JPH0376301A - Impedance conversion circuit - Google Patents

Impedance conversion circuit

Info

Publication number
JPH0376301A
JPH0376301A JP1211956A JP21195689A JPH0376301A JP H0376301 A JPH0376301 A JP H0376301A JP 1211956 A JP1211956 A JP 1211956A JP 21195689 A JP21195689 A JP 21195689A JP H0376301 A JPH0376301 A JP H0376301A
Authority
JP
Japan
Prior art keywords
impedance
line
transmission line
conversion circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1211956A
Other languages
Japanese (ja)
Other versions
JP2669066B2 (en
Inventor
Masahiro Muraguchi
正弘 村口
Tetsuo Hirota
哲夫 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1211956A priority Critical patent/JP2669066B2/en
Publication of JPH0376301A publication Critical patent/JPH0376301A/en
Application granted granted Critical
Publication of JP2669066B2 publication Critical patent/JP2669066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small sized impedance conversion circuit with ease of manufacture and improved design performance by reducing the length of a transmission line and adding a capacitor to the line to increase its characteristic impedance. CONSTITUTION:The length of a transmission line (coplaner line) 1 (11) in an impedance conversion circuit converting the impedance between a 1st impedance Z0 and a 2nd impedance Z1 with use of the transmission line is selected shorter than a 1/4 wavelength of the operating frequency and its characteristic impedance Z is selected to be (Z0.Z1)<1/2> or over, and both ends of the line 1 are connected to a ground conductor via characteristics 2, 5 whose capacitance is identical to each other. Through the constitution above, since the length of the line 1 is shorter than the 1/4 wavelength of the operating frequency, the impedance Z is selected to be (Z0.Z1)<1/2> or over. Thus, the impedance Z is selected to be, e.g. 51OMEGA larger than a conventional impedance of 7OMEGA and a matching circuit section of various high frequency circuits is made small without incurring characteristic deterioration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はインピーダンス変換回路に係り、特に高周波伝
送線路を用いてインピーダンスZOと21との間のイン
ピーダンス変換を行なうインピーダンス変換回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an impedance conversion circuit, and particularly to an impedance conversion circuit that performs impedance conversion between impedances ZO and 21 using a high frequency transmission line.

〔従来の技術〕[Conventional technology]

第4図は高周波通信装置に利用される従来のインピーダ
ンス変換回路を示す。同図中、伝送線路6の線路長は使
用周波数で4分の1波長(If気長で90°)であり、
その特性インピーダンスZ2は以下の関係を満足してい
る。
FIG. 4 shows a conventional impedance conversion circuit used in high frequency communication equipment. In the figure, the line length of the transmission line 6 is a quarter wavelength at the operating frequency (90° if long),
Its characteristic impedance Z2 satisfies the following relationship.

Z2−FT7777           0)ここで
、4は特性インピーダンスZoの伝送線路またはインピ
ーダンスが20の接続用端子、5は特性インピーダンス
Z1の伝送線路またはインピーダンスがZ+の接続用端
子、あるいは、入力インピーダンスが21の回路素子で
ある。
Z2-FT7777 0) Here, 4 is a transmission line with characteristic impedance Zo or a connection terminal with impedance 20, and 5 is a transmission line with characteristic impedance Z1 or a connection terminal with impedance Z+, or a circuit with input impedance 21. It is element.

例えば、Zoを500 、 Z + 4r I Q ト
t ルト、伝送線路6の特性インピーダンスZ2は0)
式より約70となる。この例のように、50Ωと1Ω程
度の超低インピーダンスとの同のインピーダンス変m回
路は、高出力増幅器内部の整合回路中でしばしば必要と
なる。というのは、高出力増幅器の入出力インピーダン
スが一般に500であるのに対して、それに用いる高出
力FETの入カインビ−ダンスの実部は一般に1Ω程度
の超低インピーダンスとなるからである。
For example, if Zo is 500, Z + 4r IQ is 0, the characteristic impedance Z2 of the transmission line 6 is 0)
It is approximately 70 from the formula. As in this example, the same impedance variable circuit with an ultra-low impedance of 50Ω and about 1Ω is often required in a matching circuit inside a high-power amplifier. This is because, while the input/output impedance of a high-power amplifier is generally 500Ω, the real part of the input impedance of a high-power FET used therein is generally an extremely low impedance of about 1Ω.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、特性インピーダンスが10Ω以下であるよう
な伝送線路を用いて高周波回路を設計、製造することは
容易でない。例えば、伝送線路として最も一般的なマイ
クロストリップ線路を使用した高周波回路の設計では、
伝送線路モデル(線路の幅方向の大きさやその効果を考
慮しない1次元的なモデル)で回路設置ができるマイク
ロストリップ線路の特性インピーダンス範囲は200以
上に限られる。また、コプレーづ線路では、使用可能な
特性インピーダンスの範囲は通常30Ω〜100Ωであ
り、スロット線路では通常40Ω〜150Ωである。
However, it is not easy to design and manufacture a high frequency circuit using a transmission line whose characteristic impedance is 10Ω or less. For example, when designing a high-frequency circuit using microstrip lines, which are the most common transmission line,
The characteristic impedance range of a microstrip line that can be used to install a circuit using a transmission line model (a one-dimensional model that does not take into account the widthwise size of the line or its effects) is limited to 200 or more. Further, for Copley lines, the usable characteristic impedance range is usually 30Ω to 100Ω, and for slot lines, it is usually 40Ω to 150Ω.

マイクロストリップ線路において、特性インピーダンス
が10Ω以下であるような線路を製作することは物理的
に不可能ではないが、線路幅が4分の1彼長と同程度の
寸法になってしまうため、もはや伝送線路モデルでは回
路設計ができなくなり、線路輪方向に2次元的な広がり
を持った平面回路の設計となる。この場合、回路設置は
極めて難しくなり、しかも設計性は乏しい。従って、入
出力整合回路中に第4図に示すインピーダンス変換回路
を使用した高出力増幅器の製造では、一般に、試行錯誤
的な特性調整が必要となっている。
It is not physically impossible to manufacture a microstrip line with a characteristic impedance of 10Ω or less, but since the width of the line is about the same as a quarter length, it is no longer possible It is no longer possible to design a circuit using a transmission line model, and the design becomes a planar circuit that extends two-dimensionally in the direction of the line wheels. In this case, circuit installation becomes extremely difficult and the design is poor. Therefore, in manufacturing a high-output amplifier using the impedance conversion circuit shown in FIG. 4 in the input/output matching circuit, it is generally necessary to adjust the characteristics by trial and error.

さらに、−枚のガリウムひ素基板上に高出力FErと入
出力整合回路を一緒に竹り込んだモノリシック・マイク
ロ波集積回路の場合、4分の1波長インピーダンス変換
回路を用いたので4チップ寸法が大きくなってしまう。
Furthermore, in the case of a monolithic microwave integrated circuit in which a high-power FEr and an input/output matching circuit are built together on two gallium arsenide substrates, the size of four chips is reduced because a quarter-wavelength impedance conversion circuit is used. It gets bigger.

例えば、10Gl−Izにおける4分の1波長伝送線路
はマイクロストリップ線路やコプレーナ線路を用いた場
合で約31111Iとなり、伝送線路と同時に作り込ま
れるFETの寸法が通常0.5m角以下であるのと比較
して相対的に大きな寸法となる。
For example, a quarter-wavelength transmission line in 10Gl-Iz is approximately 31111I when using a microstrip line or a coplanar line, and the size of the FET that is fabricated at the same time as the transmission line is usually 0.5 m square or less. The dimensions are relatively large in comparison.

