JPH037667A - Running condition sensing device - Google Patents

Running condition sensing device

Info

Publication number
JPH037667A
JPH037667A JP13985389A JP13985389A JPH037667A JP H037667 A JPH037667 A JP H037667A JP 13985389 A JP13985389 A JP 13985389A JP 13985389 A JP13985389 A JP 13985389A JP H037667 A JPH037667 A JP H037667A
Authority
JP
Japan
Prior art keywords
running condition
steering angle
running
steering
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13985389A
Other languages
Japanese (ja)
Other versions
JPH0771939B2 (en
Inventor
Hiroshi Matsuoka
浩史 松岡
Takashi Kageyama
孝 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP1139853A priority Critical patent/JPH0771939B2/en
Publication of JPH037667A publication Critical patent/JPH037667A/en
Publication of JPH0771939B2 publication Critical patent/JPH0771939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PURPOSE:To have fine judgement of the variation in the running condition of a car by sensing the running condition associate with the locus of running from the integrated value of the inverted numbers of the rotational radii determined at every unitary distance, and thereby performing each sensing in a short time. CONSTITUTION:From the rotation of the output shaft of a transmission 13 in connection to an engine 4 a car speed sensor 12 senses the car speed, which is fed to a running condition sensor circuit 19 together with a steering angle signal given by a steering angle sensor 14, and there the running condition associate with the locus of running is determined from the steering angles at every unitary distance in the form of the inverted value of the locus radii, and the mean or integral is calculated therefrom, which is output as the running condition index An. A control circuit 11 controls the degree of opening of a variable orifice 10 on the basis of the car speed V, steering angle theta, and this running condition index An, and the reactive pressure of the pressurized fluid fed from a sub-pump 7 is controlled. Thus the running condition can be sensed at every unitary distance in a short time to enable fine judgement of the varying running condition, which serves proper control of the reactive pressure of the power assist mechanism.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車の走行状態に応して操舵補助力を制御
するときに用いる走行状態検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a driving state detection device used when controlling steering assist force according to the driving state of an automobile.

〔従来の技術〕[Conventional technology]

動力舵取装置を電子制御する場合、従来は走行状態を車
速によって判定していた。そしてこの判定結果によっ、
て、例えば低速域では操舵力が軽く、また高速域では操
舵力が重くなるように油圧シリンダ又はモータによる操
舵補助力を制御している。
When controlling a power steering device electronically, the driving state has conventionally been determined based on vehicle speed. And based on this judgment result,
For example, the steering assist force by a hydraulic cylinder or motor is controlled so that the steering force is light in a low speed range and heavy in a high speed range.

しかしながら車速により走行状態を判定する従来技術を
用いた動力舵取装置においては、操舵補助力が車速感応
型となっているだけであるので、曲線路が多い山道走行
の場合と、直線路が多い市街地走行とで制御パターンを
変更することができず、夫々の走行状態に適した操舵補
助力が得られないという問題があった。
However, in power steering systems using conventional technology that determine driving conditions based on vehicle speed, the steering assist force is only responsive to vehicle speed, so it is difficult to drive on mountain roads with many curved roads and on many straight roads. There is a problem in that the control pattern cannot be changed depending on whether the vehicle is driving in a city, and it is not possible to obtain a steering assist force suitable for each driving condition.

これを解決するために、操舵補助力の制御において、操
舵角信号の頻度分布により山道走行と市街地走行とを区
別して判定するものがある(特開昭61−220971
号公報)。
In order to solve this problem, there is a system that distinguishes between driving on mountain roads and driving in urban areas based on the frequency distribution of steering angle signals in controlling the steering assist force (Japanese Patent Laid-Open No. 61-220971
Publication No.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、操舵角信号の頻度分布により走行状態を
判定した場合は、走行状態を不連続的にしか判定できな
いという問題があった。即し前述の従来装置においては
、操舵角の頻度分布により算出した山道指数と所定の基
準値との比較又は複数の基準値との比較により走行状態
を判別しており、多数の操舵角を検出し、その頻度分布
を算出するまで山道指数が得られず、その走行状態の判
定までに長時間を要し、その変化をきめ細かく判定でき
なかった。
However, when the driving state is determined based on the frequency distribution of the steering angle signal, there is a problem in that the driving state can only be determined discontinuously. Therefore, in the conventional device described above, the driving condition is determined by comparing the mountain road index calculated from the frequency distribution of steering angles with a predetermined reference value or a plurality of reference values, and a large number of steering angles are detected. However, the mountain road index could not be obtained until the frequency distribution was calculated, and it took a long time to determine the driving condition, making it impossible to determine the changes in detail.

本発明は斯かる事情に鑑みなされたものであり、操舵角
の所定距離毎の舵角により走行軌跡の半径を求め、その
逆数の積分値又は平均により走行指数を求めそれに基づ
き走行状態を判定することにより、車両の走行軌跡に関
する走行状態を操舵角の検出の都度短時間で検出でき、
その変化をきめ細かく判定できる走行状態検出装置を提
供することを目的とする。
The present invention has been developed in view of the above circumstances, and the radius of the travel trajectory is determined by the steering angle at each predetermined distance, and the travel index is determined by the integral value or average of the reciprocal of the radius, and the travel state is determined based on the radius. By doing this, the driving state regarding the vehicle's travel trajectory can be detected in a short time each time the steering angle is detected.
It is an object of the present invention to provide a driving state detection device that can finely determine the changes.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る走行状態検出装置は、車速を検出する車速
センサと、舵取機構の操舵角を検出する操舵角センサと
を備えた車両の走行軌跡に関連する走行状態を検出する
走行状態検出装置において、前記車速センサが検出した
車速信号に基づき、前記車両の走行距離を算出する手段
と、該手段により算出された走行距離の所定距離毎に前
記操舵角センサにて検出された操舵角を抽出し、これと
前記所定距離とに基づき走行軌跡の半径に関連する値を
算出する手段とを備えることを特徴とする。
A driving state detection device according to the present invention includes a vehicle speed sensor that detects vehicle speed and a steering angle sensor that detects a steering angle of a steering mechanism. , means for calculating the traveling distance of the vehicle based on the vehicle speed signal detected by the vehicle speed sensor, and extracting the steering angle detected by the steering angle sensor every predetermined distance of the traveling distance calculated by the means. The vehicle is characterized by comprising means for calculating a value related to the radius of the travel trajectory based on this and the predetermined distance.

〔作用〕[Effect]

本発明においては、車速センサからの車速信号に基づき
走行距離を算出し、算出された走行距離の所定距離毎に
操舵角を検出し、所定距離毎の操舵角により、車両の走
行軌跡の半径の逆数の値を求め、それの平均又は積分に
よる演算処理により車両の走行状態を示す走行状態指数
を算出するので、車両が単位距離走行するごとに走行軌
跡の半径の情報が検出でき、その連なりとしての走行軌
跡が判定できる。
In the present invention, the traveling distance is calculated based on the vehicle speed signal from the vehicle speed sensor, the steering angle is detected at each predetermined distance of the calculated traveling distance, and the radius of the vehicle's traveling trajectory is determined by the steering angle at each predetermined distance. Since the reciprocal value is calculated and the average or integral calculation process is used to calculate the driving condition index that indicates the driving condition of the vehicle, information on the radius of the traveling trajectory can be detected every time the vehicle travels a unit distance, and the radius of the traveling trajectory can be detected as a series of the values. The travel trajectory of the vehicle can be determined.

〔実施例〕〔Example〕

以下、本発明をその一実施例を示す図面に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on drawings showing one embodiment thereof.

第1図は本発明に係る走行状態検出装置を用いた油圧式
の動力舵取装置のシステム図である。図において3はメ
インポンプであり、該メインポンプ3はプーリ5を介し
てエンジン4によりその回転中、常時回転駆動されてい
る。またメインポンプ3はタンク6内の液体を加圧し、
そのカロ圧流体ヲ後述するパワーアシスト彎構のコント
ロールバルブ2に供給し、タンク6内に還流する。パワ
ーアシスト機構は、操舵補助力を発生ずるランクシリン
ダ1、ランクシリンダ1への加圧流体の送給方向を切換
えるコントロールバルブ2及び後述するサブポンプ7か
らの加圧流体が供給される反力室8を有している。サブ
ポンプ7はメインポンプ3と同様にエンジン4により常
時回転駆動され、タンク6内の流体を加圧し、その加圧
流体を反力室8に供給している。
FIG. 1 is a system diagram of a hydraulic power steering device using a running state detection device according to the present invention. In the figure, 3 is a main pump, and the main pump 3 is constantly rotationally driven by an engine 4 via a pulley 5 during its rotation. In addition, the main pump 3 pressurizes the liquid in the tank 6,
The caloric pressure fluid is supplied to a control valve 2 with a power assist curved structure, which will be described later, and is recirculated into a tank 6. The power assist mechanism includes a rank cylinder 1 that generates a steering assist force, a control valve 2 that switches the feeding direction of pressurized fluid to the rank cylinder 1, and a reaction force chamber 8 that is supplied with pressurized fluid from a sub-pump 7, which will be described later. have. Like the main pump 3, the sub-pump 7 is constantly rotationally driven by the engine 4, pressurizes the fluid in the tank 6, and supplies the pressurized fluid to the reaction force chamber 8.

反力室8は、供給される加圧流体を受1−1、舵輪に連
なる入力軸9とパワーアシスト機構側の図示しない出力
軸との間の等価バネ定数を変えるものであり、反力室8
は、入力軸9と出力軸との相対変位量によって開度が定
まるコントロールバルブ2の相対変位量を反力室8に供
給される加圧流体の反力圧により制御する。サブポンプ
7からの加圧流体の反力圧はタンク6に連なる可変オリ
フィス10により制御される。可変オリフィス10の開
度は後述する制御回路11から出力される開度制御信号
により制御される。
The reaction force chamber 8 receives the supplied pressurized fluid 1-1 and changes the equivalent spring constant between the input shaft 9 connected to the steering wheel and the output shaft (not shown) on the power assist mechanism side. 8
controls the relative displacement amount of the control valve 2, whose opening degree is determined by the relative displacement amount between the input shaft 9 and the output shaft, by the reaction pressure of the pressurized fluid supplied to the reaction force chamber 8. The reaction pressure of the pressurized fluid from the sub-pump 7 is controlled by a variable orifice 10 connected to the tank 6. The opening degree of the variable orifice 10 is controlled by an opening degree control signal output from a control circuit 11, which will be described later.

制御回路11には、車速センサ12からの車速信号■、
操舵角センサ14からの操舵角信号θ及び本発明の要旨
である走行状態検出回路19からの走行状態指数A7が
与えられており、それらに応じて開度制御信号を出力し
、可変オリフィス10の開度を制御し、反力圧を制御し
ている。
The control circuit 11 receives a vehicle speed signal from the vehicle speed sensor 12;
The steering angle signal θ from the steering angle sensor 14 and the running state index A7 from the running state detection circuit 19, which is the gist of the present invention, are given, and the opening control signal is output according to these, and the variable orifice 10 is controlled. The opening degree is controlled and the reaction pressure is controlled.

車速センサ12は、エンジン4に連なるトランスミッシ
ョン13の出力軸の回転を電気的に検出し、その車速信
号Vが制御回路11及び走行状態検出回路19に与えら
れる。また操舵角センサ14は、ポテンションメータか
らなり、ケース等の固定側を舵輪廻りの固定部に設ける
一方、摺動側を入力軸9に固定することにより、操舵角
を電圧信号として検出し、この操舵角信号θが制御回路
11及び走行状態検出回路19に与えられる。
Vehicle speed sensor 12 electrically detects rotation of an output shaft of transmission 13 connected to engine 4, and provides a vehicle speed signal V to control circuit 11 and running state detection circuit 19. The steering angle sensor 14 is composed of a potentiometer, and the fixed side of the case or the like is provided at a fixed part around the steering wheel, while the sliding side is fixed to the input shaft 9, thereby detecting the steering angle as a voltage signal. This steering angle signal θ is given to the control circuit 11 and the running state detection circuit 19.

第2図は走行状態検出回路の概略構成を示すブロック図
である。車速センサ12からの車速信’T’i Vは走
行距離検出回路19aに与えられ、そこで時間と車速信
号■とにより走行距離が演算される。走行距離検出回路
19aは、演算された走行距離により単位距離S、9 
(例えば40cm)車両が走行したことを検出すると、
その検出信号を演算部191)に出力する。演算部19
bは検出信号の入力タイミングで操舵角信号θを読込み
、それにより車両の走行軌跡の半径Rの逆数(−]/+
1 )を(1)式により算出する。半径の逆数を用いた
のは、直進状態を囚ではなくOで表すためである。
FIG. 2 is a block diagram showing a schematic configuration of the running state detection circuit. The vehicle speed signal 'T'iV from the vehicle speed sensor 12 is given to the travel distance detection circuit 19a, where the travel distance is calculated based on time and the vehicle speed signal (2). The mileage detection circuit 19a calculates a unit distance S,9 based on the calculated mileage.
(For example, 40cm) When it is detected that the vehicle has traveled,
The detection signal is output to the calculation section 191). Arithmetic unit 19
b reads the steering angle signal θ at the input timing of the detection signal, and thereby calculates the reciprocal of the radius R of the vehicle's travel trajectory (-]/+
1) is calculated using equation (1). The reason why the reciprocal of the radius is used is to express the straight-ahead state by O instead of by ``O''.

RSo 但し K:定数 演算部19bは、単位距離S6毎に操舵角信号θを読込
み、逆数を算出し、それを積分a I 9 cに出力す
る。積分器19cは逆数が入力されるとそれを距離に対
して(2)式に示す如く積分演算し、走行状態を示す走
行状態指数A1を求め、それを制御回路11に出力する
RSo where K: constant The calculation unit 19b reads the steering angle signal θ every unit distance S6, calculates the reciprocal, and outputs it to the integral a I 9 c. When the integrator 19c receives the reciprocal number, it performs an integral operation on the distance as shown in equation (2), obtains a running state index A1 indicating the running state, and outputs it to the control circuit 11.

但し I:距離に対する積分定数 走行状態指数A7は、回転半径Rの逆数の積分値であり
、走行状態指数へ。が大きい場合は、山岳路等の曲線路
を走行中であると判定でき、小さい場合は比較的曲線の
少ない市街地を走行中であると判断できる。
However, I: Integral constant for distance The driving condition index A7 is an integral value of the reciprocal of the turning radius R, and becomes the driving condition index. If it is large, it can be determined that the vehicle is traveling on a curved road such as a mountain road, and if it is small, it can be determined that the vehicle is traveling in an urban area with relatively few curves.

第3図は制御回路の概略構成を示すブロック図、第4図
は制御回路の制御パターンの一例を示すグラフであり、
縦軸には反力圧を、また横軸には車速をとっている。ま
た舵角制御の範囲をハツチングで示し、操舵角が大きい
場合、反ツノ圧を大きくしている。
FIG. 3 is a block diagram showing a schematic configuration of the control circuit, and FIG. 4 is a graph showing an example of a control pattern of the control circuit.
The vertical axis shows the reaction pressure, and the horizontal axis shows the vehicle speed. The range of steering angle control is indicated by hatching, and when the steering angle is large, the anti-horn pressure is increased.

