JPH0376405B2 - - Google Patents

Info

Publication number
JPH0376405B2
JPH0376405B2 JP7060183A JP7060183A JPH0376405B2 JP H0376405 B2 JPH0376405 B2 JP H0376405B2 JP 7060183 A JP7060183 A JP 7060183A JP 7060183 A JP7060183 A JP 7060183A JP H0376405 B2 JPH0376405 B2 JP H0376405B2
Authority
JP
Japan
Prior art keywords
received signal
value
signal
excitation current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7060183A
Other languages
Japanese (ja)
Other versions
JPS59195125A (en
Inventor
Hitoshi Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7060183A priority Critical patent/JPS59195125A/en
Publication of JPS59195125A publication Critical patent/JPS59195125A/en
Publication of JPH0376405B2 publication Critical patent/JPH0376405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、電磁流量計発信器からの受信信号に
含まれる電気化学的要因に基づく直流ノイズ電圧
など電極間直流電位の突変の影響を除くように信
号処理方式を改良した電磁流量計変換器に関す
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention eliminates the effects of sudden changes in the DC potential between electrodes, such as DC noise voltage based on electrochemical factors contained in the received signal from an electromagnetic flowmeter transmitter. This invention relates to an electromagnetic flowmeter converter with an improved signal processing method.

<従来技術> 電磁流量計発信器からの受信信号には、励磁の
磁束密度の時間的変化に起因する電磁誘導ノイズ
電圧、電極と流体の間で電気化学的要因により発
生する直流ノイズ電圧、商用電源に起因する商用
周波ノイズ電圧の各種のノイズが含まれているた
め、従来からノイズ除去のための各種信号処理方
法が提案されている。
<Prior art> The received signal from the electromagnetic flowmeter transmitter includes electromagnetic induction noise voltage caused by temporal changes in excitation magnetic flux density, DC noise voltage generated due to electrochemical factors between the electrode and the fluid, and commercial Since various kinds of noise are included in the commercial frequency noise voltage caused by the power supply, various signal processing methods have been proposed to remove the noise.

電気化学的直流ノイズの除去については、特開
昭50−128551号(発明の名称:「2つの磁気誘導
度間で切換えられる直流磁界を用いた電磁流量計
の電気化学的障害直流電圧補償方式」)や特開昭
54−896568号(発明の名称:「誘導型流量測定方
法及び装置」)等の技術が知られている。これ等
の技術は、電気化学的直流ノイズは励磁周期に比
較して十分緩慢に変化する等の仮定に立つている
ため、電極間直流電位が突変する場合には必ずし
も有効ではなかつた。即ち、実際には電気化学的
直流ノイズは数10msec〜1sec程度の期間で突変
し、突変の振幅が流量信号に比べて極端に大きな
ものであることが判つた。
Regarding the removal of electrochemical DC noise, please refer to Japanese Patent Application Laid-open No. 128551/1986 (Title of invention: ``Electrochemical interference DC voltage compensation method for electromagnetic flowmeter using DC magnetic field switched between two degrees of magnetic induction'') ) and Tokukai Sho
Techniques such as No. 54-896568 (title of invention: "Inductive flow rate measuring method and device") are known. These techniques are based on the assumption that electrochemical DC noise changes sufficiently slowly compared to the excitation period, and therefore are not necessarily effective when the inter-electrode DC potential suddenly changes. That is, it has been found that, in reality, electrochemical DC noise suddenly changes over a period of about 10 msec to 1 sec, and the amplitude of the sudden change is extremely large compared to the flow rate signal.

そこで、電極間直流電位の突変による受信信号
の変化率が、流速に起因する変化率に比べて遥か
に大きい点に着目して突変の影響を除く信号処理
方式が特願昭57−4911(発明の名称:「電磁流量計
変換器」)として提案されている。即ち、電磁流
量計発信器からの受信信号値の時系列的平均値を
算出して出力とするが、この平均値に追従して平
均値の上下一定幅の範囲を正常信号領域即ち窓と
し、新たな受信信号値がこの窓の中にあるか否か
を判定し、窓の中にあれば新たな受信信号値を平
均値算出に用いるが、もし窓の外にあれば新たな
受信信号値の代りに窓の境界値や算出済の平均値
を平均値算出に用いるものである。
Therefore, the patent application No. 57-4911 focused on the fact that the rate of change in the received signal due to sudden changes in the DC potential between the electrodes is much larger than the rate of change due to flow velocity, and proposed a signal processing method that eliminates the effects of sudden changes. (Name of invention: "Magnetic flowmeter converter"). That is, the time-series average value of the received signal values from the electromagnetic flowmeter transmitter is calculated and output, and the range of a fixed width above and below the average value is set as a normal signal area, that is, a window, following this average value. It is determined whether the new received signal value is within this window, and if it is inside the window, the new received signal value is used to calculate the average value, but if it is outside the window, the new received signal value is used. Instead, the window boundary value or the calculated average value is used to calculate the average value.

第1図はこの従来の方式の実施例を示す。同図
中、1は電磁流量計発信器であり、測定管路2、
電極3a,3b及び励磁コイル4からなり、発信器
1はタイミング回路5からの信号iで切換スイツ
チSW1-1〜SW1-4を制御することにより励磁され
る。発信器1の出力は高入力インピーダンス増幅
器6を経たのち、タイミング回路5からの信号j
により励磁極性に対応して制御される切換スイツ
チSW2-1,SW2-2と増幅器7とからなる同期整流
回路により同期整流される。この同期整流回路の
出力aは、通常はスイツチSW3-2を介して平均化
回路8に入力され、ここで時系列的に平均化され
て流速に比例した出力信号dとして出力される。
FIG. 1 shows an embodiment of this conventional system. In the figure, 1 is an electromagnetic flowmeter transmitter, measurement pipe 2,
The transmitter 1 is composed of electrodes 3 a and 3 b and an exciting coil 4, and is excited by controlling the changeover switches SW 1-1 to SW 1-4 using a signal i from a timing circuit 5. The output of the oscillator 1 passes through a high input impedance amplifier 6 and then receives the signal j from the timing circuit 5.
Synchronous rectification is carried out by a synchronous rectification circuit comprising changeover switches SW 2-1 and SW 2-2 and an amplifier 7, which are controlled according to the excitation polarity. The output a of this synchronous rectifier circuit is normally input to the averaging circuit 8 via the switch SW 3-2 , where it is averaged in time series and output as an output signal d proportional to the flow velocity.

a及び9bは比較器であり、一方の比較器9a
は平均化された出力信号dから直流電源が与える
或る一定値fを引いてなる下限境界値g=d−f
と同期整流出力aとを比較し、a<gのときはそ
の比較出力bによりスイツチSW3-1が平均化回路
gに接続され、g=d−fの値が与えられる。他
方の比較器9bは平均化出力信号dに直流電源の
与える或る一定値eを加えてなる上限境界値h=
d+eと同期整流出力aとを比較し、a>hのと
きはその比較出力cによりスイツチSW3-3が平均
化回路8に接続され、h=d+eの値が与えられ
る。なお、10は加算回路、11は減算回路であ
る。
9 a and 9 b are comparators; one comparator 9 a
is the lower limit value g=d−f obtained by subtracting a certain constant value f given by the DC power supply from the averaged output signal d.
and the synchronous rectification output a, and when a<g, the switch SW 3-1 is connected to the averaging circuit g based on the comparison output b, and the value of g=d−f is given. The other comparator 9 b has an upper limit boundary value h= which is obtained by adding a certain constant value e given by the DC power supply to the averaged output signal d.
d+e and synchronous rectification output a are compared, and when a>h, the switch SW 3-3 is connected to the averaging circuit 8 based on the comparison output c, and the value h=d+e is given. Note that 10 is an addition circuit, and 11 is a subtraction circuit.

以上の如く、平均化回路8への入力信号は平均
化出力信号dと一定値e,fとが定める上下の境
界値d+eとd−fとにより窓処理される。
As described above, the input signal to the averaging circuit 8 is subjected to window processing using the upper and lower boundary values d+e and d−f defined by the averaged output signal d and constant values e and f.

従つて、発信器1からの受信信号が突変した場
合は当然同期整流出力aが突変し、平均化回路8
には突変信号の代りにd−f又はd+eが入力さ
れるため、平均化出力信号dの変動が抑えられ
る。一定値e及びfを小さな値とすると平均化出
力信号dの応答特性が悪くなるが、一般には電極
間直流電位の突変は流速変動に比べて遥かに大き
な変化率を示すため、e及びfを例えば出力スパ
ンの50%程度など或る程度大きくとつても突変に
対しては十分速い応答特性を確保しながら、突変
が与える出力への影響を抑えることが可能であ
る。
Therefore, if the received signal from the transmitter 1 suddenly changes, the synchronous rectifier output a will naturally change suddenly, and the averaging circuit 8
Since d−f or d+e is input instead of the sudden change signal, fluctuations in the averaged output signal d can be suppressed. If the constant values e and f are set to small values, the response characteristics of the averaged output signal d will worsen, but in general, a sudden change in the inter-electrode DC potential shows a much larger rate of change than a flow velocity fluctuation, so e and f Even if the output voltage is set to a certain degree, such as about 50% of the output span, it is possible to suppress the influence of sudden changes on the output while ensuring a sufficiently fast response characteristic against sudden changes.

しかし、以上の従来技術では電気化学的直流ノ
イズの突変の発生頻度が少ない場合には有効であ
るが、その発生頻度が多くなると流量の変化によ
る受信信号と電気化学的直流ノイズの突変による
受信信号との区別がつかなくなり、結局流量の変
化に対する電磁流量計変換器の出力応答速度が遅
くなる欠点を有している。例えば電気化学的直流
ノイズの発生頻度が多くなり、上下の境界値d−
f及びd+eを越える状態が続くと平均化回路の
出力はd−f及びf+eの平均値にクランプされ
た状態となり、実際の流量変化に追従しない状態
が起り電磁流量計変換器の出力の応答速度が遅く
なる欠点がある。
However, the above conventional technology is effective when the frequency of sudden changes in electrochemical DC noise is low, but when the frequency of occurrence increases, the received signal due to changes in flow rate and sudden changes in electrochemical DC noise are This has the disadvantage that it becomes difficult to distinguish it from the received signal, resulting in a slow output response speed of the electromagnetic flow meter converter to changes in flow rate. For example, the frequency of occurrence of electrochemical DC noise increases, and the upper and lower boundary values d-
If the condition exceeding f and d+e continues, the output of the averaging circuit will be clamped to the average value of d-f and f+e, and a state will occur where it will not follow the actual flow rate change, resulting in a decrease in the response speed of the output of the electromagnetic flow meter converter. The disadvantage is that it is slow.

<発明の目的> 本発明は、上記従来技術に鑑み、電極間直流電
位の突変が継続して生じた場合にもその影響を除
去した電磁流量計を提供することを目的とする。
<Object of the Invention> In view of the above-mentioned prior art, an object of the present invention is to provide an electromagnetic flowmeter that eliminates the influence of sudden changes in the inter-electrode direct current potential even when they occur continuously.

<発明の構成> 第2図は本発明の構成を明示するための全体構
成図である。発信器からの受信信号は増幅度を変
更できる増幅器を介して受信信号が所定の境界値
内にあるか否かが比較され、境界値内にあるとき
は新たな受信信号をそのまま流量出力として出力
する。この境界値は増幅器を介した後の受信信号
に追従して受信信号に対して一定の比率で受信信
号の上下一定幅の範囲に設定される。受信信号が
前記の境界値の範囲外になつたときは直流電位の
突変に起因する揺動の程度を検出し、揺動の程度
が小さいときは前回受信した受信信号を流量出力
として出力する一方、その揺動の頻度が許容でき
る範囲内か否かを更に判断し、許容範囲外のとき
は発信器の励磁電流を増大し、同時に増幅器の増
幅度を励磁電流の増大の程度に応じて小さく変更
する。この構成により変換器への受信信号の信号
対雑音比(S/N比)を改善して境界値にかかる
揺動の回数を減らし、応答性を改善することがで
きる。
<Configuration of the Invention> FIG. 2 is an overall configuration diagram for clearly showing the configuration of the present invention. The received signal from the transmitter is passed through an amplifier that can change the amplification level and compared to see if the received signal is within a predetermined boundary value. If it is within the boundary value, the new received signal is output as is as a flow rate output. do. This boundary value follows the received signal after passing through the amplifier, and is set at a constant ratio to the received signal within a constant width range above and below the received signal. When the received signal falls outside the above boundary value range, the degree of fluctuation caused by the sudden change in DC potential is detected, and when the degree of fluctuation is small, the previously received received signal is output as the flow rate output. On the other hand, it is further determined whether the frequency of the fluctuation is within an allowable range, and if it is outside the allowable range, the excitation current of the oscillator is increased, and at the same time, the amplification degree of the amplifier is adjusted according to the degree of increase in the excitation current. Make small changes. With this configuration, it is possible to improve the signal-to-noise ratio (S/N ratio) of the received signal to the converter, reduce the number of fluctuations in the boundary value, and improve responsiveness.

<実施例> 以下図面に従つて本発明の実施例を説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

第3図はこの実施例の構成要素の全体的な配置
を示す。第1図と同じ機能を有する部分について
はその符号を付し説明を省略する。励磁コイル4
は測定管路2内の流体の流れ方向と測定管路2に
おける電極3a,3bの取付方向とのいずれにも直
交した磁界を発生するように配設されている。励
磁コイル4は直流電流源Iより切換スイツチ
SW1-1〜SW1-4を介し、更に励磁電流を検出する
検出抵抗12を通して励磁電流Ifが供給される構
成である。一定倍増幅器6は電極3a,3b間に発
生した信号電圧を高入力インピーダンスで増幅す
る増幅器である。増幅器6の出力と検出抵抗12
に得られた比較電圧Vrは切換スイツチ13によ
り切換えられて可変ゲイン増幅器14で増幅され
る。可変ゲイン増幅器14の出力信号は信号のサ
ンプリングを兼ねたアナログ・デジタル変換器
(以下、A/D変換器と略称する)15に入力さ
れる。16はマイクロプロセツサ(以下、CPU
と略称する)、17はメモリ(ROM/RAM)、
18は入出力ポート(I/O)、19はデジタ
ル・アナログ変換器(以下、D/A変換器と略称
する)、20はアドレスバス、21はデータバス、
22は流量出力である。メモリ17のROM中に
はCPU16を制御するプログラムが書込まれて
おり、CPU16はこのプログラムに従つてI/
Oポート18より必要とされる信号データを取込
んだり、励磁電流Ifや可変ゲイン増幅器14を制
御したり、あるいは又メモリ17のRAMとの間
でデータの授受を行なつたりしながら演算処理
し、必要に応じて処理したデータをI/Oポート
19へ出力する。D/A変換器19はI/Oポー
ト18より与えられるデータをアナログ信号に変
換して出力する。23はCPU16で指定するタ
イミングで切換スイツチSW1-1〜SW1-4を切換え
て3ステート状態の励磁電流Ifを得るための切換
制御回路である。24は直流電流源Iの電流の大
きさをCPU16からの制御信号により変更する
ための電流制御回路である。切換スイツチ13又
は可変ゲイン増幅器14はいずれもCPU16の
制御信号によりそれぞれ制御される構成である。
FIG. 3 shows the overall arrangement of the components of this embodiment. Parts having the same functions as those in FIG. 1 are designated by the corresponding reference numerals, and their explanations are omitted. Excitation coil 4
are arranged so as to generate a magnetic field perpendicular to both the flow direction of the fluid in the measurement pipe 2 and the mounting direction of the electrodes 3 a and 3 b in the measurement pipe 2 . Excitation coil 4 is switched from DC current source I.
The configuration is such that the excitation current If is supplied via SW 1-1 to SW 1-4 and further through the detection resistor 12 that detects the excitation current . The constant multiplier amplifier 6 is an amplifier that amplifies the signal voltage generated between the electrodes 3 a and 3 b with a high input impedance. Output of amplifier 6 and detection resistor 12
The comparison voltage V r obtained is switched by a changeover switch 13 and amplified by a variable gain amplifier 14 . The output signal of the variable gain amplifier 14 is input to an analog-to-digital converter (hereinafter abbreviated as an A/D converter) 15 which also serves as a signal sampler. 16 is a microprocessor (hereinafter referred to as CPU)
), 17 is memory (ROM/RAM),
18 is an input/output port (I/O), 19 is a digital/analog converter (hereinafter referred to as a D/A converter), 20 is an address bus, 21 is a data bus,
22 is a flow rate output. A program for controlling the CPU 16 is written in the ROM of the memory 17, and the CPU 16 performs I/O according to this program.
Arithmetic processing is performed while importing the required signal data from the O port 18, controlling the excitation current I f and the variable gain amplifier 14, or exchanging data with the RAM of the memory 17. Then, the processed data is output to the I/O port 19 as necessary. The D/A converter 19 converts the data provided from the I/O port 18 into an analog signal and outputs it. Reference numeral 23 denotes a switching control circuit for switching the changeover switches SW 1-1 to SW 1-4 at timings specified by the CPU 16 to obtain the excitation current If in three states. 24 is a current control circuit for changing the magnitude of the current of the DC current source I in accordance with a control signal from the CPU 16. The changeover switch 13 and the variable gain amplifier 14 are each controlled by a control signal from the CPU 16.

以上のように構成された本実施例の電磁流量計
変換器の動作を第4図の波形図と第5図のフロー
チヤートを用いて説明する。
The operation of the electromagnetic flowmeter converter of this embodiment configured as described above will be explained using the waveform diagram of FIG. 4 and the flowchart of FIG. 5.

先ず信号処理プログラムについて説明する(第
5図〜ステツプ)。メモリ17のROM中に
書き込まれた励磁電流の制御プログラムにより指
定されたタイミングで切換制御回路23を制御し
て切換スイツチSW1-1〜SW1-4を切換えて第4図
aの如き励磁電流Ifを作つて発信器1を3ステー
ト状態で励磁する。これに伴ない検出抵抗12に
は第4図bに示す波形の比較電圧Vrが発生する。
流体が測定管路2に流れると励磁電流とほぼ同じ
波形の第4図cに示す流量信号が得られる。この
流量信号は第4図bに示すタイミングで4ケのサ
ンプル値S1〜S4が1サイクル分としてA/D変換
器より読込まれRAM内に記憶される。この様に
して記憶されたサンプルデータはCPU16によ
り例えば次式に示す演算がなされ緩慢な直流ノイ
ズが除去され流量信号E1とされる。
First, the signal processing program will be explained (steps from FIG. 5). The switching control circuit 23 is controlled at the timing specified by the excitation current control program written in the ROM of the memory 17 to switch the changeover switches SW 1-1 to SW 1-4 to set the excitation current as shown in FIG. 4a. Create I f and excite oscillator 1 in three states. Accordingly, a comparison voltage V r having a waveform shown in FIG. 4b is generated in the detection resistor 12.
When the fluid flows through the measuring pipe 2, a flow rate signal shown in FIG. 4c is obtained which has a waveform substantially the same as that of the excitation current. Four sample values S 1 to S 4 of this flow rate signal are read as one cycle from the A/D converter and stored in the RAM at the timing shown in FIG. 4b. The sample data stored in this manner is subjected to the calculation shown in the following equation, for example, by the CPU 16, and slow DC noise is removed, resulting in a flow rate signal E1 .

E1=S1+S2−S3−S4 この様な演算が繰り返し実行され各サイクルご
との流量信号Eoがつぎつぎに得られる。一方比
較電圧Vrは流量信号Eoのサンプル周期に対し10
倍から20倍の周期のCPU16からの制御信号に
より切換スイツチ13が比較電圧側へ切換えられ
て、比較電圧Vrが割り込みによりA/D変換器
15に取り込まれ、デジタル変換されてメモリ1
7のRAM中に記憶される。
E 1 =S 1 +S 2 -S 3 -S 4Such calculations are repeatedly executed, and a flow rate signal Eo for each cycle is obtained one after another. On the other hand, the comparison voltage V r is 10% with respect to the sample period of the flow rate signal E o
The changeover switch 13 is switched to the comparison voltage side by a control signal from the CPU 16 with a cycle of 20 times to 20 times, and the comparison voltage V r is taken into the A/D converter 15 by an interrupt, digitally converted, and stored in the memory 1.
7 RAM.

この様にして得られた流量信号Eoと比較電圧
VrとはCPU16によりEo/Erの割算が施され受
信信号Esとされる。励磁電流Ifの変動による出力
誤差を除去するためである。
The flow rate signal E o obtained in this way and the comparison voltage
V r is divided by E o /E r by the CPU 16 to obtain a received signal E s . This is to eliminate output errors due to fluctuations in the excitation current If .

次に窓処理について説明する(第5図のステツ
プ〜)。前記のように処理された受信信号Es
に対してあらかじめメモリ17のROM中に記憶
された比率で受信信号の上下一定幅の範囲に上下
の境界値をCPU16により演算し、算出された
上下の境界値Cに対して新たに受信した受信信号
Esと前回受信した受信信号Es-1とを比較判断す
る。即ち、新たに受信した受信信号Esと前回受信
した受信信号Es-1との差の絶対値である|Es
Es-1|が前記の境界値Cより小さい場合には、新
たに受信した受信信号Esには電極間の直流電位の
突変はないものと判断し、新たな受信信号Esを流
量出力として出力する。新たな受信信号Esと前回
の受信信号Es-1との差の絶対値|Es−Es-1|が境
界値Cより大きい場合には直流電位の突変があつ
たと判断され次の揺動検出プログラムに移行す
る。
Next, window processing will be explained (steps ~ in Fig. 5). The received signal E s processed as above
The CPU 16 calculates the upper and lower boundary values within a fixed width range of the received signal using the ratio stored in advance in the ROM of the memory 17, and calculates the newly received reception value for the calculated upper and lower boundary values C. signal
A comparison is made between E s and the previously received received signal E s-1 . That is, it is the absolute value of the difference between the newly received received signal E s and the previously received received signal E s-1 |E s
If E s-1 | is smaller than the above-mentioned boundary value C, it is determined that there is no sudden change in the DC potential between the electrodes in the newly received received signal E s , and the new received signal E s is Output as output. If the absolute value of the difference between the new received signal E s and the previous received signal E s-1 |E s −E s-1 | is larger than the boundary value C, it is determined that there has been a sudden change in the DC potential, and the next Shift to the vibration detection program.

揺動検出(第5図のステツプ〜)は次の様
にして行なわれる。前記の窓処理の結果、直流電
位の突変があつたものと判断された場合には、メ
モリ17のRAM中にカウンタMのエリアが設け
られているのでこの部分のカウント内容を+1と
する。この部分のカウント内容に対応して、同様
にしてRAM中にカウンタMとは別のカウンタL
のエリアが設けられているので、この部分のカウ
ント内容を+1とする。次に新たな受信信号Es
変化方向と前回受信した受信信号の変化方向とを
比較し、同じ方向でない場合には直流電位の突変
による変化と判断してカウンタLの内容をリセツ
トする。即ち、カウンタMの内容は流量の急速な
変化によつて境界値Cを越えたときも直流電位の
突変により境界値Cを越えたときも共にカウント
されその内容が更新されるのに対してカウンタL
の内容は境界値Cを越えたもののうち直流電位の
突変によるものはリセツトして流量変化に基づく
場合のみがカウントされる。これは直流電位の突
変による電位変化は流量の変化に比べて短かくパ
ルス状に変化するので、受信信号の同一方向への
変化は流量変化と判断されるのに対して直流電位
の突変による変化はその変化方向が反対であると
いう点に着目して判断するためである。従つて、
受信信号の変化方向が同じ場合つまり流量変化と
判断される数がカウンタL中に記憶される。カウ
ンタLに対してはそのカウント値がROMで設定
値N1に達しているか否かの判断プログラムが
ROMに書き込まれており、この判断プログラム
の実行により設定値N1に達していないときはス
テツプ(第5図)に戻り、今までの処理が繰り
返し実行される。ステツプに戻る際に、流量出
力としては前回受信した受信信号を出力する。こ
れは受信信号が境界値を越えた場合であるので前
回の受信信号を出力した方が妥当と判断されるた
めである。メモリ17のRAM中にはカウンタP
のエリアが設けられており、カウンタLのカウン
ト値がROMで設定する設定値N1に達したとき
は、このカウンタPの内容を+1に更新する。同
時にカウンタLの内容をリセツトして初期状態に
復帰させる。従つてカウンタPには同一方向の受
信信号の変化の回数つまり流量変動の回数が記憶
されることになる。以上のようにしてカウンタM
には受信信号の変化の回数、カウンタPには流量
変動の回数が記憶されているので、これ等の値を
用いてCPU16によりM/Pの演算を施すとそ
の結果Qは流量変動に対する受信信号の変化の回
数の割合を指称することとなる。Qが小さいとき
には流量変動が多いためPの値も大きくなつたと
判断し、Qの値が大きいときには流量変動がない
にもかかわらずMが大きくなつたつまり直流電位
の突変の回数が多くなつたと判断できる。従つて
Qの値により直流電位の突変の程度を判断するこ
とができる。
Oscillation detection (steps ~ in FIG. 5) is performed as follows. As a result of the window processing, if it is determined that there has been a sudden change in the DC potential, an area for the counter M is provided in the RAM of the memory 17, so the count content in this area is set to +1. Corresponding to the count contents of this part, a counter L different from counter M is created in RAM in the same way.
Since this area is provided, the count content of this part is set to +1. Next, the direction of change of the new received signal Es is compared with the direction of change of the previously received received signal, and if they are not in the same direction, it is determined that the change is due to a sudden change in the DC potential, and the contents of the counter L are reset. That is, the contents of the counter M are counted and updated both when the flow rate exceeds the boundary value C due to a rapid change and when the boundary value C is exceeded due to a sudden change in the DC potential. counter L
Of the contents exceeding the boundary value C, those due to sudden changes in DC potential are reset, and only cases based on changes in flow rate are counted. This is because the change in potential due to a sudden change in DC potential is shorter than the change in flow rate and changes in a pulse-like manner, so a change in the received signal in the same direction is judged as a change in flow rate, whereas a sudden change in DC potential This is to make a judgment based on the fact that the direction of change is opposite. Therefore,
When the received signals change in the same direction, that is, the number determined to be a flow rate change is stored in a counter L. For counter L, there is a program in ROM that determines whether the count value has reached the set value N1 .
If the set value N1 has not been reached by executing this judgment program, the process returns to step (FIG. 5) and the processes up to now are repeated. When returning to the step, the previously received reception signal is output as the flow rate output. This is because the received signal exceeds the boundary value, so it is determined that it is more appropriate to output the previous received signal. There is a counter P in the RAM of memory 17.
When the count value of the counter L reaches the set value N1 set in the ROM, the contents of the counter P are updated to +1. At the same time, the contents of the counter L are reset to return to the initial state. Therefore, the counter P stores the number of changes in the received signal in the same direction, that is, the number of times the flow rate fluctuates. In the above manner, the counter M
Since the number of changes in the received signal is stored in the counter P, and the number of flow rate fluctuations is stored in the counter P, when the CPU 16 calculates M/P using these values, the result Q is the received signal with respect to the flow rate fluctuation. It refers to the ratio of the number of changes in . When Q is small, it is determined that the value of P has increased because there is a lot of flow rate fluctuation, and when the value of Q is large, it is determined that M has become large even though there is no flow rate fluctuation, that is, the number of sudden changes in the DC potential has increased. I can judge. Therefore, the degree of sudden change in DC potential can be determined based on the value of Q.

直流電位の突変の程度が許容できる範囲内か否
かを判断するのが第5図のフロチヤートのステツ
プ〜で示す揺動判断である。前記の許容値
N2とこの判断プログラムはROM中に格納されて
いる。Qの値がこの許容値N2と等しいかまたは
小さいときは前記のフローチヤートのステツプ
に戻り今までの処理が繰り返される。しかしQの
値がN2を越えたときは直流電位の突変の程度が
許容できないこととなり励磁電流を変更するプロ
グラムに入る。
It is the fluctuation determination shown in steps ~ in the flowchart of FIG. 5 that determines whether the degree of sudden change in the DC potential is within an allowable range. The above tolerances
N2 and this judgment program are stored in ROM. When the value of Q is equal to or smaller than the allowable value N2 , the process returns to the steps of the flowchart described above and the processing up to now is repeated. However, when the value of Q exceeds N2 , the degree of sudden change in DC potential is unacceptable, and a program is entered to change the excitation current.

励磁電流の変更手順を第5図のフローチヤート
のステツプ〜に示す。Qの値がN2を越えた
場合は励磁電流Ifを段階的に増大させる。この場
合に増加した励磁電流の値が発信器1で許容され
る範囲内か否かをCPU16により判断し、許容
範囲外のときは警報を出し例えば動作を停止させ
る。許容範囲内のときは割込み処理により比較電
圧Vrを新たにメモリ17のRAMに書き込む。
The procedure for changing the excitation current is shown in steps ~ in the flowchart of FIG. When the value of Q exceeds N 2 , the excitation current If is increased stepwise. In this case, the CPU 16 determines whether the increased value of the excitation current is within the allowable range of the transmitter 1, and if it is outside the allowable range, an alarm is issued and, for example, the operation is stopped. If it is within the allowable range, the comparison voltage V r is newly written to the RAM of the memory 17 by interrupt processing.

励磁電流を変更すると同時に第5図のフローチ
ヤートのステツプ〜で示すように可変ゲイン
増幅器14の増幅度を励磁電流を増加した値に対
応して減少させ流量信号を励磁電流を増加させる
前と同じ値にする。これはA/D変換器15が適
正な動作領域内に入るようにするためである。こ
の処理の後ステツプに戻る。
At the same time as changing the excitation current, the amplification degree of the variable gain amplifier 14 is decreased in accordance with the increased value of the excitation current, as shown in steps ~ in the flowchart of Fig. 5, so that the flow rate signal remains the same as before the excitation current was increased. value. This is to ensure that the A/D converter 15 falls within a proper operating range. After this process, return to step.

以上のステツプ〜の処理により、流量信号
に対する直流電位の突変値の比つまりS/N比が
改善される。すなわち、直流電位の突変は電極材
質の種類、流速流体の種類等に依存し励磁電流に
は無関係であるが、流量信号は励磁電流を増大さ
せると増大させた分だけ増大するからである。励
磁電流を増大させた後、以上のステツプ〜の
処理を繰り返し、ステツプ〜で示す窓処理で
境界値内に受信信号が入つたと判断されれば励磁
電流の増大をその段階で停止し受信信号を流量出
力として出力する。励磁電流は、ステツプ〜
で示す窓処理により境界値外になるケースが例え
ば長時間ない場合には励磁電流を段階的に減少さ
せ最初の状態に戻すようにすることにより低消費
電力化が実現できる。この励磁電流の変更をこの
例では段階的に実行する場合について説明した
が、これは必要に応じて連続的に変更しても良い
し、また励磁電流の変更を1段だけで実現しても
良い。
Through the processing in steps 1 to 3 above, the ratio of the sudden change value of the DC potential to the flow rate signal, that is, the S/N ratio is improved. That is, the sudden change in the DC potential depends on the type of electrode material, the flow rate, the type of fluid, etc. and is unrelated to the excitation current, but the flow rate signal increases by the same amount as the excitation current increases. After increasing the excitation current, repeat the process in step ~ above, and if it is determined that the received signal is within the boundary value by the window processing shown in step ~, the increase in the excitation current is stopped at that stage and the received signal is is output as a flow rate output. The excitation current is step~
If, for example, there is no case where the value outside the boundary value exceeds the boundary value for a long period of time, the excitation current is gradually reduced to return to the initial state, thereby reducing power consumption. In this example, we have explained the case where the excitation current is changed in stages, but it may be changed continuously as necessary, or the excitation current may be changed in only one stage. good.

<発明の効果> 以上の如く実施例を通じて本発明の内容につい
て具体的に説明して来た構成によれば以下の様な
効果が生じる。
<Effects of the Invention> According to the configuration in which the content of the present invention has been specifically explained through the embodiments as described above, the following effects are produced.

(イ) 直流電位の突変が多くなり励磁電磁を増加さ
せると、受信信号に対する直流電位の突変値の
割合が小さくなり、境界値幅Cは受信信号の値
との関連で設定されているので境界値幅Cにか
かる回数が減少し従来技術の欠点である応答性
が大幅に改善される。
(b) When the number of sudden changes in the DC potential increases and the excitation electromagnetic force is increased, the ratio of the sudden change value of the DC potential to the received signal becomes smaller, and the boundary value width C is set in relation to the value of the received signal. The number of times the boundary value width C is applied is reduced, and the responsiveness, which is a drawback of the prior art, is significantly improved.

(ロ) 直流電位の突変が多い場合にも励磁電流を増
加させて受信信号のS/N比を改善させ、直流
電位の突変の影響を受けない流量測定ができ
る。
(b) Even when there are many sudden changes in the DC potential, the excitation current is increased to improve the S/N ratio of the received signal, making it possible to measure the flow rate without being affected by sudden changes in the DC potential.

(ハ) 直流電位の突変が少い場合には少ない励磁電
流で効率の良い流量測定ができ低消費電力化が
実現できる。
(c) When there are few sudden changes in the DC potential, efficient flow measurement can be performed with a small excitation current, and low power consumption can be achieved.

(ニ) 本発明によれば直流電位の突変の生じやすい
流体でも生じ難い流体でも、これ等を特に考慮
することなく使用できるので流量測定の応用分
野が拡大する。
(iv) According to the present invention, fluids that are prone to sudden changes in direct current potential or fluids that are difficult to cause can be used without any particular consideration, thereby expanding the field of application of flow rate measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示すブロツク図、第2図は本
発明の全体構成を示すブロツク図、第3図は本発
明の一実施例を示すブロツク図、第4図は本発明
における流量信号をサンプルするタイミングを示
すタイミング図、第5図は第3図における信号処
理のフローチヤートである。 図面中、1は発信器、13は切換スイツチ、1
4は可変ゲイン増幅器、15はA/D変換器、1
6はCPU、17はメモリ、18はI/Oポート、
19はD/A変換器、22は流量出力、23は切
換制御回路、24は電流制御回路、Iは定電流
源、SW1-1〜SW1-4は切換スイツチである。
Fig. 1 is a block diagram showing a conventional example, Fig. 2 is a block diagram showing the overall configuration of the present invention, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 shows a flow rate signal in the present invention. FIG. 5 is a timing diagram showing the sampling timing, and is a flowchart of the signal processing in FIG. 3. In the drawing, 1 is a transmitter, 13 is a changeover switch, 1
4 is a variable gain amplifier, 15 is an A/D converter, 1
6 is CPU, 17 is memory, 18 is I/O port,
19 is a D/A converter, 22 is a flow rate output, 23 is a switching control circuit, 24 is a current control circuit, I is a constant current source, and SW 1-1 to SW 1-4 are changeover switches.

Claims (1)

【特許請求の範囲】[Claims] 1 電磁流量計発信器からの受信信号に追従し前
記受信信号に対して一定の比率で前記受信信号の
上下一定幅の範囲に上下の境界値を設定する境界
値設定手段と、新たな受信信号値を上下の境界値
と比較する比較手段と、前記受信信号値が前記の
境界値を越えたときに前記受信信号の揺動を検出
する揺動検出手段と、前記受信信号の揺動が所定
の値を越えたか否かを判断する揺動判断手段と、
前記揺動判断手段の判断結果に基づき発信器の励
磁電流を変更する励磁電流変更手段と、前記受信
信号を増幅する増幅器の増幅度を前記励磁電流に
対応して変更する増幅度変更手段とを具備し前記
受信信号値が前記境界値内のときは新たな前記受
信信号を出力し前記受信信号値が前記境界値の範
囲外のときは前回受信した受信信号を出力するこ
とを特徴としち電磁流量計変換器。
1 Boundary value setting means for following a received signal from an electromagnetic flowmeter transmitter and setting upper and lower boundary values within a fixed width range above and below the received signal at a constant ratio to the received signal, and a new received signal. a comparison means for comparing a value with upper and lower boundary values; a fluctuation detection means for detecting a fluctuation in the received signal when the received signal value exceeds the boundary value; oscillation determination means for determining whether the value exceeds the value of
excitation current changing means for changing the excitation current of the transmitter based on the determination result of the fluctuation determining means; and amplification degree changing means for changing the amplification degree of an amplifier for amplifying the received signal in accordance with the excitation current. The electromagnetic device is characterized in that when the received signal value is within the boundary value, the new received signal is output, and when the received signal value is outside the boundary value, the previously received received signal is outputted. Flow meter converter.
JP7060183A 1983-04-21 1983-04-21 Converter for electromagnetic flowmeter Granted JPS59195125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7060183A JPS59195125A (en) 1983-04-21 1983-04-21 Converter for electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7060183A JPS59195125A (en) 1983-04-21 1983-04-21 Converter for electromagnetic flowmeter

Publications (2)

Publication Number Publication Date
JPS59195125A JPS59195125A (en) 1984-11-06
JPH0376405B2 true JPH0376405B2 (en) 1991-12-05

Family

ID=13436245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7060183A Granted JPS59195125A (en) 1983-04-21 1983-04-21 Converter for electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPS59195125A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688057B2 (en) * 2007-07-10 2010-03-30 Rosemount Inc. Noise diagnosis of operating conditions for an electromagnetic flowmeter

Also Published As

Publication number Publication date
JPS59195125A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
JPH05248902A (en) Electromagnetic flow meter
JPH0376405B2 (en)
JP3334995B2 (en) Electromagnetic flow meter
JPH0415886B2 (en)
JP3324057B2 (en) Electromagnetic flow meter
JPH0682284A (en) Electromagnetic flowmeter
JP4180702B2 (en) Non-full water electromagnetic flow meter
JP3117848B2 (en) Electromagnetic flow meter
JPH1183572A (en) Electromagnetic flowmeter
JP2797673B2 (en) Electromagnetic flow meter
JPH06273205A (en) Electromagnetic flow meter
JPH06258113A (en) Electromagnetic flowmeter
JPH05337296A (en) Water level detector for iron
JP3133143B2 (en) Electromagnetic flow meter
JPH063381B2 (en) Electromagnetic flow meter
JP3356390B2 (en) Electromagnetic flow meter
JP2619111B2 (en) Electromagnetic flow meter
JPH0524187Y2 (en)
JP3460213B2 (en) Electromagnetic flow meter
JPH0552621A (en) Electromagnetic flowmeter
JP2003014512A (en) Electromagnetic flowmeter
JPH063383B2 (en) Electromagnetic flow meter
JPH0114888Y2 (en)
JPH06137916A (en) Electromagnetic flowmeter
JPS59165549A (en) Noise deleting method for signal processing