JPH0376973B2 - - Google Patents

Info

Publication number
JPH0376973B2
JPH0376973B2 JP5327284A JP5327284A JPH0376973B2 JP H0376973 B2 JPH0376973 B2 JP H0376973B2 JP 5327284 A JP5327284 A JP 5327284A JP 5327284 A JP5327284 A JP 5327284A JP H0376973 B2 JPH0376973 B2 JP H0376973B2
Authority
JP
Japan
Prior art keywords
gas
membrane
hollow fiber
solvent
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5327284A
Other languages
Japanese (ja)
Other versions
JPS60197204A (en
Inventor
Matsuhiro Kimura
Seiji Yoshida
Shoji Tsujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP5327284A priority Critical patent/JPS60197204A/en
Publication of JPS60197204A publication Critical patent/JPS60197204A/en
Publication of JPH0376973B2 publication Critical patent/JPH0376973B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明はセルロースエステル素材からなる中空
糸膜であつて、特定の細孔径分布および細孔容積
を示す構造を付与された気体選択性と、特にすぐ
れた気体透過性能とを有する気体分離膜に関する
ものである。
Detailed Description of the Invention The present invention is a hollow fiber membrane made of a cellulose ester material, which has gas selectivity given a structure exhibiting a specific pore size distribution and pore volume, and particularly excellent gas permeation performance. The present invention relates to a gas separation membrane having the following characteristics.

膜による流体の分離についてはかなり古くから
研究が進められ、すでに液体系の分離の分野では
ROと略称する逆浸透膜による海水の淡水化や精
製水の製造あるいは透析膜による人工腎臓などが
すでに実用化されている。
Research on fluid separation using membranes has been underway for quite some time, and there are already advances in the field of liquid separation.
Seawater desalination and purified water production using reverse osmosis membranes, abbreviated as RO, and artificial kidneys using dialysis membranes have already been put into practical use.

一方、一般に高分子膜は気体透過性を有しそれ
らの気体透過性は気体の種類により異なることか
ら選択性を有することもやはりかなり以前より知
られていた。そして気体分離膜やそれを利用した
分離装置はこれまでにも多数提案されているにも
かかわらず実際に実用化されたものは非常に少な
い。
On the other hand, it has also been known for quite some time that polymer membranes generally have gas permeability, and their gas permeability varies depending on the type of gas, so they also have selectivity. Although many gas separation membranes and separation devices using them have been proposed, very few have actually been put into practical use.

気体分離膜が実用化されるためには高い気体透
過性能と高い選択性の両方を同時に合せもつ膜の
開発が必要とされている。すなわち、透過性能が
低いと一定の量の気体を処理するのに必要な膜面
積が大きくなり、また選択性が低いと一定の濃縮
度を得るのに多段処理を必要とすることになるた
めいずれにせよ設備コストやランニング・コスト
が高くなり、従来法の深冷分離法や吸着法に対し
て有利とはならないのである。
In order for gas separation membranes to be put into practical use, it is necessary to develop membranes that have both high gas permeability and high selectivity at the same time. In other words, if the permeability is low, the membrane area required to treat a certain amount of gas will be large, and if the selectivity is low, multi-stage treatment will be required to obtain a certain concentration. However, equipment costs and running costs are high, and this method is not advantageous over conventional cryogenic separation methods and adsorption methods.

そして従来までにそうした気体透過性と選択性
とを兼ね備え、従来の気体分離法に対して十分競
争力のある膜がなかなか開発されなかつた点にそ
の実用化が進んでいない原因があるといわれてき
た。
It is said that the reason why their practical application has not progressed is that it has been difficult to develop membranes that have both gas permeability and selectivity and are sufficiently competitive with conventional gas separation methods. Ta.

しかしながら、膜による気体分離法は各成分気
体の分圧差による気体透過速度の差で、気体の分
離あるいは濃縮を行う方法であり、従来得られて
いるうちで選択性の高い気体分離膜を採用しても
一段の膜分離による濃縮度には限界があり、濃縮
度の高い領域に適用するにはやはり多段カスケー
ド等の操作を要し、従来法の深冷分離法や吸着法
に比較してどうしても不利になつてしまう。その
ためにむしろこうした膜による気体分離法は、気
体濃度の調整や各種ガスの回収といつた比較的濃
縮度の低い領域に適用されるべきものであると認
識されつつある。そして、こうした低濃縮の領域
では本来の相変化を伴なわないことによる省エネ
ルギー性に加えて機構およびプロセスが単純なこ
とによる操作の簡便さもあつて膜による気体分離
法が非常に有利である。
However, the gas separation method using membranes is a method of separating or concentrating gases based on the difference in gas permeation rate due to the difference in partial pressure of each component gas. However, there is a limit to the concentration achieved by one stage of membrane separation, and in order to apply it to highly concentrated areas, operations such as multi-stage cascades are still required, which makes it difficult to achieve a high concentration compared to conventional cryogenic separation methods and adsorption methods. You will be at a disadvantage. For this reason, it is increasingly recognized that gas separation methods using such membranes should be applied to areas with relatively low concentrations, such as gas concentration adjustment and recovery of various gases. In this region of low concentration, the gas separation method using membranes is very advantageous because it saves energy due to no inherent phase change and is easy to operate due to the simple mechanism and process.

ところで、気体分離膜の性能を表わすには前記
したように気体の透過性と気体に対する選択性で
示される。気体透過性は素材自身のもつ気体透過
係数P〔c.c.(STP)・cm/cm2・sec・cmHg〕およ
び/またはそれに素材の厚みを考慮した気体透過
速度K〔c.c.(STP)/cm2・sec・cmHg〕で示され
る。これらの関係により気体透過係数の小さい素
材であつても膜の厚みを薄くすれば比較的大きな
気体透過速度の膜が得られることになる。
By the way, the performance of a gas separation membrane is expressed by gas permeability and gas selectivity, as described above. Gas permeability is determined by the gas permeability coefficient P [cc (STP) cm/cm 2 sec cmHg] of the material itself and/or the gas permeation rate K [cc (STP)/cm 2 sec・cmHg]. Based on these relationships, even if the material has a small gas permeability coefficient, a membrane with a relatively high gas permeation rate can be obtained by reducing the thickness of the membrane.

また、気体に対する選択性は、それぞれの気体
に対する透過係数比P1/P2または、透過速度比
K1/K2で表わされ、これを気体分離係数αkと称
する。そして膜性能は、気体透過速度Kと気体分
離係数αkで規定される。
In addition, the selectivity for gases is determined by the permeability coefficient ratio P 1 /P 2 or permeation rate ratio for each gas.
It is expressed as K 1 /K 2 and is called gas separation coefficient αk. The membrane performance is defined by the gas permeation rate K and the gas separation coefficient αk.

さて、これらの膜性能は各種の気体系によつて
異なり、分離係数αkは、例えば本発明における
セルロースエステルに例をとると、酸素/窒素系
で2〜5、水素/メタン系で数十以上となる。
Now, the performance of these membranes differs depending on the various gas systems, and for example, taking the cellulose ester in the present invention, the separation coefficient αk is 2 to 5 for an oxygen/nitrogen system and several dozen or more for a hydrogen/methane system. becomes.

そして前記したように気体分離のうちでも膜法
に適している比較的低濃度の領域において、各種
の膜性能に対する膜分離特性を調べてみたところ
一定の条件下で気体の分離濃縮を行う場合、酸
素/窒素系のようにαkが10以下というように比
較的小さい系ではαkの差によつて得られる濃縮
気体の濃度は大きく変化するが、逆に水素/メタ
ン系のようにαkが大きく数十以上といつた系で
は、αkの差によつて得られる濃縮気体の濃度に
あまり大きな差は出ないのである。すなわち、
αkのある程度大きい系に対してはαkの多少の差
異はあまり問題にはならず、むしろ実用上の観点
からは気体透過速度Kを大きくすることが重要に
なつてくる。
As mentioned above, we investigated the membrane separation characteristics for various membrane performances in the relatively low concentration region that is suitable for the membrane method among gas separations.When performing gas separation and concentration under certain conditions, In systems where αk is relatively small, such as the oxygen/nitrogen system, where αk is 10 or less, the concentration of the concentrated gas obtained varies greatly depending on the difference in αk. In systems where the value is 10 or more, the difference in αk does not make much of a difference in the concentration of concentrated gas obtained. That is,
For a system in which αk is large to a certain extent, a slight difference in αk does not matter much; rather, from a practical standpoint, it becomes important to increase the gas permeation rate K.

こうした見地から望ましい膜性能として、特に
透過性能のすぐれた気体分離膜の検討を進めた結
果、本発明に到達した。
From this viewpoint, as a desirable membrane performance, we have investigated gas separation membranes with particularly excellent permeability, and as a result, we have arrived at the present invention.

すなわち、本発明はセルロースエステル系中空
糸膜であつて、細孔半径40〜60Åの範囲に入る細
孔の容積の和が0.15cm2/g以上であり、その細孔
容積の和が細孔半径30Å以上の細孔の全細孔容積
の70%以上を占め、かつ細孔半径分布曲線が細孔
半径40〜60Åの範囲に最大値を有するような構造
を付与した気体分離膜であつて、実用的な気体選
択性をもち、特に水素透過速度が大きい点が特徴
である。ここで用いる細孔径分布の測定は毛管凝
縮を応用した窒素吸着法を用い具体的な計算は
B.J.H.法(J.Am.Chem.Soc.73 373(1951)参照)
による。
That is, the present invention is a cellulose ester-based hollow fiber membrane in which the sum of the volumes of pores with a pore radius of 40 to 60 Å is 0.15 cm 2 /g or more, and the sum of the pore volumes is 0.15 cm 2 /g or more. A gas separation membrane having a structure in which pores with a radius of 30 Å or more occupy 70% or more of the total pore volume, and the pore radius distribution curve has a maximum value in the pore radius range of 40 to 60 Å. It has practical gas selectivity, and is characterized by a particularly high hydrogen permeation rate. The pore size distribution used here is measured using a nitrogen adsorption method that applies capillary condensation.
BJH method (see J.Am.Chem.Soc.73 373 (1951))
by.

本発明の中空糸分離膜は特に前記した特定の細
孔径分布および細孔容積を有していることが重要
であつて、例えば細孔径の分布が細孔径の小さい
方にずれてくると気体の分離に必要な分離活性層
をより緻密にすることができ気体分離係数αkを
向上させうることは期待できるかもしれないが、
一方で気体の透過に対する抵抗が大きくなり、気
体透過速度が低下し、気体分離膜としての実用性
が低下する。逆に細孔径分布が細孔径の大きい方
にずれると膜構造全体が粗になるため緻密層の維
持が困難となり、気体分離係数の低下をきたすこ
とになり、やはり気体分離膜としての実用性に問
題を生じる。
It is especially important for the hollow fiber separation membrane of the present invention to have the specific pore size distribution and pore volume described above. For example, if the pore size distribution shifts to the smaller pore size, gas Although it may be expected that the separation active layer necessary for separation can be made more dense and the gas separation coefficient αk can be improved,
On the other hand, the resistance to gas permeation increases, the gas permeation rate decreases, and the practicality of the membrane as a gas separation membrane decreases. On the other hand, if the pore size distribution shifts to the larger pore size, the entire membrane structure becomes coarser, making it difficult to maintain a dense layer, resulting in a decrease in the gas separation coefficient, which also impairs the practicality of the membrane as a gas separation membrane. cause problems.

また、細孔の容積は一種の空隙率を表わすが、
特に高い気体透過速度を得るためには前記した細
孔径分布とともに一定レベル以上の細孔容積が必
要である。
In addition, the volume of pores represents a type of porosity,
In order to obtain a particularly high gas permeation rate, it is necessary to have the above-mentioned pore size distribution as well as a pore volume above a certain level.

つぎに本発明の気体分離膜は例えば以下に記載
された方法によつて作ることができるが、特にこ
れらに限定されるものではなく、前記したような
細孔径分布および細孔容積を有する構造を付与さ
れたセルロースエステル中空糸膜が得られる方法
であればそのいかんを問わない。
Next, the gas separation membrane of the present invention can be produced, for example, by the method described below, but is not particularly limited thereto. Any method may be used as long as the cellulose ester hollow fiber membrane to which the cellulose ester is applied can be obtained.

セルロースエステルポリマーを、その溶剤とポ
リマーに対して可溶性を示さない非溶剤とからな
る混合溶剤に溶解して紡糸原液を調整し、これを
紡糸口金より気体雰囲気中に押出したのち凝固浴
中に通して凝固させ、水洗を行いセルロースエス
テルポリマーの湿潤中空糸膜を形成させる。こう
して得られた中空糸膜は多段の熱処理を行い、つ
ぎに乾燥する。乾燥では水混和性有機溶剤および
水非混和性有機溶剤に順次浸漬する溶剤置換法を
用いるが、特に水混和性有機溶剤の浸漬において
は0〜10℃の低温下で低濃度より順次高濃度液を
用いる段階的置換を行う。溶剤置換後含有溶剤を
凍結乾燥する。こうした中空糸の紡糸方法、熱処
理方法および乾燥方法を組合せることにより前記
したような細孔径分布および細孔容積を有する中
空糸気体分離膜が得られる。以上の工程をさらに
詳細に説明する。
A spinning stock solution is prepared by dissolving the cellulose ester polymer in a mixed solvent consisting of the solvent and a non-solvent that is not soluble in the polymer, and this is extruded from a spinneret into a gas atmosphere and then passed through a coagulation bath. The membrane is solidified and washed with water to form a wet hollow fiber membrane of cellulose ester polymer. The hollow fiber membrane thus obtained is subjected to multi-stage heat treatment and then dried. For drying, a solvent replacement method is used in which the solution is sequentially immersed in a water-miscible organic solvent and a water-immiscible organic solvent, but especially in the case of immersion in a water-miscible organic solvent, the solution is immersed in a water-miscible organic solvent at a low temperature of 0 to 10 degrees Celsius. Perform stepwise replacement using . After replacing the solvent, the contained solvent is freeze-dried. By combining these hollow fiber spinning methods, heat treatment methods, and drying methods, a hollow fiber gas separation membrane having the above-described pore size distribution and pore volume can be obtained. The above steps will be explained in more detail.

本発明において用いられるセルロースエステル
系ポリマーとしては、セルロースアセテート、セ
ルローストリアセテート、その他のセルロースエ
ステルまたはそれらの誘導体があるが、特にセル
ロースアセテートが最も好ましい。
Cellulose ester polymers used in the present invention include cellulose acetate, cellulose triacetate, other cellulose esters, and derivatives thereof, and cellulose acetate is particularly preferred.

また、ポリマーの溶解に用いる溶剤はジメチル
ホルムアミド、ジメチルアセトアミド、Nメチル
2ピロリドン等の中から選ばれる。また、同時に
紡糸原液に使用されるポリマーの非溶剤には、下
記一般式で表わされるポリエーテルが用いられ
る。
Further, the solvent used for dissolving the polymer is selected from dimethylformamide, dimethylacetamide, N-methyl 2-pyrrolidone, and the like. At the same time, a polyether represented by the following general formula is used as a non-solvent for the polymer used in the spinning dope.

R1O−(C2H4O)o−R2 (式中、R1およびR2はそれぞれ水素、炭素数1
〜6の炭化水素基、−C2H4・R′または−COR1″で
あり、ここでR′は−CN、−COOR2″、−CONH2
たは−CH2NH2を示し、さらにR1″およびR2″は
それぞれ水素または炭素数1〜6の炭化水素基を
示す。なお、前記式中のnは2〜10の整数であ
る。) こうしたポリエーテルとしては、例えばトリエ
チレングリコール、テトラエチレングリコール、
ポリエチレングリコール、メチルカルビトール、
ジメチルカルビトール、メトキシトリグリコー
ル、トリエチレングリコールモノエチルエーテ
ル、アセチル化ポリエチレングリコール、アミノ
エチル化ポリエチレングリコール等があげられる
が、これらのうち1種あるいは2種以上を混合し
て用いることができる。
R 1 O−(C 2 H 4 O) o −R 2 (wherein, R 1 and R 2 are hydrogen, each has 1 carbon number
~6 hydrocarbon radicals, -C2H4.R ' or -COR1 ' ', where R' denotes -CN, -COOR2 ' ', -CONH2 or -CH2NH2 , and R 1 '' and R2 '' each represent hydrogen or a hydrocarbon group having 1 to 6 carbon atoms. In addition, n in the said formula is an integer of 2-10. ) Examples of such polyethers include triethylene glycol, tetraethylene glycol,
polyethylene glycol, methyl carbitol,
Examples include dimethyl carbitol, methoxy triglycol, triethylene glycol monoethyl ether, acetylated polyethylene glycol, and aminoethylated polyethylene glycol, among which one type or a mixture of two or more types can be used.

以上のセルロースエステル系ポリマー、溶剤、
非溶剤を混合して紡糸原液を調製するわけである
が、その混合比率は得られる湿潤中空糸膜の構造
および最終的な気体分離膜の性能に関係する。本
発明においてはセルロースエステル系ポリマー26
〜39重量%溶剤と非溶剤とからなる混合物61〜74
%の濃度範囲で用いられる。ポリマー、溶剤、非
溶剤は混合され、加熱溶解され紡糸原液となる。
The above cellulose ester polymers, solvents,
A spinning stock solution is prepared by mixing a non-solvent, and the mixing ratio is related to the structure of the obtained wet hollow fiber membrane and the performance of the final gas separation membrane. In the present invention, cellulose ester polymer 26
~39% by weight mixtures of solvent and non-solvent 61-74
% concentration range. The polymer, solvent, and non-solvent are mixed, heated and dissolved to form a spinning dope.

紡糸原液は過、脱泡を行い紡糸口金から空気
や不活性ガスなどの気体雰囲気中に押し出す。紡
糸口金はアーク型、C型、または二重管型のもの
が用いられる。
The spinning dope is filtered and degassed, and then extruded from the spinneret into a gaseous atmosphere such as air or inert gas. The spinneret used is of arc type, C type, or double tube type.

気体雰囲気中に押し出された紡糸原液は中空糸
状となり凝固浴中に導かれ凝固したのち水洗され
湿潤中空糸膜となる。凝固浴に用いられる凝固液
は紡糸原液の調合に用いられる溶剤・非溶剤と水
との混合溶液が使用されるが、本発明の膜構造を
得ようとすれば溶剤と非溶剤との混合割合を凝固
液全量に対し5〜28重量%の範囲から選択する。
また、凝固浴温度としては10〜35℃、好ましくは
26〜30℃の範囲から選択する。
The spinning solution extruded into the gas atmosphere becomes a hollow fiber, is introduced into a coagulation bath, solidified, and then washed with water to form a wet hollow fiber membrane. The coagulating liquid used in the coagulating bath is a mixed solution of water and the solvent/non-solvent used in preparing the spinning stock solution, but in order to obtain the membrane structure of the present invention, the mixing ratio of the solvent and non-solvent must be adjusted. is selected from a range of 5 to 28% by weight based on the total amount of coagulation liquid.
In addition, the coagulation bath temperature is 10 to 35℃, preferably
Select from the range of 26-30℃.

この様な紡糸により得られた中空糸膜は次いで
多段熱処理により構造の緻密化と安定化をはか
る。かかる熱処理は中空糸膜を無緊張下で熱水中
に浸漬する多段熱処理法による。気体透過速度と
選択性とがバランスした気体分離膜を得るために
は、かかる熱処理の態様が重要であつて、温度範
囲の異なる多段熱処理をすることが肝心である。
即ち、第一段熱処理温度は91〜96℃で行ない、第
二段は91〜96℃で、かつ第一段目の温度より高目
で行なうことである。また熱処理時間は10〜15分
である。
The hollow fiber membrane obtained by such spinning is then subjected to multi-stage heat treatment to densify and stabilize the structure. Such heat treatment is based on a multi-stage heat treatment method in which the hollow fiber membrane is immersed in hot water under no tension. In order to obtain a gas separation membrane with a well-balanced gas permeation rate and selectivity, the mode of heat treatment is important, and it is essential to perform multistage heat treatment in different temperature ranges.
That is, the first stage heat treatment is carried out at a temperature of 91 to 96°C, and the second stage is carried out at a temperature of 91 to 96°C, which is higher than the temperature of the first stage. Further, the heat treatment time is 10 to 15 minutes.

かくして得られた湿潤中空糸膜は特に凝固、熱
処理条件に起因してスキン層が緻密で薄く、しか
もコア層も緻密なものとなり、これは気体分離膜
とするために乾燥する必要があるが、かかる膜構
造を破壊することなくすぐれた気体分離膜を得る
ためには以下のような乾燥法を実施することが重
要である。
The thus obtained wet hollow fiber membrane has a dense and thin skin layer, especially due to the coagulation and heat treatment conditions, and the core layer is also dense, which needs to be dried to form a gas separation membrane. In order to obtain an excellent gas separation membrane without destroying the membrane structure, it is important to carry out the following drying method.

まず、湿潤中空糸膜を低温で低濃度の水混和性
有機溶剤水溶液に浸漬して膜中に含有する水分の
一部をその有機溶剤で置換する。以後順次有機溶
剤の濃度を上げた液に浸漬して行き最終的にほぼ
100%の有機溶剤液で置換する。これら段階的溶
剤置換操作は0〜10℃の低温で実施し最初に浸漬
する溶剤水溶液濃度は5〜25%が好ましい。また
濃度の段数は3〜5段が好ましい。
First, a wet hollow fiber membrane is immersed in a low concentration water-miscible organic solvent aqueous solution at a low temperature to replace a portion of the water contained in the membrane with the organic solvent. After that, it was immersed in solutions with increasing concentrations of organic solvents, and finally
Replace with 100% organic solvent solution. These stepwise solvent replacement operations are preferably carried out at a low temperature of 0 to 10°C, and the concentration of the aqueous solvent solution used for initial immersion is preferably 5 to 25%. Further, the number of stages of concentration is preferably 3 to 5 stages.

水混和性有機溶剤としては、アルコール類一
般、例えばメチルアルコール、エチルアルコー
ル、プロピルアルコール、イソプロピルアルコー
ル、ブチルアルコール、イソブチルアルコール、
sec−ブチルアルコール、tert−ブチルアルコー
ルなどが用いられるが、なかでもイソプロピルア
ルコールが好ましい。水混和性有機溶剤で置換さ
れた中空糸膜は、さらに水非混和性、非極性溶剤
に浸漬され置換される。この非極性溶剤として
は、ペンタン、シクロペンタン、ノルマルヘキサ
ン、シクロヘキサン、ノルマルヘプタン、シクロ
ヘプタン、ナフサ、ベンゼン、トルエン、キシレ
ンなどの炭化水素あるいはこれらの混合物が使用
できるが、そのうちでも後の工程との関連でシク
ロヘキサンやパラキシレンが好ましい。
Examples of water-miscible organic solvents include alcohols in general, such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol,
Sec-butyl alcohol, tert-butyl alcohol, etc. are used, and isopropyl alcohol is particularly preferred. The hollow fiber membrane displaced with a water-miscible organic solvent is further immersed in a water-immiscible, non-polar solvent for displacement. Hydrocarbons such as pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, naphtha, benzene, toluene, and xylene, or mixtures thereof, can be used as this non-polar solvent, but among these, hydrocarbons such as In this regard, cyclohexane and paraxylene are preferred.

非極性溶剤で置換された中空糸膜は低温凍結さ
せたのち減圧乾燥を行う、いわゆる凍結乾燥を実
施する。
The hollow fiber membrane substituted with a nonpolar solvent is frozen at a low temperature and then dried under reduced pressure, ie, so-called freeze-drying.

シクロヘキサンとパラキシレンは凝固点がそれ
ぞれ6〜7℃と13℃であり、このような乾燥プロ
セスを実施するには極めて都合が良い。
Cyclohexane and paraxylene have freezing points of 6-7°C and 13°C, respectively, which are very convenient for carrying out such drying processes.

かくして非極性溶剤の凍結乾燥を終了すると乾
燥した中空糸気体分離膜が得られる。
After completing the freeze-drying of the nonpolar solvent, a dry hollow fiber gas separation membrane is obtained.

このようにして得られるセルロースエステル系
中空糸気体分離膜は比較的鋭い細孔径分布を有す
る。すなわち、細孔半径40〜60Åの範囲に入る細
孔の容積の和は0.15cm3/g以上であり、かつ、そ
れが細孔半径30Å以上の細孔の全細孔容積の70%
以上を占め、さらに細孔半径分布曲線が細孔半径
40〜60Åの範囲に最大値を有する構造を保有する
ので、気体透過速度と気体選択性とがバランスさ
れたものとなる。
The cellulose ester hollow fiber gas separation membrane thus obtained has a relatively sharp pore size distribution. In other words, the sum of the volumes of pores with a pore radius of 40 to 60 Å is 0.15 cm 3 /g or more, and this is 70% of the total pore volume of pores with a pore radius of 30 Å or more.
In addition, the pore radius distribution curve
Since it has a structure having a maximum value in the range of 40 to 60 Å, gas permeation rate and gas selectivity are balanced.

ここに例示した方法により得られる気体分離膜
は特に水素に対する気体透過速度が大きく、また
他の気体との分離性能も良好であるため水素ガス
の回収、濃縮に有用なのはもちろん、それ以外の
系例えば炭酸ガス、ヘリウム、水蒸気の透過、濃
縮、分離にも利用することができる。
The gas separation membrane obtained by the method exemplified here has a particularly high gas permeation rate for hydrogen and good separation performance from other gases, so it is useful not only for recovering and concentrating hydrogen gas, but also for other systems such as It can also be used for permeation, concentration, and separation of carbon dioxide, helium, and water vapor.

以上、実施例を用いてさらに本発明を具体的に
説明するが、本発明はかかる実施例によつて何等
限定をうけるものではない。
As mentioned above, the present invention will be further explained in detail using examples, but the present invention is not limited in any way by these examples.

実施例 1 Nメチル2ピロリドン(NMP)46部と分子量
350のメトキシポリエチレングリコール
(MPEG)18部からなる混合溶液にセルロースア
セテート36部を加えて100℃にて十分撹拌溶解し
紡糸原液とした。これを過真空脱泡後二重管型
紡糸口金を通して空気雰囲気中に押し出し、気流
中に約0.1秒間接触させたのち、凝固液中に導き
凝固させた。なお、この凝固浴の液組成は
NMP19重量%、MPEG6重量%、水75%、であ
る。凝固浴中で凝固した中空糸はネルソンローラ
方式で連続水洗を行つたのち18m/Sの速度で巻
取つた。
Example 1 46 parts of N-methyl 2-pyrrolidone (NMP) and molecular weight
36 parts of cellulose acetate was added to a mixed solution consisting of 18 parts of methoxypolyethylene glycol (MPEG) of 350% and dissolved with thorough stirring at 100°C to obtain a spinning stock solution. After defoaming in an overvacuum, this was extruded into an air atmosphere through a double-tube spinneret, brought into contact with an air flow for about 0.1 seconds, and then introduced into a coagulating liquid and coagulated. The liquid composition of this coagulation bath is
NMP 19% by weight, MPEG 6% by weight, water 75%. The hollow fibers coagulated in the coagulation bath were washed continuously with water using a Nelson roller method and then wound at a speed of 18 m/s.

ついで得られた湿潤中空糸膜を無緊張下でまず
91℃の熱水に浸漬し15分間熱処理した後、引続き
92℃、15分間で第二段目の熱処理を行なつた。
Then, the obtained wet hollow fiber membrane was first heated under no tension.
After being immersed in hot water at 91℃ and heat treated for 15 minutes,
A second heat treatment was performed at 92°C for 15 minutes.

熱処理済の中空糸膜を長さ50cm、巻数100のか
せ状にして、10%のイソプロピルアルコール溶液
に30分浸漬し、以後25、50、75%のイソプロピル
アルコール水溶液に各30分ずつ浸漬後、100%イ
ソプロピルアルコールに3時間浸漬した。それぞ
れの浸漬液は6℃に調整された。その後10℃のシ
クロヘキサンに5時間浸漬した。なお、これらの
溶剤浸漬に用いた液量は湿潤中空糸膜に含まれて
いる液量の約20倍以上である。シクロヘキサンで
置換された中空糸膜は5℃以下に冷却され、シク
ロヘキサンを凍結させたのち減圧乾燥を16時間以
上実施し乾燥した気体分離膜を得た。
The heat-treated hollow fiber membrane was shaped into a skein with a length of 50 cm and 100 turns, and was immersed in a 10% isopropyl alcohol solution for 30 minutes, and then in 25, 50, and 75% isopropyl alcohol aqueous solutions for 30 minutes each. It was immersed in 100% isopropyl alcohol for 3 hours. Each immersion solution was adjusted to 6°C. Thereafter, it was immersed in cyclohexane at 10°C for 5 hours. Note that the amount of liquid used for dipping in these solvents was about 20 times or more the amount of liquid contained in the wet hollow fiber membrane. The hollow fiber membrane substituted with cyclohexane was cooled to below 5° C., and after freezing the cyclohexane, drying under reduced pressure was carried out for more than 16 hours to obtain a dried gas separation membrane.

この中空糸膜の細孔径分布を測定したところ第
1図の結果を得た。また、細孔半径40〜60Åの範
囲の細孔半径を有する細孔の容積は約0.294cm3/g
となり、また30Å以上の細孔半径を有する細孔の
全容積の約78%となる。
When the pore size distribution of this hollow fiber membrane was measured, the results shown in FIG. 1 were obtained. In addition, the volume of pores with a pore radius in the range of 40 to 60 Å is approximately 0.294 cm 3 /g
This is approximately 78% of the total volume of pores with a pore radius of 30 Å or more.

これら細孔径分布の測定はCarlo Erba社製の
Sorpto matic装置を用いて行い、計算は前記し
たB.J.H.法に従つた。
These measurements of pore size distribution were carried out using the Carlo Erba
The calculation was carried out using a Sorpto matic device, and the calculations were performed according to the BJH method described above.

つぎにこの中空糸膜の水素およびメタンの気体
透過速度(KH2,KCH4)を測定し、分離係数(αk
(H2/CH4))を求めたところ、圧力10Kg/cm2G、
温度20℃でつぎのようであつた。
Next, the gas permeation rates (K H2 , K CH4 ) of hydrogen and methane through this hollow fiber membrane were measured, and the separation coefficient (αk
(H 2 /CH 4 )), the pressure was 10 Kg/cm 2 G,
At a temperature of 20°C, it was as follows.

KH2=11.5×10-5c.c.(STP)/cm2・sec・cmHg αk(H2/CH4)=43〔−〕 上述の如く得られる中空糸膜は後述の比較例と
対比して分かるように気体透過速度(KH2)と気
体選択性(αk)とがバランスされている。これ
は膜の製造要件、特に凝固浴組成と多段熱処理条
件との一体性に起因している。
K H2 = 11.5×10 -5 cc(STP)/cm 2・sec・cmHg αk(H 2 /CH 4 )=43 [−] The hollow fiber membrane obtained as described above can be understood by comparing it with the comparative example described below. As such, gas permeation rate (K H2 ) and gas selectivity (αk) are balanced. This is due to the integrity of the membrane manufacturing requirements, particularly the coagulation bath composition and multi-stage heat treatment conditions.

比較例 1 実施例1で一段熱処理を85℃、二段熱処理を90
℃にする他は実施例1と同様な方法で気体分離膜
を得た。この分離膜の細孔径分布を測定したとこ
ろ第2図の如くなつた。また細孔半径40〜60Åの
範囲の細孔半径を有する細孔の容積は約0.196cm3/
gとなり、また30Å以上の細孔半径を有する細孔
の全容積の約48%となつた。
Comparative Example 1 In Example 1, the first heat treatment was conducted at 85℃ and the second step heat treatment was conducted at 90℃.
A gas separation membrane was obtained in the same manner as in Example 1 except that the temperature was changed to .degree. When the pore size distribution of this separation membrane was measured, it was as shown in FIG. In addition, the volume of pores with a pore radius in the range of 40 to 60 Å is approximately 0.196 cm 3 /
g, and about 48% of the total volume of pores with a pore radius of 30 Å or more.

この膜の性能は次の如くであつた。 The performance of this membrane was as follows.

KH2=13.0×10-5c.c.(STP)/cm3・sec・cmHg αk(H2/CH4)=26〔−〕 比較例 2 実施例1で一段熱処理を97℃、二段熱処理を98
℃にする他は実施例1と同様な方法で気体分離膜
を得た。この分離膜の細孔径分布を測定したとこ
ろ第3図の如くなつた。細孔半径40〜60Åの範囲
の細孔半径を有する細孔の容積は約0.107cm3/gと
なり、また30Å以上の細孔半径を有する細孔の全
容積の約49%となつた。
K H2 = 13.0×10 -5 cc(STP)/cm 3・sec・cmHg αk(H 2 /CH 4 )=26 [−] Comparative Example 2 In Example 1, the first heat treatment was performed at 97°C and the second stage heat treatment was performed at 98°C.
A gas separation membrane was obtained in the same manner as in Example 1 except that the temperature was changed to .degree. When the pore size distribution of this separation membrane was measured, it was as shown in FIG. The volume of pores with a pore radius in the range of 40-60 Å was about 0.107 cm 3 /g, and about 49% of the total volume of pores with a pore radius of 30 Å or more.

この膜の性能は次の如くであつた。 The performance of this membrane was as follows.

KH2=5.1×10-5c.c.(STP)/cm2・sec・cmHg αk(H2/CH4)=50〔−〕 K H2 = 5.1×10 -5 cc(STP)/cm 2・sec・cmHg αk(H 2 /CH 4 )=50[−]

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る気体分離膜の細孔径分布
曲線であり、第2図および第3図は本発明外の分
離膜の細孔径分布曲線を示す。
FIG. 1 shows a pore size distribution curve of a gas separation membrane according to the present invention, and FIGS. 2 and 3 show pore size distribution curves of separation membranes other than the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 セルロースエステル系中空糸膜であつて、細
孔半径40〜60Åの範囲の細孔の容積の和が0.15
cm3/g以上であり、その容積の和が細孔半径30Å
以上の細孔の全細孔容積の70%以上を占め、かつ
細孔半径40〜60Åに最大値を有することを特徴と
する気体分離膜。
1 A cellulose ester-based hollow fiber membrane in which the sum of the volumes of pores with a pore radius of 40 to 60 Å is 0.15
cm 3 /g or more, and the sum of its volumes has a pore radius of 30 Å.
A gas separation membrane characterized in that the pores occupy 70% or more of the total pore volume and have a maximum pore radius in the range of 40 to 60 Å.
JP5327284A 1984-03-19 1984-03-19 Gas separation membrane Granted JPS60197204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327284A JPS60197204A (en) 1984-03-19 1984-03-19 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327284A JPS60197204A (en) 1984-03-19 1984-03-19 Gas separation membrane

Publications (2)

Publication Number Publication Date
JPS60197204A JPS60197204A (en) 1985-10-05
JPH0376973B2 true JPH0376973B2 (en) 1991-12-09

Family

ID=12938099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327284A Granted JPS60197204A (en) 1984-03-19 1984-03-19 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPS60197204A (en)

Also Published As

Publication number Publication date
JPS60197204A (en) 1985-10-05

Similar Documents

Publication Publication Date Title
US5820659A (en) Multicomponent or asymmetric gas separation membranes
EP0732143B1 (en) Fluid separation membranes prepared from blends of polyimide polymers
Wang et al. Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive
Wang et al. Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes
Wang et al. Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems
Clausi et al. Formation of defect-free polyimide hollow fiber membranes for gas separations
CA2800200C (en) High permeance polyimide membranes for air separation
US9233344B1 (en) High selectivity polyimide membrane for natural gas upgrading and hydrogen purification
JPH08150327A (en) Preparation of film from blend of polyether imide polymer and polyimide polymer
US9266058B1 (en) High selectivity polyimide membrane for natural gas upgrading and hydrogen purification
JPH08206478A (en) Production of film out of polymer blend
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
KR100835655B1 (en) Preparation method of gas seperation membrane and gas seperation membrane prepared therefrom
WO2003040444A1 (en) Manufacture of polyimide hollow fibres
KR100381463B1 (en) Membrane Formation by dual quenched method
US6015516A (en) Ultrathin high-performance hollow fiber membranes
JP2688882B2 (en) Method for producing composite membrane for gas separation
JPH0376973B2 (en)
US20160089627A1 (en) Polyimide blend membranes for gas separations
CA1188630A (en) Process for separating co.sub.2 from other gases
JPH031055B2 (en)
KR101503395B1 (en) Preparation method of support membrane for recovering hydrocarbon and support membrane prepared therefrom
JPS588504A (en) Gas separation membrane comprising polysulfone hollow fiber
JPH03123628A (en) Dope for manufacture of an asymmetric gas separation membrane
WO2019044215A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees