JPH0377173A - Magnetic shielding method - Google Patents

Magnetic shielding method

Info

Publication number
JPH0377173A
JPH0377173A JP1212112A JP21211289A JPH0377173A JP H0377173 A JPH0377173 A JP H0377173A JP 1212112 A JP1212112 A JP 1212112A JP 21211289 A JP21211289 A JP 21211289A JP H0377173 A JPH0377173 A JP H0377173A
Authority
JP
Japan
Prior art keywords
shielding
shield
plan
matter
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1212112A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Ishii
石井 博義
Yukio Toda
戸田 幸生
Kazuhiro Nishimura
西村 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP1212112A priority Critical patent/JPH0377173A/en
Publication of JPH0377173A publication Critical patent/JPH0377173A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To confirm the shielding effect and to select an optimum execution process before execution of the work by turning a shielding matter into a model and producing a primary shielding matter plan so as to satisfy the requested shielding conditions to correct the shielding matter plan via a computer. CONSTITUTION:A primary shielding matter plan which satisfies the required shielding characteristic is studied based on the data given from the users. Then a magnetic field is calculated by means of a finite element method applying a computer. The decided primary shielding matter plan is defined as a finite element model in consideration of the magnetic symmetricalness. Then the magnetic environment conditions are grasped for the site where a shielding matter is installed. Thus a shielding environment is set. These data are inputted to the computer and the inside/outside magnetic field distributions of the pri mary shielding matter plan are calculated by the computer via the finite element method. These calculation results are evaluated and studied for production of the secondary and tertiary shielding matter plans, etc. Thus it is possible to decide an optimum shielding structure and to attain the reduction of cost.

Description

【発明の詳細な説明】 (目 的) 本発明は、磁気シールド法に関する 最近、医療機器、OA機器等の精密電子・電気機器の電
磁波、磁気による誤動作や、計測藁スを防止することが
重要視され、シールドルームの施工が増大している。
[Detailed Description of the Invention] (Purpose) The present invention has recently been developed regarding magnetic shielding methods, and it is important to prevent malfunctions and measurement problems caused by electromagnetic waves and magnetism in precision electronic and electrical equipment such as medical equipment and OA equipment. As a result, construction of shield rooms is increasing.

電磁波シールドを施す場合は、高周波領域での磁界分が
主体となるため、アルミニウムや銅等の高導電材が使用
されるが、磁界シールドの場合は低周波領域での磁界分
が主体となりアモルファス金属やパーマロイ等の高透磁
率材が使用され、電磁波シールドとは別の扱いとなって
いた。
When applying electromagnetic shielding, the magnetic field is mainly in the high frequency range, so highly conductive materials such as aluminum or copper are used, but in the case of magnetic field shielding, the magnetic field is mainly in the low frequency range, so amorphous metals are used. Highly permeable materials such as permalloy were used and were treated separately from electromagnetic shielding.

特に、MRIやコンピュータルームにおいては、ベース
メーカ所持者に対する配慮(5G以下とする)や、コン
ピュータの誤動作を起さない限界(0,5G以下)まで
の磁界のシールドと、電磁波の影響(例えばMRIの場
合は、1〜100 Mllz)で誤診を起さないように
シールドを施す必要がある。ところが、今迄は経験によ
るシールド施工が主体であるため材料の選定、使用量及
びシールド構造が最適に決定できず、かなりの安全をみ
て設計が行なわれ、コストアップにつながっていた。
In particular, in MRI and computer rooms, consideration should be given to base manufacturer owners (5G or less), magnetic field shielding to the limit (0.5G or less) that does not cause computer malfunction, and the influence of electromagnetic waves (e.g. MRI 1 to 100 Mllz), it is necessary to provide a shield to prevent misdiagnosis. However, until now, shield construction has mainly been based on experience, making it impossible to optimally determine material selection, amount used, and shield structure, and designs have been carried out with considerable safety in mind, leading to increased costs.

それ故に、本発明は、前述した従来技術の不具合を解消
させることを目的とする。
Therefore, it is an object of the present invention to solve the above-mentioned problems of the prior art.

(構 或) 本発明は、前述した目的を達成するために、要求シール
ド特性を充足させ得る第1次シールド体案の作成、第1
次シールド体案の有限要素モデル化、第1次シールド体
案の設置される現場の磁気的環境条件の決定、有限要素
法を用いての第1次シールド体案内外の磁界分布の計算
、該計算に基づく第1次シールド体案の修正による最適
シールド体案を決定し、それを設計・製造する磁気シー
ルド法を提供する。
(Structure) In order to achieve the above-mentioned object, the present invention is directed to the creation of a primary shielding scheme that can satisfy the required shielding characteristics,
Finite element modeling of the next shield plan, determination of the magnetic environment conditions at the site where the first shield plan is installed, calculation of the magnetic field distribution outside the guide of the first shield body using the finite element method, We provide a magnetic shielding method that determines the optimal shielding structure by modifying the primary shielding structure based on calculations, and designs and manufactures it.

即ち、使用者からのデータにもとずき、要求シールド特
性を満足させる第1次シールド体案を検討する。検討項
目としては、シールド体の形状、寸法、材料及びその使
用量がある。次いで、コンピュータを用いた有限要素法
を用いて磁界計算′をする。
That is, based on data from the user, a primary shielding scheme that satisfies the required shielding characteristics is examined. Items to consider include the shape, dimensions, material, and amount of the shield body used. Next, the magnetic field is calculated using the finite element method using a computer.

決定された第1次シールド体案を、その磁気的対称性を
考慮して、1/8.1/4.1/2又は1/1の有限要
素モデルとする。シールド体の設置される現場の磁気的
環境条件を把握し、即ち、発生磁場、外部磁界、磁場分
布をデータ化し、シールド材の特性データと共に解析条
件に加える。
The determined primary shield structure is made into a 1/8.1/4.1/2 or 1/1 finite element model in consideration of its magnetic symmetry. Understand the magnetic environmental conditions at the site where the shield is installed, that is, convert the generated magnetic field, external magnetic field, and magnetic field distribution into data, and add it to the analysis conditions along with the characteristic data of the shield material.

云い換えれば、シールド環境の設定作業をなす。In other words, configure the shield environment.

これらのデータをコンピュータにインプットさせる。有
限要素法を用いて、第1次シールド体案の内外の磁界分
布をコンピュータ計算する。
Input this data into the computer. Using the finite element method, the magnetic field distribution inside and outside the primary shield structure is calculated by computer.

得られた磁界計算の結果を評価、検討する。シールド構
造の変更により、さらに良いシールドが望める時、又は
、要求されたシールド特性に十分でない時には、再度、
第2次シールド体案、第3次シールド体案等を作成し、
前記手法を繰り返す。
Evaluate and discuss the obtained magnetic field calculation results. When a better shield is desired by changing the shield structure, or when the required shield characteristics are not sufficient, try again.
Created the second shield plan, third shield plan, etc.
Repeat the above procedure.

これをチャート化すると次の如く表示できる。これによ
り最適シールド構造を決定し、コストダウンをも考慮す
ることができる。
This can be displayed as a chart as shown below. This makes it possible to determine the optimal shield structure and also consider cost reduction.

(実験例1) 第1図と第2図に従来のシールド室を示す。シールドt
rJi1は、MRI室と撮影室の両壁に沿って0.35
mmのケイ素鋼板を24枚重ね、シールド板2は同材を
5枚重ね合せたものを用いている。このようなシールド
室を作ることで、撮影室を0.5G以下、MRI操作室
を5G以下にできるとされていた。
(Experiment Example 1) A conventional shield chamber is shown in FIGS. 1 and 2. shield t
rJi1 is 0.35 along both walls of the MRI room and imaging room.
The shield plate 2 is made of 24 stacked silicon steel plates with a thickness of 5 mm thick, and the shield plate 2 is made of 5 stacked sheets of the same material. It was said that by creating such a shielded room, it would be possible to make the imaging room less than 0.5G and the MRI operating room less than 5G.

本発明の方法に従って得られたシールド室を、第3図と
第4図に示すが、0.35mmのケイ素鋼板を5枚重ね
して、撮影室側のシールド板3と他のシールド板4との
間に1200mmの間隔をとり、且つ撮影室側にはシー
ルド板を不用としている。
The shield chamber obtained according to the method of the present invention is shown in FIGS. 3 and 4. Five 0.35 mm silicon steel plates are stacked on top of each other, and the shield plate 3 on the photography room side and the other shield plate 4 are connected to each other. A distance of 1200 mm is provided between the two, and a shield plate is not required on the photographing room side.

磁界分布は図示の如くで、室5をMRI操作室に使用可
能である。形状を変更することにより、使用量を削減し
、コストダウンにつなげることができた。
The magnetic field distribution is as shown, and chamber 5 can be used as an MRI operating room. By changing the shape, we were able to reduce the amount used and reduce costs.

(実験例2) 次に、鉄板によるシールドの例を第5図及び第6図に示
す。使用シールド板の低減を目的として、この例を本発
明による磁気シールド法により、さらに改良させるとケ
イ素鋼板の選定と第7図、第8図にシールド構造という
結果となった。これにより、床部及び天井部の施工が不
用となり、大巾なコストダウンが実現できた。「型ヱ・
を口t31毛f9 E(実験例3) 第9図は、磁性体を連続施工できない個所において、シ
ールド構造を決定した例である。2階会議室に5Gの磁
界が洩れないようにシールド構造を検討した結果、30
0mmの立上りとし、200mm以下或いは300m以
上の立上りとすると、5G以上の磁力洩れの特性評価が
コンピュータにより予知できた。
(Experimental Example 2) Next, an example of a shield using an iron plate is shown in FIGS. 5 and 6. In order to reduce the number of shield plates used, this example was further improved by the magnetic shielding method of the present invention, resulting in the selection of silicon steel plates and the shield structure shown in FIGS. 7 and 8. This eliminated the need for floor and ceiling construction, resulting in significant cost reductions. “Type E・
T31 F9 E (Experimental Example 3) Fig. 9 is an example in which a shield structure was determined in a place where continuous application of magnetic material was not possible. As a result of considering a shield structure to prevent 5G magnetic field from leaking into the conference room on the second floor, 30
When the rise was 0 mm and the rise was 200 mm or less or 300 m or more, the characteristic evaluation of magnetic force leakage of 5 G or more could be predicted by the computer.

(効 果) 本発明では、シールド体をモデル化し、要求シールド条
件を充足させるよう第1次シールド体案をコンピュータ
により修正できるので、施工前にシールド効果の確認も
最適施工を選択できる。
(Effects) In the present invention, the shield body can be modeled and the primary shield body plan can be modified by computer so as to satisfy the required shielding conditions, so that the shielding effect can be confirmed before construction and the optimal construction can be selected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシールド室の縦断面図、第2図はその横
断面図、 第3゜ 5゜ 9図は本発明の 各側を示す縦断面図、 横断面図である。 第4 8図はそれらの 図中: 4・・・・・・シー111手反。
FIG. 1 is a vertical cross-sectional view of a conventional shield chamber, FIG. 2 is a cross-sectional view thereof, and FIG. 3.5-9 is a vertical cross-sectional view and a cross-sectional view showing each side of the present invention. Figure 48 is among those figures: 4... Sea 111 move.

Claims (1)

【特許請求の範囲】[Claims]  要求シールド特性を充足させ得る第1次シールド体案
の作成、第1次シールド体案の有限要素モデル化、第1
次シールド体案の設置される現場の磁気的環境条件の決
定、有限要素法を用いての第1次シールド体案内外の磁
界分布の計算、該計算に基づく第1次シールド体案の修
正による最適シールド体案を決定し、それを設計・製造
する磁気シールド法。
Creation of a first shield plan that can satisfy the required shielding characteristics, finite element modeling of the first shield plan, first
Determining the magnetic environment conditions at the site where the next shield plan will be installed, calculating the magnetic field distribution outside the guide of the first shield using the finite element method, and modifying the first shield plan based on the calculations. A magnetic shielding method that determines the optimal shielding structure, designs and manufactures it.
JP1212112A 1989-08-19 1989-08-19 Magnetic shielding method Pending JPH0377173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212112A JPH0377173A (en) 1989-08-19 1989-08-19 Magnetic shielding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212112A JPH0377173A (en) 1989-08-19 1989-08-19 Magnetic shielding method

Publications (1)

Publication Number Publication Date
JPH0377173A true JPH0377173A (en) 1991-04-02

Family

ID=16617075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212112A Pending JPH0377173A (en) 1989-08-19 1989-08-19 Magnetic shielding method

Country Status (1)

Country Link
JP (1) JPH0377173A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518759A (en) * 1991-07-08 1993-01-26 Murata Mfg Co Ltd Vibrating gyro
JPH05126581A (en) * 1991-10-31 1993-05-21 Akai Electric Co Ltd Vibration gyro
WO2006120594A1 (en) * 2005-05-09 2006-11-16 Koninklijke Philips Electronics N.V. Detuning of an rf shielded mri scan room
JP2011254865A (en) * 2010-06-06 2011-12-22 Kajima Corp Design method and program for magnetic shield chamber of strong magnetic field generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518759A (en) * 1991-07-08 1993-01-26 Murata Mfg Co Ltd Vibrating gyro
JPH05126581A (en) * 1991-10-31 1993-05-21 Akai Electric Co Ltd Vibration gyro
WO2006120594A1 (en) * 2005-05-09 2006-11-16 Koninklijke Philips Electronics N.V. Detuning of an rf shielded mri scan room
JP2008539929A (en) * 2005-05-09 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Detuning of RF shielded MRI scan room
US7548063B2 (en) 2005-05-09 2009-06-16 Koninklijke Philips Electronics N.V. Detuning of an RF shielded MRI scan room
JP2011254865A (en) * 2010-06-06 2011-12-22 Kajima Corp Design method and program for magnetic shield chamber of strong magnetic field generator

Similar Documents

Publication Publication Date Title
Lang et al. Development and evaluation of a prototype tracking system using the treatment couch
Kovensky et al. Building a realistic neutron star from holography
Unger et al. Strategies for 3D simulation of electromagnetic forming processes
JPH0377173A (en) Magnetic shielding method
EP0899671A1 (en) A 3-D electromagnetic infinite element
Eskola et al. Predictions for exclusive $$\varUpsilon $$ photoproduction in ultraperipheral $${\textrm {Pb}}+{\textrm {Pb}} $$ collisions at the LHC at next-to-leading order in perturbative QCD
Hasselgren et al. Calculation of magnetic shielding of a substation at power frequency using FEM
Mendez On the theory of low-frequency excitation of cavity resonators
Quoc Accurate Magnetic Shell Approximations with Magnetostatic Finite Element Formulations by a Subdomain Approach
JPH01145049A (en) Electromagnetic wave shield chamber for mri apparatus
Dixon et al. Finite-element analysis (FEA) as an EMC prediction tool
Sharma et al. Strata: An Open-Source C++ Library for Computing Green's Functions for Layered Media
Ziolkowski et al. Genetic algorithm and Bezier curves-based shape optimization of conducting shields for low-frequency magnetic fields
Kim et al. Modified shielding effectiveness equation for novel multilayered waveguide-below-cutoff array
Abou El Nasser El Yafi et al. Numerical study of the magnetic skin effect: Efficient parameterization of 2D surface‐impedance solutions for linear ferromagnetic materials
Wang Gradient coil design and acoustic noise control in magnetic resonance imaging systems
Chai et al. A hybrid PSTD/ADI-CFDTD method for mixed-scale electromagnetic problems
JP2020184119A (en) Design method and design program
Gordon Computation methods for AVF cyclotron design studies
Anderson Calculation of thermal neutron fluxes in primary shields
Leuchtmann et al. Field modeling with the MMP code
De Smedt Singular field behavior near the tip of a dielectric or dielectric‐metallic corner
Sugiyama et al. A study on ohmic plasma initiation for JA DEMO
Xia PEEC method for evaluating magnetic shielding by metal structures at low frequency
Upadhyay Computational simulations of spatio—temporal plasma dynamics in a very high frequency capacitively coupled reactor