外装缶1
の伸びが第2段階の伸びとなるように距離Yを設定する
必要がある。
σSe ... (1) In addition, during the above pressing, the tensile strength is given by the composite angle Q of the pressurizing force P on the outer can of the press and the repulsive force R of the welded part 30, but the repulsion of the welded part In order to reduce the force R and make it a stable value, the outer can 1 is
It is necessary to set the distance Y so that the elongation becomes the second stage elongation.

ところが、電池性能の改良に必要なプレス深さXは電池
缶の厚み等により異なるため、必ずしも第2段階の伸び
にはいるとは限らない。そこで、第2段階の伸び範囲に
入れるためには下記の如く調整する必要がある。
However, since the pressing depth X required to improve battery performance varies depending on the thickness of the battery can, etc., the second stage of elongation is not necessarily reached. Therefore, in order to enter the second stage elongation range, it is necessary to make the following adjustments.

〔予備実験■〕[Preliminary experiment■]

第4図はプレス深さXを変えた(0. 4.im、  
0゜2m、0.1m)場合における溶接部から溶接部側
寄りプレス端部までの距離Yと伸び率αとの関係を示す
グラフである。尚、同図における直線は、前記第2図に
おける第2段階から第3段階に移行する点である。具体
的には、外装缶の厚みt=Q。
Figure 4 shows the press depth X changed (0.4.im,
0°2m, 0.1m) is a graph showing the relationship between the distance Y from the welded part to the press end closer to the welded part and the elongation rate α. Incidentally, the straight line in the figure is the point where the second stage in FIG. 2 shifts to the third stage. Specifically, the thickness of the outer can is t=Q.

6flの場合には伸び率約100.2%、外装缶の厚み
t−0,4mの場合には伸び率約100.4%、外装缶
の厚みt=0.25uの場合には伸び率約100.6%
である。
In the case of 6fl, the elongation rate is approximately 100.2%, in the case of the outer can thickness t-0.4m, the elongation rate is approximately 100.4%, and in the case of the outer can thickness t = 0.25u, the elongation rate is approximately 100.6%
It is.

第4図から明らかなように、伸び率αはプレス深さXと
溶接部から溶接部側寄りプレス端部までの距離Yとに影
響を受けるが、ブレス端部の位置を調整することによっ
てプレス深さXが変わっても外装缶の伸びが第2段階の
伸びとなるようにすることが出来る。具体的には下記第
1表に示すような値に設定すればよい。
As is clear from Fig. 4, the elongation rate α is affected by the press depth X and the distance Y from the weld to the press end closer to the weld. Even if the depth X changes, the elongation of the outer can can be made to be the second stage elongation. Specifically, the values may be set as shown in Table 1 below.

第1表 〔考察I〕 伸び率αを第2段階に確保する上で、プレス深さXと溶
接部から溶接部側寄りブレス端部までの距離Yとの関係
を調べたので、その結果を第6図に示す。尚、第6図の
プロット点は、第4図における外装缶の厚み(本考察で
は0.4mのもの)の直線とプレス深さの曲線との交点
を調べ、これをプロットしたものであり、第4図のC9
〜C3点と第6図のC+””C3点とが対応している。
Table 1 [Consideration I] In order to secure the elongation rate α at the second stage, we investigated the relationship between the press depth It is shown in FIG. The plot points in Figure 6 are obtained by examining the intersection of the straight line of the thickness of the outer can (0.4 m in this discussion) and the press depth curve in Figure 4, and plotting this. C9 in Figure 4
~C3 point corresponds to C+""C3 point in FIG.

第6図のXの値とYの値とのプロット点を回帰分析する
と、Y=10.96X+0.03が第2段階と第3段階
との境界であるので、Y210゜96X十0.03の範
囲であれば、第2段階の伸びに入ることが認められる。
A regression analysis of the plot points of the X value and Y value in Figure 6 shows that Y = 10.96X + 0.03 is the boundary between the second and third stages, so Y210°96 If it is within this range, it is recognized that it will enter the second stage of elongation.

〔考察■〕[Consideration■]

外装缶の厚みが0.25mの場合に、いかなる範囲で伸
び率αが第2段階に入るかを、上記考察Iと同様にして
調べたので、その結果を第6図に示す。尚、第4図のd
、〜d5点と第6図の41〜41点とが対応している。
When the thickness of the outer can is 0.25 m, the range in which the elongation rate α falls into the second stage was investigated in the same manner as in Consideration I above, and the results are shown in FIG. In addition, d in Figure 4
, ~d5 points and points 41 to 41 in FIG. 6 correspond.

この結果、Y=10Xが第2段階と第3段階との境界で
あるので、Y≧lOXの範囲であれば、第2段階の伸び
に入ることが認められる。
As a result, since Y=10X is the boundary between the second stage and the third stage, it is recognized that the elongation is in the second stage if Y≧lOX.

〔考察■〕[Consideration■]

外装缶の厚みが0.6mmの場合に、いかなる範囲で伸
び率αが第2段階に入るかを、上記分析Iと同様にして
調べたので、その結果を第6図に示す。尚、第4図のe
l”−C3点と第6図の01〜03点とが対応している
When the thickness of the outer can is 0.6 mm, the range in which the elongation rate α falls into the second stage was investigated in the same manner as in Analysis I above, and the results are shown in FIG. In addition, e in Figure 4
The l''-C3 point corresponds to points 01 to 03 in FIG.

この結果、Y=14.82X+0.175が第2段階と
第3段階との境界であるので、Y≧14゜82X+0.
175の範囲であれば、第2段階の伸びに入ることが分
かる。
As a result, since Y=14.82X+0.175 is the boundary between the second stage and the third stage, Y≧14°82X+0.
If it is within the range of 175, it can be seen that it is in the second stage of growth.

〔結論〕[Conclusion]

上記考察I〜考察■の結果から、Y≧AX+Cという式
において、10<A<15、O<C<O。
From the results of Consideration I to Consideration II above, in the formula Y≧AX+C, 10<A<15, O<C<O.

工8の範囲であれば良いことが認められる。It is recognized that it is acceptable as long as it is within the range of 8.

また、上記Aと外装缶の厚みtとの関係は、第6図のA
、atとのプロット点の回帰分析より、A=14t+6
.1という式で表される。
Also, the relationship between the above A and the thickness t of the outer can is A in Fig. 6.
, from regression analysis of plot points with at, A=14t+6
.. It is expressed by the formula 1.

〔実施例〕 本発明の角型電池は、第5図(a)〜(C)に示すよう
に、厚み0.4fiの5PCBから成る外装缶1を有し
ており、この外装缶1内には正極板と負極板とがセパレ
ータを介して交互に積層された電池発電要素が収納され
ている。上記外装缶の開口には電池蓋2が溶接されてお
り、且つ電池発電要素の積層方向における外装缶は、プ
レス加工により凹状となっている。尚、この角型電池の
外形寸法は、高さ64fl×幅16鶴×厚み5.6fl
である。
[Example] As shown in FIGS. 5(a) to 5(C), the prismatic battery of the present invention has an outer can 1 made of 5PCB with a thickness of 0.4 fi. A battery power generating element is housed in which positive electrode plates and negative electrode plates are alternately stacked with separators in between. A battery lid 2 is welded to the opening of the exterior can, and the exterior can is pressed into a concave shape in the stacking direction of the battery power generating elements. The external dimensions of this square battery are height 64 fl x width 16 fl x thickness 5.6 fl.
It is.

この場合、引っ張り強度と伸びの関係は前記第2図に示
す関係(t=0. 4111)を有している。
In this case, the relationship between tensile strength and elongation is as shown in FIG. 2 (t=0.4111).

このグラフより、伸び率α=0.1〜0.4%の間であ
ることが望ましい。特に、伸び率αを最大値より若干小
さくなるように設定すれば、プレス時の圧力等が変化し
ても外装缶の伸びが第2段階の伸びとなるので、溶接部
分での破損を確実に防止することができる。そこで、本
実施例では、伸び率α=0.3%に設定する。
From this graph, it is desirable that the elongation rate α is between 0.1 and 0.4%. In particular, if the elongation rate α is set to be slightly smaller than the maximum value, the elongation of the outer can will be at the second stage even if the pressure during pressing changes, which will ensure that damage at the welded part is not caused. It can be prevented. Therefore, in this embodiment, the elongation rate α is set to 0.3%.

一方、性能改良のために必要なプレス深さ又は表裏各々
0.2fiが必要である。
On the other hand, a pressing depth of 0.2 fi on each of the front and back surfaces is necessary for performance improvement.

4゜ これらのことを考慮して、上記第4図を見てみると、溶
接部から溶接部側寄りプレス端部までの距離Yは約3t
m以上離すことが必要であることが認められる。
4゜Taking these things into consideration, looking at Figure 4 above, the distance Y from the weld to the press end closer to the weld is approximately 3t.
It is recognized that it is necessary to maintain a distance of at least m.

以上より、本実施例の角型電池においては、第5図(a
)〜(c)のA、 B、 C,Dの値(w )は、A=
59、B=12、X=0.2、Y=3としてプレスを行
えばよい、この条件でプレスすれば、プレス前後におい
て溶接部が破損するのを確実に防止することができる。
From the above, in the prismatic battery of this example, Fig. 5 (a
) to (c), the values (w) of A, B, C, and D are A=
59, B=12, X=0.2, and Y=3. If pressing is performed under these conditions, it is possible to reliably prevent the welded portion from being damaged before and after pressing.

光里坐並来 以上説明したように本発明によれば、電池性能を改良す
るために、外装缶のプレス加工を行った場合であっても
1.プレス加工による溶接部の破損を極めて少な(する
ことができるので、電池の歩留りを飛躍的に向上させる
ことができるという効果を奏する。
As explained above, according to the present invention, even when the outer can is pressed in order to improve battery performance, 1. Since damage to the welded part due to press working can be minimized, the yield of batteries can be dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は角型電池のプレス加工部を示す
図であり、同図(a)は正面図、同図(b)は側面図、
同図(C)は平面図、第2図は5PCBを用いた場合の
伸び率と引っ張り強度との関係を示すグラフ、第3図(
a)(b)は外装缶のプレス時における変形と力のかか
り方とを示す図であって、同図(a)はプレス前の説明
図、同図(b)はプレス後の説明図、第4図はブL/ス
深さを変えた場合の溶接部から溶接部側寄りプレス端部
までの距離と伸び率との関係を示すグラフ、第5図(a
)〜(C)は本実施例におけるプレス寸法を示す図であ
り、同図(a)は正面図、同図(b)は側面図、同図(
C)は平面図、第6図は外装缶が第2段階の伸びとなる
ように設定するためにプレス深さと溶接部から溶接部側
寄りプレス端部までの距離との範囲を示すグラフである
。 1・・・外装缶、2・・・電池蓋、3・・・溶接部、4
・・・プレス型。
FIGS. 1(a) to 1(C) are diagrams showing the press working part of a square battery, in which FIG. 1(a) is a front view, FIG. 1(b) is a side view,
Figure (C) is a plan view, Figure 2 is a graph showing the relationship between elongation rate and tensile strength when using 5PCB, and Figure 3 (
Figures a) and (b) are diagrams showing the deformation and force applied during pressing of the outer can, in which Figure (a) is an explanatory diagram before pressing, Figure (b) is an explanatory diagram after pressing, Figure 4 is a graph showing the relationship between the distance from the weld to the press end closer to the weld and the elongation rate when the press length/brace depth is changed, and Figure 5 (a)
) to (C) are diagrams showing the press dimensions in this example, where (a) is a front view, (b) is a side view, and (
C) is a plan view, and Figure 6 is a graph showing the range of the press depth and the distance from the weld to the press end closer to the weld to set the outer can to the second stage of elongation. . 1... Exterior can, 2... Battery cover, 3... Welded part, 4
...Press type.

Claims (1)

【特許請求の範囲】[Claims] (1)冷間圧延鋼板から成り内部空間に電池発電要素が
収納された外装缶と、この外装缶の開口部に全周溶接さ
れた電池蓋とから成り、上記電池発電要素の積層方向に
上記外装缶がプレス加工された角型電池において、 溶接部から溶接部側寄りプレス端部までの距離Yを、プ
レスの深さXとの関係において、下記式の条件に設定し
たことを特徴とする角型電池。 Y≧AX+C 〔但し、10<A<15、A=14t+6.1(t:外
装缶の厚み)C:定数〕
(1) Consisting of an outer can made of cold-rolled steel plate with a battery power generating element housed in its interior space, and a battery lid welded all around the opening of the outer can, the battery power generating element is stacked in the stacking direction. A rectangular battery whose outer can is pressed, characterized in that the distance Y from the welded part to the pressed end closer to the welded part is set to the condition of the following formula in relation to the pressing depth X. Square battery. Y≧AX+C [However, 10<A<15, A=14t+6.1 (t: thickness of outer can) C: constant]
JP1211898A 1989-08-17 1989-08-17 Square-type battery Pending JPH0377261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211898A JPH0377261A (en) 1989-08-17 1989-08-17 Square-type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211898A JPH0377261A (en) 1989-08-17 1989-08-17 Square-type battery

Publications (1)

Publication Number Publication Date
JPH0377261A true JPH0377261A (en) 1991-04-02

Family

ID=16613470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211898A Pending JPH0377261A (en) 1989-08-17 1989-08-17 Square-type battery

Country Status (1)

Country Link
JP (1) JPH0377261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040879A (en) * 2004-07-29 2006-02-09 Samsung Sdi Co Ltd Lithium-ion secondary battery, case for lithium-ion secondary battery, and manufacturing method of lithium-ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040879A (en) * 2004-07-29 2006-02-09 Samsung Sdi Co Ltd Lithium-ion secondary battery, case for lithium-ion secondary battery, and manufacturing method of lithium-ion secondary battery
JP4633528B2 (en) * 2004-07-29 2011-02-16 三星エスディアイ株式会社 Lithium ion secondary battery and method for producing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US11444356B2 (en) Sealing plate
JP2000317531A (en) Method for pressing metal plate
CN114883706A (en) Apparatus and method for manufacturing pouch and method for manufacturing secondary battery
KR960039464A (en) Battery grid, method and apparatus for manufacturing the same
CA2330259A1 (en) Plate with regular projections, and device and method for forming the plate
EP0496889A4 (en) Separator and its manufacturing method
CA2463456A1 (en) Battery case and battery using the same
KR101744086B1 (en) Rechargeable battery and method of manufacturing the same
JP2003208876A (en) Square battery can and manufacturing method thereof, and square battery using the same
US20150183052A1 (en) Manufacturing method of electric storage apparatus and electric storage apparatus
JP2021099930A (en) Manufacturing method of junction separator for fuel cell
JP2016066583A (en) Square battery case for on-vehicle battery, and manufacturing method thereof
EP0732758A1 (en) A method to manufacture cell-cans
JPH0377261A (en) Square-type battery
CN218005148U (en) Battery shell and battery
WO2021192622A1 (en) Method for manufacturing battery case
JP2864175B2 (en) Prismatic sealed battery
EP3968444A1 (en) Battery and battery case included in battery, and battery case member for building battery case
JP2013048038A (en) Manufacturing method of cell and cell
JP2001023595A (en) Explosion protecting safety valve for sealed battery and its manufacture
JPS5966055A (en) Method of manufacturing soft metal electrode
JPH1099926A (en) Cold pressure welding method and die
US405733A (en) Art of preparing elements for secondary batteries
EP4080657B1 (en) Power storage module and method of manufacturing same
CN220679818U (en) Compression device, welding equipment and battery production system