制御回路11には車速信号■、操舵角信号θ及び走行状
態指数A。が与えられており、それらの関係により、オ
リフィス開度を定め、反力圧を制′4i1する。反力圧
ばオリフィス開度の増加に応して減少しており、第4図
に示す反力圧と車速、走行状態、操舵角との関係に基づ
く各入力信号と開度制御信号との三次元的な関係が記憶
素子15aに記1.0されている。記憶素子15aから
の開度制御信号の読出しは各入力信号に応じてアクセス
するアクセス回路部15bにより行われる。その開度制
御信号が駆動回路18に与えられ、この開度制御信号の
大きさに比例した量だけ駆動回路18が電流を可変オリ
フィス10のアクチュエータ10aに与え、それを作動
させる。この開度制御信号は、アクチュエータ10aが
ステアリングモータの場合はステップ数に、またソレノ
イドである場合はコイルに通流する電流値などに対応す
る信号である。
The control circuit 11 receives a vehicle speed signal ■, a steering angle signal θ, and a running condition index A. are given, and based on these relationships, the orifice opening degree is determined and the reaction pressure is controlled. The reaction pressure decreases as the orifice opening degree increases, and the three-dimensional relationship between each input signal and the opening control signal based on the relationship between the reaction pressure and the vehicle speed, driving condition, and steering angle shown in Fig. 4 is shown in Fig. 4. The original relationship is written as 1.0 in the memory element 15a. Reading of the opening degree control signal from the storage element 15a is performed by an access circuit section 15b that accesses according to each input signal. The opening control signal is given to the drive circuit 18, and the drive circuit 18 supplies current to the actuator 10a of the variable orifice 10 by an amount proportional to the magnitude of the opening control signal, thereby activating it. This opening degree control signal corresponds to the number of steps when the actuator 10a is a steering motor, or to the value of current flowing through a coil when the actuator 10a is a solenoid.

なお、反力圧と車速、操舵角及び走行状態との関係は第
4図に示す如く、車両の直進時(A、、!−;O)は舵
輪のふらつき感を解消するため反力圧を車速に応じて増
加率を大きくして変化させる。またこのときの操舵角に
よる舵角制御は操舵角が大きくなるにつれて反力圧を大
きくし、舵輪を回動したときに切込み感を与えている。
The relationship between the reaction force pressure, vehicle speed, steering angle, and running condition is shown in Figure 4. When the vehicle is traveling straight (A,,!-;O), the reaction pressure is reduced to eliminate the feeling of wobbling of the steering wheel. The increase rate is increased and changed according to the vehicle speed. Further, in this steering angle control using the steering angle, the reaction pressure increases as the steering angle increases, giving a feeling of cutting when the steering wheel is rotated.

またハツチングで示した舵角制御の幅は回転半径が小さ
くなる(A、、→大)に従い小さくなっている。これに
より山岳路等の曲線路でのステアリング特性の変化を少
なくして安定した操舵フィーリングが得られる。
Furthermore, the width of the steering angle control indicated by hatching becomes smaller as the turning radius becomes smaller (A, , → larger). This reduces changes in steering characteristics on curved roads such as mountain roads and provides a stable steering feel.

次にごのように構成された本発明装置の動作について説
明する。第5図は走行状態検出動作のフローチャート、
第6図はそれを用いたオリフィス開度制御のフローチャ
ートである。
Next, the operation of the apparatus of the present invention constructed as shown below will be explained. FIG. 5 is a flowchart of the running state detection operation.
FIG. 6 is a flowchart of orifice opening degree control using this method.

最初に車速信号Vが所定のタイミングで読込まれ(S1
0)、車速信号■により走行距離が検出される。そして
単位距離S、走行したか否かが走行距離検出回路19a
で判定され(Sll) 、走行していない場合はリター
ンし、走行した場合は、操舵角信号θを読込み(S12
) 、演算部19bで回転半径Rの逆数を算出する(S
13)。算出された逆数は積分器19cに与えられ、そ
こで積分され走行状態指数Aゎが前述の(温式にて求め
られる(514)。
First, the vehicle speed signal V is read at a predetermined timing (S1
0), the traveling distance is detected by the vehicle speed signal ■. Then, the unit distance S, whether or not the distance traveled is determined by the distance detection circuit 19a.
If the vehicle is not running, return is made; if the vehicle is running, the steering angle signal θ is read (S12).
), the calculation unit 19b calculates the reciprocal of the rotation radius R (S
13). The calculated reciprocal is given to the integrator 19c, where it is integrated to obtain the running condition index Aゎ using the above-mentioned (warm formula) (514).

一方オリフイス開度制御では、最初に車速信号■を読込
み(S20)、次に操舵角信号θを読込む(S21)。
On the other hand, in orifice opening control, first the vehicle speed signal ■ is read (S20), and then the steering angle signal θ is read (S21).

そしてステップ10以下の走行状態検出ルーチンで走行
状態主旨数人。を算出しく522) 、それをマイクロ
コンピュータ15により読込む(S23)。読込まれた
車速信号■、操舵角信号0及び走行状態指数へ〇により
アクセス回路部15bが記IJ素子15t〕をアクセス
しく524) 、制御信号を読出し出力ずろ(S25)
。そしてこれが単位距離S、毎の取込ナイクルの度に行
われる(S26)。
Then, in the running state detection routine from step 10 onwards, several people determine the running state. is calculated (522) and read by the microcomputer 15 (S23). The access circuit section 15b accesses the IJ element 15t] based on the read vehicle speed signal (■), steering angle signal (0), and driving condition index (524), reads out the control signal, and outputs it (S25).
. This is performed every time the unit distance S is taken in (S26).

このように本実施例では、操舵角の検出の都度、走行状
態指数A、、を出力し、車速、操舵角、走行状態指数に
より三次元的に予め記憶しである開度制御信号が出力さ
れるので、オリフィス開度制御が走行状態の変化に迅速
に対応できる。
In this way, in this embodiment, each time the steering angle is detected, the driving condition index A is outputted, and an opening control signal that is three-dimensionally stored in advance based on the vehicle speed, steering angle, and driving condition index is outputted. Therefore, orifice opening degree control can quickly respond to changes in driving conditions.

なお、本実施例では走行状態指数として、検出値のバラ
ツキを抑えるため回転半径の逆数の積分値を用いている
が、本発明はこれに限るもので(9(なく、走行状態指
数として回転半径又はその逆数をそのまま又はその平均
値を用いてよいごとは言・うまでもない。
In this embodiment, the integral value of the reciprocal of the turning radius is used as the driving condition index in order to suppress the variation in detected values, but the present invention is not limited to this (9), and the turning radius is used as the driving condition index. It goes without saying that the reciprocal value may be used as it is or its average value may be used.

また本実施例では、本発明装置を油圧式の動力舵取装置
に用いたが、本発明はごれに限るものではなく、電動式
その他の動力舵取装置にも適用できることは言うまでも
ない。
Further, in this embodiment, the device of the present invention is used in a hydraulic power steering device, but it goes without saying that the present invention is not limited to a hydraulic power steering device, but can also be applied to an electric power steering device or other types of power steering devices.

〔効果〕 以上説明したとおり、本発明によれば走行軌跡に関連す
る走行状態を単位距離毎に求めた回転半径の逆数の積分
値により検出しているので、走行状態を単位距離毎に短
時間に検出でき、その変化をきめ細かく判定できる筒便
れた効果を奏する。
[Effect] As explained above, according to the present invention, the running state related to the running trajectory is detected by the integral value of the reciprocal of the turning radius obtained for each unit distance, so the running state can be detected for a short time every unit distance. This has the advantage of being able to detect changes in detail and making detailed judgments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る走行状態検出装置を用いた油圧式
の動力舵取装置のシステム図、第2図は走行状態検出回
路の概略構成を示すブロック図、第3図は制御回路の概
略構成を示すブロック図、第4図は11ノ]御回路の制
御パターンの一例を示すグラフ、第5ばは走行状態検出
動作のフローチャート、第6図はそれを用いたオリフィ
ス開度制御のフローチャー1・である。 12・・・車速センサ ]9・・・走行状態検出回路 1911・・・演算器 4 19、〕 9c ・・・操舵角セン′す・ ・走行距離検出回路 積分器 ] 2 特 許 出願人 光洋精工株式会社
Fig. 1 is a system diagram of a hydraulic power steering device using a running state detection device according to the present invention, Fig. 2 is a block diagram showing a schematic configuration of a running state detection circuit, and Fig. 3 is a schematic diagram of a control circuit. Figure 4 is a block diagram showing the configuration, Figure 4 is a graph showing an example of the control pattern of the control circuit, Figure 5 is a flowchart of the running state detection operation, and Figure 6 is a flowchart of orifice opening control using the same. It is 1. 12...Vehicle speed sensor] 9...Driving state detection circuit 1911...Arithmetic unit 4 19,] 9c...Steering angle sensor - Traveling distance detection circuit integrator] 2 Patent Applicant: Koyo Seiko Co., Ltd.

Claims (1)

【特許請求の範囲】 1、車速を検出する車速センサと、舵取機構の操舵角を
検出する操舵角センサとを備えた車両の走行軌跡に関連
する走行状態を検出する走行状態検出装置において、 前記車速センサが検出した車速信号に基づき、前記車両
の走行距離を算出する手段と、該手段により算出された
走行距離の所定距離毎に前記操舵角センサにて検出され
た操舵角を抽出し、これと前記所定距離とに基づき走行
軌跡の半径に関連する値を算出する手段と を備えることを特徴とする走行状態検出装置。
[Scope of Claims] 1. A driving state detection device that detects a driving state related to a traveling trajectory of a vehicle, which includes a vehicle speed sensor that detects vehicle speed, and a steering angle sensor that detects a steering angle of a steering mechanism. a means for calculating a travel distance of the vehicle based on a vehicle speed signal detected by the vehicle speed sensor; and extracting a steering angle detected by the steering angle sensor for each predetermined distance of the travel distance calculated by the means; A driving state detection device comprising means for calculating a value related to the radius of the traveling trajectory based on this and the predetermined distance.
JP1139853A 1989-05-31 1989-05-31 Power steering device Expired - Fee Related JPH0771939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1139853A JPH0771939B2 (en) 1989-05-31 1989-05-31 Power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1139853A JPH0771939B2 (en) 1989-05-31 1989-05-31 Power steering device

Publications (2)

Publication Number Publication Date
JPH037667A true JPH037667A (en) 1991-01-14
JPH0771939B2 JPH0771939B2 (en) 1995-08-02

Family

ID=15255061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1139853A Expired - Fee Related JPH0771939B2 (en) 1989-05-31 1989-05-31 Power steering device

Country Status (1)

Country Link
JP (1) JPH0771939B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157466A (en) * 1984-08-30 1986-03-24 Nissan Motor Co Ltd Steering controller for four-wheel steering car
JPS61286714A (en) * 1985-06-13 1986-12-17 Nippon Soken Inc Apparatus for detecting angle of rotation of vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157466A (en) * 1984-08-30 1986-03-24 Nissan Motor Co Ltd Steering controller for four-wheel steering car
JPS61286714A (en) * 1985-06-13 1986-12-17 Nippon Soken Inc Apparatus for detecting angle of rotation of vehicle

Also Published As

Publication number Publication date
JPH0771939B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US4882693A (en) Automotive system for dynamically determining road adhesion
US4905783A (en) Vehicular controller with differential wheel speed input
JPH07115649B2 (en) Vehicle running condition determination device
EP0885756B1 (en) Tilt control apparatus for industrial vehicles
US7103461B2 (en) Driving assist apparatus and method for vehicle
CN101868396B (en) Vehicle steering control device
EP0081758B1 (en) System for stabilizing idling of vehicular engine
JPH06183288A (en) Controller for stability of vehicle turning around curve
EP0296756B1 (en) Vehicular controller with differential wheel speed input
JPH0316879A (en) Power steering control device for vehicle
EP0841238B1 (en) A variable assist power steering system
US5208752A (en) Control apparatus for power-assisted steering system
JPH07100451B2 (en) Steering force control device for power steering device
JPH037667A (en) Running condition sensing device
JP3057950B2 (en) Vehicle steering control device
US4693332A (en) Electric control apparatus for power steering system
CN101479124B (en) Control device for vehicle
JP3328014B2 (en) Vehicle control device
JPH06286630A (en) Road surface frictional coefficient estimating device
JPH0293166A (en) Controller for continuously variable transmission
JPS5973362A (en) Power steering device
JPH0558318A (en) Power steering device
JPS61241276A (en) Four wheel steering device for automobile
JP3487980B2 (en) Control method of front and rear wheel steering vehicle
JPH02227B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees