JPH0377106A - Three-dimensional shift control method for industrial robot - Google Patents

Three-dimensional shift control method for industrial robot

Info

Publication number
JPH0377106A
JPH0377106A JP21371689A JP21371689A JPH0377106A JP H0377106 A JPH0377106 A JP H0377106A JP 21371689 A JP21371689 A JP 21371689A JP 21371689 A JP21371689 A JP 21371689A JP H0377106 A JPH0377106 A JP H0377106A
Authority
JP
Japan
Prior art keywords
points
coordinates
work
teaching
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21371689A
Other languages
Japanese (ja)
Inventor
Hitoshi Wakisako
仁 脇迫
Osamu Nio
仁尾 理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP21371689A priority Critical patent/JPH0377106A/en
Publication of JPH0377106A publication Critical patent/JPH0377106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain the three-dimensional shift with high accuracy for three key points by using a least square method to correct the coordinates obtained by displaying three corresponding points of a real work against the coordinates of the corresponding points obtained by transforming the former coordinates and obtaining a transformation matrix based on the corrected coordinates. CONSTITUTION:Three key points P1 - P3 are selected out of the reference points set on a model work. Then the points Q1 - Q3 are obtained by teaching three points of a real work in response to the points P1 - P3. The coordinate values of points Q1 - Q3 are corrected so as to obtain the least sum of square of distances between the points Q1 - Q3 and the position coordinates P1' - P3' obtain through the coordinate transformation of the three points of the real work corresponding to the points P1 - P3. Thus the points of the model work are shifted in terms of coordinates in response to the points of the real work respectively. Thus it is possible to attain a transformation method to secure the optimum three dimensional shift with application of the position coordinates causing an error.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、産業用ロボットの教示作業において、あるワ
ークについて既に教示された点が存在し、同一のワーク
が異なる場所に設置されているときに、代表となる3点
の位置を教示するだけで他の点を自動的に求めるときな
どに使う三次元シフト制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to teaching work of an industrial robot, when there are points that have already been taught for a certain workpiece and the same workpiece is installed at different locations. The present invention relates to a three-dimensional shift control method used when automatically determining other points by simply teaching the positions of three representative points.

〔従来の技術〕[Conventional technology]

従来、このような三次元シフトは、特開昭57−182
205号公報に記載されているように、教示時に用いる
モデルワークについて、多数の点群のうち、代表点P 
1. P2. Ps を設定する。そして、実際の作業
に際しては、前記の代表点に対応する実ワークの点p 
IL、  p、’、  p、’を教示により与える。そ
して、それ以外の点、例えばP、に関しての対応する点
P、′を求めるとき、モデルワークの基準となる4点P
1, P1, P1, P、  と、それらに対応する
実ワークの点p 、’、  p2’、  p、’、  
p4’では、相対的な位置ずれはないことを前提にして
、ベクトルP、’ P、’、  P、’ P、’を基準
にして点P4′の座標を求めている。
Conventionally, such a three-dimensional shift has been proposed in Japanese Patent Application Laid-Open No. 57-182.
As described in Publication No. 205, for the model work used during teaching, a representative point P out of a large number of points is
1. P2. Set Ps. Then, during actual work, the point p of the actual workpiece corresponding to the representative point mentioned above is
IL, p,′, p,′ is given by teaching. Then, when finding the corresponding points P,' with respect to other points, for example, P, the four points P, which are the standards of the model work, are calculated.
1, P1, P1, P, and the corresponding points p,', p2', p,' of the actual workpiece,
In p4', the coordinates of point P4' are determined based on vectors P, 'P,', P, 'P,', on the premise that there is no relative positional shift.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし実際には点P、’、  P2’、  P、’の教
示や測定には誤差が伴い、ベクトルP l ’ P 2
’ +・P、’P、’にずれが出てくるため、それらを
使って求めた点も相対位置にずれが生じて、全体的にゆ
がめられたものになる。
However, in reality, there are errors in teaching and measuring the points P,', P2', P,', and the vector P l' P2
Since there are deviations in '+・P and 'P,', the points found using them also have deviations in their relative positions, and are distorted as a whole.

本発明は、このように誤差を伴う位置座標が与えられた
ときに、最適な三次元シフトを行う変換法を提供するこ
とを目的とする。
An object of the present invention is to provide a conversion method that performs an optimal three-dimensional shift when position coordinates with such errors are given.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、本発明の産業用ロボットの三
次元シフト制御方法は、三次元空間中にモデルワーク上
の基準となる複数個の点の位置座標を予め有し、これら
の相対位置を変えることなく全ての点を実ワークに対応
する場所に移動させる三次元変換において、モデルワー
ク上の基準となる点群から3個の代表点P1, P2.
 P、を選び、作業に際して、これらの点に対応する実
ワーク上の3点を教示して得たQ1, Q1, Q3 
と、前記3個の代表点PI、P2.P)点に対応する実
ワーク上の点として座標変換によって得た位置座PAp
、’、P*’。
In order to achieve this objective, the three-dimensional shift control method for an industrial robot of the present invention has in advance the position coordinates of a plurality of reference points on a model work in a three-dimensional space, and calculates the relative positions of these points. In three-dimensional transformation that moves all points to locations corresponding to the actual workpiece without changing them, three representative points P1, P2.
Q1, Q1, Q3 obtained by selecting P, and teaching the three points on the actual workpiece that correspond to these points during work.
and the three representative points PI, P2. P) Position PAp obtained by coordinate transformation as a point on the actual workpiece corresponding to the point
,',P*'.

P3’との間の距離の二乗の和が最小となるように当該
教示点Q1. Q2. Q3 の座標値の修正を行って
モデルワーク上の他の点を実ワーク上の対応点に座標シ
フトすることを特徴とする。
The teaching point Q1. Q2. It is characterized in that the coordinate values of Q3 are corrected and the coordinates of other points on the model work are shifted to corresponding points on the actual work.

〔作用〕[Effect]

本発明では、基準となる点は変換された後も互いの相対
位置が変わらないことに基づいて、三次元シフトの変換
行列を与えるものである。その際の条件として、基準の
点から代表となる3点PI+P1,P、についてそれら
が変換により移される点をQ1, Q1, Q、とし、
それらの点が教示や測定により与えた点p 、’、  
p、’、  p、’になるべく近くなるようにした変換
であり、具体的には、Q+P+’  +(hP2’  
+QsP3’    ・・・・・・・・(L)が最小と
なるような三次元シフトである。第1図にそれを示す。
In the present invention, a three-dimensional shift transformation matrix is provided based on the fact that the relative positions of reference points do not change even after transformation. As a condition at that time, let the points to which they are transferred by conversion be Q1, Q1, Q for the three representative points PI + P1, P from the reference point,
These points are the points p,', given by teaching or measurement.
This is a transformation that makes it as close as possible to p,', p,', and specifically, Q+P+' + (hP2'
+QsP3'...This is a three-dimensional shift such that (L) is minimized. This is shown in Figure 1.

#1のモデルは前もって全ての点の位置座標が与えられ
ており、PlI P2+ P3 が代表とする3点であ
る。=2のモデルが変換によって移されたものであり、
Q+、 Q2. Qs が代表点に対応する。このQ1
, Q1, Q、と教示や測定により与えたp 、’、
  p2’、  p、’の関係を第2図に示す。
In model #1, the position coordinates of all points are given in advance, and the three points are represented by PlI P2+ P3. =2 model is transferred by transformation,
Q+, Q2. Qs corresponds to the representative point. This Q1
, Q1, Q, and p given by teaching or measurement, ',
The relationship between p2', p, and ' is shown in Figure 2.

誤差によってこれらの点は必ずしも一致していない。そ
のとき各点の距離の二乗の和が最小になるような変換が
本発明であり、以下にそれについて詳しく述べる。
These points do not necessarily match due to errors. The present invention is a transformation that minimizes the sum of the squares of the distances of each point, and will be described in detail below.

まず、各点の座標を次のようにする。First, set the coordinates of each point as follows.

Q+ (Xt、 Y++ 21)、 Q2 (lh、 
y2.zz)+ Q3 (Xl、y3. Zりp、/ 
(X1, Y1, Z、)、 P2’ (X2. Yt
、 za)、 p、/ (X3. Y3. za)ここ
で点p 、’、  p2’、  p3’の座標は既知で
ある。
Q+ (Xt, Y++ 21), Q2 (lh,
y2. zz) + Q3 (Xl, y3. Zlip, /
(X1, Y1, Z,), P2' (X2. Yt
, za), p, / (X3. Y3. za) where the coordinates of the points p,', p2', p3' are known.

また三角形P、P、P、と三角形Q 、Q 2 Q 、
は合同であり、その辺の長さが分かっていることにより
、次の条件式が成り立つ。
Also, triangles P, P, P, and triangles Q, Q 2 Q,
are congruent, and since the lengths of the sides are known, the following conditional expression holds.

(X2  x、)2+(y2L+)2+(zz−zl)
”=f+(X3   X2>’ + (ya   V2
)2 +(23Z2)2=  、i!z(Xl  x3
)’+(yt  3’3)2+(21Z*)”= 、f
!sここでC,lx、Rs はそれぞれ三角形の三辺の
長さである。
(X2 x,)2+(y2L+)2+(zz-zl)
”=f+(X3 X2>' + (ya V2
)2 + (23Z2)2= , i! z(Xl x3
)'+(yt 3'3)2+(21Z*)"= , f
! s Here, C, lx, and Rs are the lengths of the three sides of the triangle, respectively.

式(1)を最小にするのは、次の評価関数Jを最小にす
ることである。
Minimizing equation (1) means minimizing the following evaluation function J.

J= (xt−XI)2+ (yt−L>2+ (z+
−Z、)2+(X2−X2)”+ (1)12−Y2)
’+ (Z、−22>2+(X3−X3)2+ (y3
−Y3)’+ (Z、−Z、)2これと先の条件式より
ラグランシュの未定乗数法を使って、 L=J+λI +(X2  xt)2+(yz  yt
>2+(z2z、)2− R1’ )+λ2 ((X3
 1h)”(!I’3Y2>’+(Zz  Z2)2−
j!22)+ Aa  ((xt   x3)”(yt
   y3)2+(z+   23)2− !3’)こ
れより、 aL7 ex+ =2(XI−XI)−2λ+ (×2
−XI)”2λ、 (X 、−X、) =OaL/ a
x、 =2(x2−Xi)−2λ2 (X3−XI)+
2λ、 (X2−X→=OaL/  aXy  −2<
Xz−X>>−2λ 3(XI−X3)”2  λ 2
 (X3−X2)・0この3式を満たすと、次式が戒り
立つ。
J= (xt-XI)2+ (yt-L>2+ (z+
-Z, )2+(X2-X2)"+ (1)12-Y2)
'+ (Z, -22>2+(X3-X3)2+ (y3
-Y3)'+ (Z, -Z,)2 From this and the previous conditional expression, using Lagranche's undetermined multiplier method, L=J+λI +(X2 xt)2+(yz yt
>2+(z2z,)2-R1')+λ2((X3
1h)”(!I'3Y2>'+(Zz Z2)2-
j! 22) + Aa ((xt x3)”(yt
y3)2+(z+ 23)2-! 3') From this, aL7 ex+ =2(XI-XI)-2λ+ (×2
-XI)"2λ, (X, -X,) = OaL/a
x, =2(x2-Xi)-2λ2(X3-XI)+
2λ, (X2−X→=OaL/ aXy −2<
Xz-X >>-2λ 3(XI-X3)”2 λ 2
(X3-X2)・0 When these three equations are satisfied, the following equation stands out.

X I+ X 2 + X 3= X I+ X a 
+ X 3同様にして、 yt + ’j 2 + y3= Y 1+ Y 2 
+ Y 3Z+ 十Z2+ Z3= Zl + Z2 
+ Z3が戊り立つ。これより三角形Q IQ 2 Q
 3  と三角形Pl’P2’P3’の重心の位置(座
標)は一致することが分かる。
X I+ X 2 + X 3= X I+ X a
+ X 3 Similarly, yt + 'j 2 + y3= Y 1+ Y 2
+ Y 3Z+ 10 Z2+ Z3= Zl + Z2
+ Z3 rises. From this triangle Q IQ 2 Q
It can be seen that the positions (coordinates) of the centers of gravity of 3 and triangle Pl'P2'P3' match.

そこで、あらためて第3図に示すように三角形P、’ 
P2’ P、’の重心を原点とする座標系を考える。
Therefore, as shown in Figure 3, the triangle P,'
Consider a coordinate system whose origin is the center of gravity of P2'P,'.

一方、三角形Q 1Q x Q 3 の重心もこの原点
に固定されており、この点を中心に自由に回転できる。
On the other hand, the center of gravity of the triangle Q 1Q x Q 3 is also fixed at this origin and can freely rotate around this point.

このとき、この三角形Q1Q2Q、に作用する回転行列
をRとして式(1)を最小にするRを求めることにする
At this time, let R be the rotation matrix that acts on this triangle Q1Q2Q, and find R that minimizes equation (1).

まずp l’+  p、’、  p、’の原点からの位
置ベクトルをそれぞれF1,’F1,L とする。マタ
、Q1, Q、。
First, let the position vectors of p l'+ p, ', p, and' from the origin be F1, 'F1, L, respectively. Mata, Q1, Q.

Q、の回転する前の最初の位置ベクトルを次のようにす
る。
Let the initial position vector of Q before rotation be as follows.

q+  =  (X+、y+、z+)   1Q!−(
X*、 y3.2J  J これらの位置は、三角形Q 1Q 2 Q 3 が三角
形P、 P2P、と合同であり、重心が原点にあればよ
く、無数の与え方があり、ここでは一般的に表しておく
。これらの点が回転行列RによりqlR。
q+ = (X+, y+, z+) 1Q! −(
X*, y3.2J J These positions can be given as long as triangle Q 1Q 2 Q 3 is congruent with triangles P and P2P, and the center of gravity is at the origin.There are countless ways to give these positions, but here they are generally expressed. I'll keep it. These points are qlR by rotation matrix R.

Q2R,Q3Rに移る。これまり式(1)の評価関数j
は次のようになる。
Move on to Q2R and Q3R. This is the evaluation function j of formula (1)
becomes as follows.

コ 、   。Ko , .

J−Σ(pt−q、R)・(p q+R) ここで回転行列Rを行ベクトル表示して、R=    
 y ] とおく。但し、行ベクトルx、y、zは単位直交ベクト
ルで次のような条件を満たす。
J-Σ(pt-q,R)・(p q+R) Here, the rotation matrix R is expressed as a row vector, and R=
y ]. However, the row vectors x, y, and z are unit orthogonal vectors and satisfy the following conditions.

x′x2y1y=z゛z=l X砂y=y−2−2−x=0 ・・・・・・パ・・・・
(3)この条件式と上式の評価関数に再びラグランシュ
の未定乗数法を使うと次の関係式が得られる。
x'x2y1y=z゛z=l X sand y=y-2-2-x=0 ......Pa...
(3) If Lagranche's undetermined multiplier method is used again for this conditional expression and the evaluation function of the above expression, the following relational expression is obtained.

但し、a 3   →  →   3   →  →   3  
 →Σx、p1,b−ΣyIpi C=Σ2+Il)こ
の関係式を満たすx、y、zを求めればよい。
However, a 3 → → 3 → → 3
→Σx, p1, b-ΣyIpi C=Σ2+Il) It is sufficient to find x, y, and z that satisfy this relational expression.

そのため、式(2)の3点Q1, Q2. Q、の最初
の点の位置をxy平面上におく。即ち(2)式で2l−
22=z3−0となり、これより7−6で 3=z=Q   b  ・ z=0 となる。これはベクトル2がベクトルa、bの作る平面
と直交していることを示している。一方、ベクトルa、
bはベクトルl)1.  p21  p3 の−次結4
合で表され、これらは三角形P、’ P2’ P3’上
のベクトルである。よって、ベクトルa、bもこの三角
形上にあり、2はこれと垂直に交わるベクトルである。
Therefore, the three points Q1, Q2 in equation (2). Place the first point of Q on the xy plane. That is, in equation (2), 2l-
22=z3-0, and from this, 7-6 gives 3=z=Q b · z=0. This shows that vector 2 is orthogonal to the plane formed by vectors a and b. On the other hand, vector a,
b is a vector l)1. p21 p3 - next conclusion 4
These are vectors on the triangles P, 'P2' and P3'. Therefore, vectors a and b are also on this triangle, and vector 2 intersects this triangle perpendicularly.

そこで2は次のようにして求まる。Therefore, 2 can be found as follows.

ベクトル2はZ軸方向の単位ベクトルに回転行列Rを作
用したものであるから、次の外積(Q2   ql) 
 X (Ql   q+)の2成分が正なり2は (p2 =p+ )  x (p3−pt )の単位ベ
クトル、負なら符号を反転した単位ベクトルである。
Since vector 2 is the unit vector in the Z-axis direction applied with rotation matrix R, the following cross product (Q2 ql)
If two components of X (Ql q+) are positive, 2 is a unit vector of (p2 = p+ ) x (p3-pt), and if it is negative, it is a unit vector with the sign reversed.

次にベクトルXとyであるが、これらは式(3)より2
とそれぞれ直交する。つまり、ベクトルaとbのなす平
面、すなわち三角形p 、l p 2/ p %上にあ
ることになる。
Next are the vectors X and y, which are 2 from equation (3)
and are orthogonal to each other. In other words, it lies on the plane formed by vectors a and b, that is, on the triangle p , l p 2 / p %.

そこでまず、ベクトルaの単位ベクトルをtとし、 j =zxc なる単位ベク、トル」をつくる。tとJは三角形P、’
 P2’ P3’上の直交ベクトルであり、これらを使
って求めるベクトルXどyを以下のように表す。
First, let t be the unit vector of vector a, and create a unit vector, t, such that j = zxc. t and J are triangle P,'
These are orthogonal vectors on P2' and P3', and the vectors X and y obtained using these are expressed as follows.

x=cosθt+S+n0j y = −5in (i t +cosθJこれを式(
4)の第1式に代入してCOSθ、 sinθについて
解くと、 これよりXとyには符号の異なる2通りのベクトルが出
てくるが、これの選択は評価関数Jの小さい方を選べば
よい。
x=cosθt+S+n0j y=-5in (it +cosθJ)
Substituting into the first equation of 4) and solving for COSθ and sinθ, two vectors with different signs will appear for good.

このようにして、回転行列Rが得られる。この回転を行
った後は重心を移す平行移動だけでよい。
In this way, the rotation matrix R is obtained. After performing this rotation, all that is required is a parallel movement to shift the center of gravity.

以上をまとめると、第4図に示すような変換行列の組合
せで三次元シフトが行われる。
To summarize the above, a three-dimensional shift is performed using a combination of transformation matrices as shown in FIG.

1.S、:三角形p、 P2P3 の重心を原点に平行
移動する(第4図(a)参照)。
1. S: Move the center of gravity of triangle p, P2P3 parallel to the origin (see Figure 4(a)).

2、S2:原点を中心に回転し、三角形がxy面上に来
るようにする。そのときの 座標より回転行列Rを求める(第4 図(b)参照)。
2. S2: Rotate around the origin so that the triangle is on the xy plane. The rotation matrix R is determined from the coordinates at that time (see FIG. 4(b)).

3、R:原点を中心に回転Rを行う(第4図(C)参照
〉。
3. R: Rotate R around the origin (see Figure 4 (C)).

4、Ss:三角形p 、/ p2/ p、’の重心に、
この三角形の重心が重なるように平行移 動する(第4図(イ)参照)。
4, Ss: At the center of gravity of triangle p, / p2/ p,',
Translate the triangles so that their centers of gravity overlap (see Figure 4 (a)).

以上のようにして求めた変換行列S1, S2. R。The transformation matrices S1, S2. R.

S、を基準となる全ての点に作用することで、三次元シ
フトが行われる。この変換は、回転と平行移動からなる
ため、全ての点の相対位置は保たれ、代表の3点につい
ては教示や測定で与えられた点になるべく近くなるよう
な位置に置かれる。
A three-dimensional shift is performed by acting on all points with S as a reference. Since this transformation consists of rotation and translation, the relative positions of all points are maintained, and the three representative points are placed as close as possible to the points given by teaching or measurement.

〔実施例〕〔Example〕

第5図に本発明の実施例を示す。同一形状のワーク#1
.#2.#3があり、それらの設定位置は異なっている
。いま、ワーク#lだけの教示は終わっており、さらに
代表点P l+ P 2. P 3 の点も教示されて
いるものとする。ワーク#2に対する教示は、#1の代
表点に当たるp 、’、  p2’、  p、’の点の
位置だけでよく、本発明の三次元シフトを行うことでワ
ーク#1と同じ個所の教示点が自動的に生皮される。ま
たワーク#3についても代表点P +’ *  P 2
’ r  P s’の表示のみで同様のことが可能とな
る。
FIG. 5 shows an embodiment of the present invention. Workpiece with the same shape #1
.. #2. There is #3, and their setting positions are different. Now, the teaching of only work #l is finished, and the representative point P l+ P2. It is assumed that point P 3 has also been taught. The teaching for work #2 only requires the positions of points p, ', p2', p, ', which are the representative points of #1, and by performing the three-dimensional shift of the present invention, the teaching points at the same locations as work #1 can be taught. is automatically rawhide. Also, for work #3, the representative point P +' * P 2
The same thing can be done only by displaying 'rPs'.

第6図はオフラインプログラミングでの実施例である。FIG. 6 shows an example of offline programming.

計算機内部には既に三次元のワークモデルがある。現実
の環境を計算機内部で再現するためには、ワークモデル
の各点の位置が必要となる。
There is already a three-dimensional work model inside the computer. In order to reproduce the real environment inside a computer, the position of each point on the workpiece model is required.

そこで現実のワークで代表する3点だけの座標を計算機
に入力して本発明の三次元シフトを行うことで、各点の
位置が求まる。
Therefore, by inputting the coordinates of only three points representing the actual work into a computer and performing the three-dimensional shift of the present invention, the position of each point can be determined.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明においては、代表とする3
点について、実ワークの対応する3点を教示して得た座
標を、この座標と座標変換演算によって得た対応点の座
標との間を最小二乗法によって修正し、この修正点の座
標に基づいて変換行列を求めている。これにより、実ワ
ーク上の3点教示時の測定誤差等によるゆがみを修正し
て高精度の三次元シフトを行うことが可能となる。
As mentioned above, in the present invention, three representative
Regarding the point, the coordinates obtained by teaching three corresponding points on the actual workpiece are corrected by the least squares method between these coordinates and the coordinates of the corresponding point obtained by coordinate transformation calculation, and based on the coordinates of this corrected point. I am trying to find the transformation matrix. This makes it possible to perform highly accurate three-dimensional shifting by correcting distortions caused by measurement errors and the like during three-point teaching on an actual workpiece.

また、この変換では回転と平行移動の操作しか行わない
ため、変換される前のそれぞれの点の相対位置が保たれ
たままの三次元シフトが可能となる。
Furthermore, since this transformation only involves rotation and translation, it is possible to perform a three-dimensional shift while maintaining the relative position of each point before transformation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は三次元シフトとその代表点を示す説明図、第2
図は移動した代表点と教示や測定によって与えられた点
を示す説明図、第3図は2つの三角形の重心を一致させ
てそこを原点とした座標系において回転行列Rを求める
ときの説明図、第4図は本発明による三次元シフトの変
換の説明図、第5図は溶接用ロボットによる実施例を示
す説明図、第6図14オフラインプログラムの例を示す
説明図である。 第 図 第 図 第 図 PI’ P2’ 第 図 第 図 第 図
Figure 1 is an explanatory diagram showing the three-dimensional shift and its representative points, Figure 2
The figure is an explanatory diagram showing the moved representative point and the point given by teaching or measurement, and Figure 3 is an explanatory diagram when calculating the rotation matrix R in a coordinate system with the center of gravity of two triangles coincident and with that as the origin. , FIG. 4 is an explanatory diagram of three-dimensional shift conversion according to the present invention, FIG. 5 is an explanatory diagram showing an embodiment using a welding robot, and FIG. 6 is an explanatory diagram showing an example of an offline program. Figure Figure Figure Figure PI'P2' Figure Figure Figure

Claims (1)

【特許請求の範囲】 1、三次元空間中にモデルワーク上の基準となる複数個
の点の位置座標を予め有し、これらの相対位置を変える
ことなく全ての点を実ワークに対応する場所に移動させ
る三次元変換において、 モデルワーク上の基準となる点群から3個の代表点P_
1,P_2,P_3を選び、作業に際して、これらの点
に対応する実ワーク上の3点を教示して得たQ_1,Q
_2,Q_3と、前記3個の代表点P_1,P_2,P
_3点に対応する実ワーク上の点として座標変換によっ
て得た位置座標P_′,P_2′,P_3′との間の距
離の二乗の和が最小となるように当該教示点Q_1,Q
_2,Q_3の座標値の修正を行ってモデルワーク上の
他の点を実ワーク上の対応点に座標シフトすることを特
徴とする産業用ロボットの三次元シフト制御方法。
[Claims] 1. A location in which the position coordinates of a plurality of points serving as references on a model work are previously provided in a three-dimensional space, and all points correspond to the actual work without changing their relative positions. In the three-dimensional transformation to move the three representative points P_ from the reference point group on the model work.
Q_1, Q obtained by selecting 1, P_2, P_3 and teaching the three points on the actual workpiece that correspond to these points during work.
_2, Q_3 and the three representative points P_1, P_2, P
The teaching points Q_1, Q are set so that the sum of the squares of the distances between the position coordinates P_', P_2', P_3' obtained by coordinate transformation as points on the actual workpiece corresponding to the _3 points is minimized.
A three-dimensional shift control method for an industrial robot, characterized in that the coordinate values of _2 and Q_3 are corrected and the coordinates of other points on a model work are shifted to corresponding points on an actual work.
JP21371689A 1989-08-18 1989-08-18 Three-dimensional shift control method for industrial robot Pending JPH0377106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21371689A JPH0377106A (en) 1989-08-18 1989-08-18 Three-dimensional shift control method for industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21371689A JPH0377106A (en) 1989-08-18 1989-08-18 Three-dimensional shift control method for industrial robot

Publications (1)

Publication Number Publication Date
JPH0377106A true JPH0377106A (en) 1991-04-02

Family

ID=16643811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21371689A Pending JPH0377106A (en) 1989-08-18 1989-08-18 Three-dimensional shift control method for industrial robot

Country Status (1)

Country Link
JP (1) JPH0377106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870490B2 (en) 2011-02-04 2014-10-28 Opus International Consultants Limited Adjustable supports for access hatch frames

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870490B2 (en) 2011-02-04 2014-10-28 Opus International Consultants Limited Adjustable supports for access hatch frames

Similar Documents

Publication Publication Date Title
Li Camera calibration of a head-eye system for active vision
CN104057453B (en) The manufacture method of robot device and machined object
She et al. Design of a generic five-axis postprocessor based on generalized kinematics model of machine tool
US20060025890A1 (en) Processing program generating device
CN110757504B (en) Positioning error compensation method of high-precision movable robot
JP2017094406A (en) Simulation device, simulation method, and simulation program
TWI672207B (en) Posture positioning system for machine and the method thereof
JPH02202606A (en) Method and device for controlling industrial robot
CN105643619B (en) A kind of industrial robot instrument posture control method of use framework description
JP3415427B2 (en) Calibration device in robot simulation
CN113379849A (en) Robot autonomous recognition intelligent grabbing method and system based on depth camera
Wang et al. Design and implementation of five-axis transformation function in CNC system
JP2001100821A (en) Method and device for controlling manipulator
KR100786351B1 (en) System and method for teaching work-robot based on ar
Tian et al. A study on three-dimensional vision system for machining setup verification
JPH0377106A (en) Three-dimensional shift control method for industrial robot
JP2718678B2 (en) Coordinate system alignment method
Cheng et al. Integration of 3D stereo vision measurements in industrial robot applications
CN109773581B (en) Method for applying robot to reappear machining
Bowman et al. Transformation calibration of a camera mounted on a robot
JPS59173805A (en) Industrial robot having instruction data converting function
JP2002351531A (en) Method and device for correcting teaching data
JPH11296218A (en) Method for off line teaching of robot
CN116883517B (en) Camera parameter calibration method without overlapping view fields based on plane mirror
JPS63314604A (en) Generating method for working program of industrial robot