本発明は上記の点に鑑みてなされたもので、高出力FE
下等の数Ω程度の超低インピーダンス回路素子と高周波
回路の入出力の標準インピーダンスである500などと
の間の整合を行うためのインピーダンス変Jf路の設N
1性を向上させ、かつ、製作が容易で、小型なインピー
ダンス変換回路を提供することを目的とする。
The present invention has been made in view of the above points, and is a high output FE.
Installation of an impedance variable Jf path for matching between an ultra-low impedance circuit element of several Ω or so and a standard impedance of 500 for the input/output of a high frequency circuit.
It is an object of the present invention to provide a compact impedance conversion circuit that has improved uniformity, is easy to manufacture, and is easy to manufacture.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原即構成図を示す。同図中、1は特性
インピーダンスZの伝送線路、2及び3は夫々互いに等
しい容ICを有するキャパシタ、4は特性インピーダン
スZoの伝送線路又はインピーダンスがZoの接続用端
子、5は特性インピーダンスz1の伝送線路又はインピ
ーダンスがZ+の接続用端子又は入力インピーダンスが
Z+の回路素子である。
FIG. 1 shows an original configuration diagram of the present invention. In the figure, 1 is a transmission line with characteristic impedance Z, 2 and 3 are capacitors each having the same capacitance IC, 4 is a transmission line with characteristic impedance Zo or a connection terminal with impedance Zo, and 5 is a transmission line with characteristic impedance z1. It is a line, a connection terminal with an impedance of Z+, or a circuit element with an input impedance of Z+.

伝送線路1の線路長は使用周波数の4分の1波長より短
く、かつ、その特性インピーダンスZがfフ「7−=ン
]−以上に設定されている。また、伝送線路1の両端は
、各キャパシタ2.5を介して接地導体に接続されてい
る。
The line length of the transmission line 1 is shorter than a quarter wavelength of the frequency used, and its characteristic impedance Z is set to be greater than or equal to f7. Each capacitor 2.5 is connected to a ground conductor.

〔作用〕[Effect]

伝送線路1の特性インピーダンス2.及びキャパシタ2
及び3の各容量Cは夫々次式で表わされる。
Characteristic impedance of transmission line 1 2. and capacitor 2
The capacitances C of and 3 are respectively expressed by the following equations.

Z −F7丁:]]/ stn &         
 (2)C−=cos fl/ (2yr r rj’
:丁:]])    ■ここで、θは伝送線路1の電気
長で、伝送線路1の線路長が使用周波数fの4分の1波
長より短いため、0°〈θ〈90°となる。従って、特
性インピーダンスZは0式よりF−=ζ口以上となる。
Z-F7:]]/ stn &
(2) C-=cos fl/ (2yr r rj'
:D:]]) ■Here, θ is the electrical length of the transmission line 1, and since the line length of the transmission line 1 is shorter than a quarter wavelength of the operating frequency f, 0°<θ<90°. Therefore, the characteristic impedance Z is equal to or larger than F-=ζ according to the equation 0.

いま、−例としてZoが50Ω、Z+が1Ω。Now, as an example, Zo is 50Ω and Z+ is 1Ω.

使用周波数「が10GHzの場合を考える。先ず、伝送
線路の長さを45分の1波長としてみる3、この場合、
電気長θは8°であるから、伝送線路1の特性インピー
ダンスZは0式より510となり、0式より引算される
キャパシタ2,3の容量Cは2、23OFとなる。伝送
線路1の長さが45分の1波長というのは、従来のイン
ピーダンス変換回路の伝送線路6の長さ4分の1波長と
比較して10分の1以下に短縮したことに相当する。し
かも、伝送線路1の特性インピーダンスlは、従来例の
70から510にすることができ、この線路インビーダ
ンスはマイクロストリップ線路やコプレーナ線路によっ
て容易に製作できる。
Consider the case where the frequency used is 10 GHz. First, let's consider the length of the transmission line as 1/45th of the wavelength3. In this case,
Since the electrical length θ is 8°, the characteristic impedance Z of the transmission line 1 is 510 from the equation 0, and the capacitance C of the capacitors 2 and 3 subtracted from the equation 0 is 2.23 OF. The length of the transmission line 1 being 1/45 wavelength corresponds to being shortened to 1/10th or less of the length of the transmission line 6 of the conventional impedance conversion circuit, which is 1/4 wavelength. Moreover, the characteristic impedance l of the transmission line 1 can be increased from 70 in the conventional example to 510, and this line impedance can be easily manufactured using a microstrip line or a coplanar line.

一方、使用したい伝送線路1の特性インピーダンスZを
先に与えてもよい。例えば、使用したい伝送線路1の特
性インピーダンスZを700とした場合は、電気長θを
5.8°とすれば良く、このとき、キャパシタの容量C
は2.24pFである。
On the other hand, the characteristic impedance Z of the transmission line 1 to be used may be given first. For example, if the characteristic impedance Z of the transmission line 1 you want to use is 700, the electrical length θ should be 5.8°, and in this case, the capacitance C of the capacitor
is 2.24 pF.

このように本発明では、従来の4分の1波長インピーダ
ンス変換回路の伝送線路6の特性インピーダンスが0)
式で示す値に一義的に決定されたのとは異なり、特性イ
ンピーダンスZと線路長の取り方に自由度がある。
In this way, in the present invention, the characteristic impedance of the transmission line 6 of the conventional quarter-wavelength impedance conversion circuit is 0).
Unlike the value determined by the formula, there is a degree of freedom in determining the characteristic impedance Z and line length.

このように、本発明は、従来例のインピーダンス変換回
路で用いている4分の1波長の伝送線路の長さより短い
伝送線路を用いて回路を小型化し、かつキャパシタを付
加して伝送線路の特性インピーダンスを上げることによ
り、マイクロストリップ線路やコプレーナ線路、スロッ
ト線路を用いたインピーダンス変!!!5回路の設置性
および製作性を良好かつ容易にせしめる線路インピーダ
ンス範囲(一般に40Ω〜70Ω〉で製作できる自由度
を持つことが従来と異なる。ただし、木発朗は使用周波
数において、従来例のインピーダンス変換回路と同等の
特性を得ることができる。
As described above, the present invention miniaturizes the circuit by using a transmission line shorter than the length of the quarter-wave transmission line used in the conventional impedance conversion circuit, and adds a capacitor to improve the characteristics of the transmission line. By increasing the impedance, you can change the impedance using microstrip lines, coplanar lines, and slot lines! ! ! 5.It is different from conventional circuits in that it has a degree of freedom in which it can be manufactured within a line impedance range (generally 40Ω to 70Ω) that makes the installation and manufacturing of the circuit good and easy. Characteristics equivalent to those of a conversion circuit can be obtained.

なお伝送線路1は一つのガリウムひ素基板等の誘電体基
板上に形成されたコブレープ線路であり、キャパシタ2
.3はこのコプレーナ線路の接地導体と、この接地導体
に絶縁体を介して対向する導体とを含む構造とすること
ができる。また、この伝送線路1を一つのガリウムひ素
基板等の誘電体基板上に形成されたスロット線路とし、
上記[ヤバシタ2.3はスロット線路の2つの導体と絶
縁体を介して対向する第3の導体からなる構造とするこ
とができる。
The transmission line 1 is a cobrape line formed on a dielectric substrate such as a gallium arsenide substrate, and the capacitor 2
.. 3 may have a structure including a ground conductor of this coplanar line and a conductor facing this ground conductor with an insulator interposed therebetween. Further, the transmission line 1 is a slot line formed on a dielectric substrate such as a gallium arsenide substrate,
The above-mentioned shield 2.3 may have a structure consisting of two conductors of the slot line and a third conductor facing each other with an insulator interposed therebetween.

〔実施例〕〔Example〕

第2F!!Iは本発明になるインピーダンス変換回路の
第1実施例の斜視図を示す。本実施例は伝送線路として
コプレーナ線路を用いて、モノリシック・マイクロ波集
M回路に適した構成にしたものである。同図中、10は
ガリウムひ素基板などの誘電体基板、11はインピーダ
ンス変換回路を構成する」プレープ線路、12および1
3はコプレーナ線路の接地導体と絶縁膜を介してこれと
対向する導体板によって構成されたキャパシタである。
2nd F! ! I shows a perspective view of a first embodiment of an impedance conversion circuit according to the present invention. This embodiment uses a coplanar line as a transmission line and has a configuration suitable for a monolithic microwave concentrator M circuit. In the figure, 10 is a dielectric substrate such as a gallium arsenide substrate, 11 is a prepped line constituting an impedance conversion circuit, 12 and 1
3 is a capacitor constituted by a ground conductor of the coplanar line and a conductor plate facing the ground conductor through an insulating film.

また、14および15は接続用コプレーナ線路または接
続用端子あるいG1FETなどの回路素子を示す。
Further, 14 and 15 indicate a coplanar line for connection, a terminal for connection, or a circuit element such as a G1FET.

本実施例によれば、従来コプレーナ線路を用いた4分の
1波長インピーダンス変換回路では実現できなかった超
低インピーダンスと500との間のインピーダンス変換
回路を容易に製作できる。
According to this embodiment, it is possible to easily manufacture an impedance conversion circuit between ultra-low impedance and 500 nm, which could not be achieved with a conventional quarter-wavelength impedance conversion circuit using a coplanar line.

第3図は本発明の第2実施例の斜視図を示す。FIG. 3 shows a perspective view of a second embodiment of the invention.

本実施例は伝送線路としてスロット線路を用いる例で、
20はガリウムひ素基板などの誘電体基板、21はイン
ピーダンス変換回路を構成するスロット線路、22およ
び23はスロット線路21の2つの導体と、これら2つ
の導体と絶縁膜を介してこれと対向する第3の導体板に
よって構成されたキャパシタである。この第3の導体板
は電位的に接地導体と等しくなり、接地導体と同様な振
る舞いをする。24および25は接続用スロット線路ま
たは接続用端子あるいはFETなとの回路素子を示す。
This example is an example in which a slot line is used as a transmission line.
20 is a dielectric substrate such as a gallium arsenide substrate, 21 is a slot line constituting an impedance conversion circuit, 22 and 23 are two conductors of the slot line 21, and a second conductor that faces these two conductors via an insulating film. This is a capacitor composed of three conductor plates. This third conductor plate has a potential equal to that of the ground conductor and behaves similarly to the ground conductor. Reference numerals 24 and 25 indicate connection slot lines, connection terminals, or circuit elements such as FETs.

本実施例によれば、従来スロット線路を用いた4分の1
波長インピ一ダンスlll換回路では実現が[!であっ
た超低インピーダンスと50Ωとの間のインピーダンス
変換回路を容易に製伺できる。
According to this embodiment, one quarter of the conventional slot line
The wavelength impedance Ill conversion circuit can realize [! An impedance conversion circuit between ultra-low impedance and 50Ω can be easily produced.

尚、キャパシタは高い周波数においても設H,l性が良
いため、本発明のインピーダンス変換回路は超高周波帯
でも使用可能である。
Incidentally, since a capacitor has good H and L properties even at high frequencies, the impedance conversion circuit of the present invention can be used even in an ultra-high frequency band.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、インピーダンス
変換回路の伝送線路を短縮して装愉を小型化するととも
に、その伝送線路の特性インピーダンスを製作が容易で
回路段重性の良い範囲〈−般に40Ω〜70Ω〉に設定
できる自由度を持つ。
As explained above, according to the present invention, the transmission line of the impedance conversion circuit can be shortened to make the device more compact, and the characteristic impedance of the transmission line can be adjusted to a range that is easy to manufacture and has good circuit stage weight. In general, it has a degree of freedom in setting the resistance between 40Ω and 70Ω.

また、キャパシタは高周波においても設訓竹が良いため
、本発明のインピーダンス変換回路は高周波帯において
も精度の高い回路数J1ができ、か゛)、設計どうりの
特性が得られる利点がある。本発明を用いることにより
各種高周波回路の整合回路部を、特性劣化を招くことな
く小型化できる。特に高出力増幅器では、超低入出力イ
ンピーダンスのトランジスタやFETと増幅器の入出力
インピーダンス(一般に500)との間の整合回路が必
要で、本発明のインピーダンス変換回路を用いて整合回
路を構成すれば増幅器の小型化と設計性の向上を同時に
実現できる。さらに、本発明は集積化に適しており、モ
ノリシック・マイクロ波集積回路等、小型で酸4性の良
いことが必要な高周波回路に適用するに有効である。
Further, since the capacitor has good performance even at high frequencies, the impedance conversion circuit of the present invention has the advantage that the number of circuits J1 can be made with high precision even in the high frequency band, and characteristics as designed can be obtained. By using the present invention, matching circuit sections of various high-frequency circuits can be downsized without causing characteristic deterioration. In particular, high-output amplifiers require a matching circuit between ultra-low input/output impedance transistors or FETs and the amplifier's input/output impedance (generally 500Ω), and if the matching circuit is constructed using the impedance conversion circuit of the present invention, It is possible to simultaneously reduce the size of the amplifier and improve its design. Furthermore, the present invention is suitable for integration and is effective in application to high frequency circuits that require small size and good acid resistance, such as monolithic microwave integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、第2図はコブレープ線路
を用いた本発明の第1実施例の斜視図、第3図はスロッ
ト線路を用いた本発明の第゛2実施例の斜視図、第4図
は従来のインピーダンス変換回路の一例を示す図である
。 1・・・伝送線路、2.3.12.13.22゜23・
・・キャパシタ、4.5・・・接続用伝送線路、接続端
子又は回路素子、10.20・・・誘電体基板、1・・
・コブレープ線路、 21・・・スロット線路。 第 図 第 図
Fig. 1 is a diagram showing the basic configuration of the present invention, Fig. 2 is a perspective view of the first embodiment of the present invention using a cobra loop line, and Fig. 3 is a perspective view of the second embodiment of the present invention using a slot line. 4 are diagrams showing an example of a conventional impedance conversion circuit. 1... Transmission line, 2.3.12.13.22゜23.
... Capacitor, 4.5... Connection transmission line, connection terminal or circuit element, 10.20... Dielectric substrate, 1...
・Cobrape line, 21...slot line. Figure Figure

Claims (1)

【特許請求の範囲】[Claims]  第1のインピーダンスZ_0と第2のインピーダンス
Z_1との間のインピーダンス変換を伝送線路を用いて
行なうインピーダンス変換回路において、上記伝送線路
の線路長を使用周波数の4分の1波長より短くすると共
に、該伝送線路の特性インピーダンスを√(Z_0・Z
_1)以上に設定し、かつ、該伝送線路の両端を、互い
に容量の等しい第1及び第2のキャパシタを別々に介し
て接地導体に接続したことを特徴とするインピーダンス
変換回路。
In an impedance conversion circuit that performs impedance conversion between a first impedance Z_0 and a second impedance Z_1 using a transmission line, the line length of the transmission line is made shorter than a quarter wavelength of the operating frequency, and The characteristic impedance of the transmission line is √(Z_0・Z
_1) An impedance conversion circuit set as above and characterized in that both ends of the transmission line are connected to a ground conductor separately via first and second capacitors having the same capacitance.
JP1211956A 1989-08-17 1989-08-17 Impedance conversion circuit Expired - Fee Related JP2669066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211956A JP2669066B2 (en) 1989-08-17 1989-08-17 Impedance conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211956A JP2669066B2 (en) 1989-08-17 1989-08-17 Impedance conversion circuit

Publications (2)

Publication Number Publication Date
JPH0376301A true JPH0376301A (en) 1991-04-02
JP2669066B2 JP2669066B2 (en) 1997-10-27

Family

ID=16614486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211956A Expired - Fee Related JP2669066B2 (en) 1989-08-17 1989-08-17 Impedance conversion circuit

Country Status (1)

Country Link
JP (1) JP2669066B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338712A (en) * 1993-05-31 1994-12-06 Nec Corp High frequency integrated circuit
JPH08274510A (en) * 1995-03-29 1996-10-18 Miri Wave:Kk Terminal resistor circuit for microwave/millimeter wave integrated circuit
WO2005020367A1 (en) * 2003-08-22 2005-03-03 Murata Manufacturing Co., Ltd. Planar dielectric line, high-frequency active circuit, and transmitting/receiving device
WO2005069428A1 (en) * 2003-12-24 2005-07-28 Molex Incorporated Transmission line having a transforming impedance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338712A (en) * 1993-05-31 1994-12-06 Nec Corp High frequency integrated circuit
JPH08274510A (en) * 1995-03-29 1996-10-18 Miri Wave:Kk Terminal resistor circuit for microwave/millimeter wave integrated circuit
WO2005020367A1 (en) * 2003-08-22 2005-03-03 Murata Manufacturing Co., Ltd. Planar dielectric line, high-frequency active circuit, and transmitting/receiving device
GB2419746A (en) * 2003-08-22 2006-05-03 Murata Manufacturing Co Planar dielectric line, high frequency active circuit, and transmitting/receiving device
GB2419746B (en) * 2003-08-22 2007-04-25 Murata Manufacturing Co Planar dielectric line, high frequency active circuit, and transmitter-receiver
WO2005069428A1 (en) * 2003-12-24 2005-07-28 Molex Incorporated Transmission line having a transforming impedance
US7157987B2 (en) 2003-12-24 2007-01-02 Molex Incorporated Transmission line having a transforming impedance

Also Published As

Publication number Publication date
JP2669066B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
Ang et al. Analysis and design of miniaturized lumped-distributed impedance-transforming baluns
US6483397B2 (en) Tandem six port 3:1 divider combiner
US6278340B1 (en) Miniaturized broadband balun transformer having broadside coupled lines
US6005454A (en) Radio frequency power divider/combiner circuit having conductive lines and lumped circuits
JPH03237801A (en) Balun circuit
US9300022B2 (en) Vaisman baluns and microwave devices employing the same
US6246299B1 (en) High power broadband combiner having ferrite cores
KR20070089579A (en) Multi-stage microstrip branch line coupler using stub
JPH11330813A (en) Power distributing circuit and power amplifier
KR100397902B1 (en) High efficiency amplifier with amplifier element, radio transmission device therewith and measuring device therefor
Ang et al. A broad-band quarter-wavelength impedance transformer with three reflection zeros within passband
US6292070B1 (en) Balun formed from symmetrical couplers and method for making same
JPS61167209A (en) Low noise amplifier
JPS6349402B2 (en)
CN108011168B (en) Novel Wilkinson power divider capable of terminating complex impedance
US4952895A (en) Planar airstripline-stripline magic-tee
JP3175876B2 (en) Impedance transformer
JPH0376301A (en) Impedance conversion circuit
US4525680A (en) Microwave/millimeter wave amplifier with RF feedback
JPH0586081B2 (en)
JP2005101946A (en) Power divider/combiner
JP3430060B2 (en) High frequency semiconductor device
KR100261039B1 (en) Directional coupler having high directivity
CA2200279C (en) Field effect transistor amplifier
Toh et al. Wide-band, low-noise, matched-impedance amplifiers in submicrometer MOS technology

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees