JPH0375846B2 - - Google Patents

Info

Publication number
JPH0375846B2
JPH0375846B2 JP1087787A JP8778789A JPH0375846B2 JP H0375846 B2 JPH0375846 B2 JP H0375846B2 JP 1087787 A JP1087787 A JP 1087787A JP 8778789 A JP8778789 A JP 8778789A JP H0375846 B2 JPH0375846 B2 JP H0375846B2
Authority
JP
Japan
Prior art keywords
light source
light
optical axis
reflective member
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1087787A
Other languages
Japanese (ja)
Other versions
JPH01295215A (en
Inventor
Masato Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP1087787A priority Critical patent/JPH01295215A/en
Publication of JPH01295215A publication Critical patent/JPH01295215A/en
Publication of JPH0375846B2 publication Critical patent/JPH0375846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Projection-Type Copiers In General (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ光のようなコヒーレント光によ
り所望のコヒーレンシイの照明を行い得る照明装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an illumination device that can perform illumination with desired coherency using coherent light such as a laser beam.

〔従来の技術〕[Conventional technology]

結像光学系においては、必要な解像力を得るた
め照明のコヒーレンシイを適当な値にすることが
必要であり、このためにσ値(対物レンズのN.
A.に対する照明系のN.A.の比)を制御すること
が知られている。
In the imaging optical system, it is necessary to set the coherency of the illumination to an appropriate value in order to obtain the necessary resolving power, and for this purpose, the σ value (N.
It is known to control the ratio of NA of the illumination system to A.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

レーザ光のようなコヒーレントな光源を照明光
源とする場合には、光源をスポツトに集光し、そ
れを結像光学系の瞳位置で適当な大きさだけ走査
することによつて、必要とするコヒーレンシイを
得ることができる。しかし走査する面積が大きい
場合には、走査するための光学系が大きくなり、
また走査に要する時間が長くなるという欠点があ
る。
When a coherent light source such as a laser beam is used as the illumination light source, the light source is focused on a spot and scanned by an appropriate size at the pupil position of the imaging optical system. Coherency can be obtained. However, if the area to be scanned is large, the optical system for scanning will be large.
Another drawback is that the time required for scanning is longer.

そこで、本発明の目的は、コヒーレンシイの高
いレーザ光を用いた場合にも、コヒーレンシイを
低減した均一な照明を可能とし、簡単な構成によ
つて実質的にインコヒーレントな光源を形成する
こともでき、対物光学系を介して効率良い照明を
可能とする照明装置を提供することにある。
Therefore, an object of the present invention is to enable uniform illumination with reduced coherency even when using a laser beam with high coherency, and to form a substantially incoherent light source with a simple configuration. It is an object of the present invention to provide an illumination device that enables efficient illumination through an objective optical system.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による照明装置は、所定の光軸に沿つて
レーザ光を供給するレーザ光源と、光軸に垂直な
面内で該光軸の周囲に前記レーザ光の反射像を形
成するために光軸の周囲に配置された内面反射可
能な複数の側面を有する反射部材と、該反射部材
に光源との間に配置されて反射部材に入射するレ
ーザ光源からの入射光束を所定の点を中心として
所望の角度で2次元的に交差する光に変換する光
束変換手段とを有し、反射部材の内面反射によつ
て前記光軸の周囲に分布する複数の光源像からな
りコヒーレンシイが低減された拡大光源を形成す
るものであり、さらに、コヒーレンシイが低減さ
れた拡大光学を対物光源系の入射瞳上に形成する
と共に、前記反射部材の射出面近傍またはこれと
共役な位置に被照明物体を配置することによつ
て、被照明物体を均一に照明するものである。
An illumination device according to the present invention includes a laser light source that supplies laser light along a predetermined optical axis, and an optical axis for forming a reflected image of the laser light around the optical axis in a plane perpendicular to the optical axis. a reflective member having a plurality of side surfaces capable of internal reflection disposed around the reflective member; and a reflective member disposed between the reflective member and a light source to direct the incident light beam from the laser light source incident on the reflective member to a desired point around a predetermined point. and a light flux converting means for converting into light that intersects two-dimensionally at an angle of A light source is formed, and an expanded optical system with reduced coherency is formed on the entrance pupil of the objective light source system, and an illuminated object is placed near the exit surface of the reflective member or at a position conjugate thereto. By doing so, the object to be illuminated is uniformly illuminated.

〔作用〕[Effect]

上記の如き本発明の構成によれば、光束変換手
段によつて内面反射可能な側面を有する反射部材
に入射する光束の角度が種々に異なることとなる
ため、反射部材の各反射面での反射により入射側
に多数の光源像が形成される。そして、これら多
数の光源像それぞれから物体面に達するまでの光
路長が、内面反射による反射光路の長さによつて
差を生ずるために、複数の光源像全体としてのコ
ヒーレンシイを低減させることができる。さら
に、光束変換手段の構成を、反射部材に入射する
光束の角度を時間と共に変化するような走査手段
として構成する場合には、時間平均されることに
よつてさらにコヒーレンシイを低下させることが
可能となり、実質的なインコヒーレント光源を形
成することも可能になる。
According to the configuration of the present invention as described above, since the angles of the light beam incident on the reflecting member having the side surface capable of internal reflection by the light beam converting means are variously different, the reflection on each reflecting surface of the reflecting member is A large number of light source images are formed on the incident side. Since the optical path length from each of these multiple light source images to the object surface varies depending on the length of the reflected optical path due to internal reflection, it is difficult to reduce the coherency of the multiple light source images as a whole. can. Furthermore, if the light flux conversion means is configured as a scanning means that changes the angle of the light flux incident on the reflecting member over time, it is possible to further reduce the coherency by averaging over time. Therefore, it is also possible to form a substantially incoherent light source.

〔実施例〕〔Example〕

以下、本発明を図示した構成に基づいて説明す
る。
Hereinafter, the present invention will be explained based on the illustrated configuration.

第1図は本発明による照明装置の原理的構成を
示す光路図であり、光源像形成手段として透明物
質で形成された柱状部材を用い物体面10をイン
コヒーレントに照明するものである。レーザ光源
1からのコヒーレント光は走査光学装置20によ
り所定の光束径に拡大されてX−Z平面内で所定
の角度範囲にわたつて二次元的に走査され、第2
図の斜視図に示したごとき四角柱部材9の入射面
9aより四角柱部材9内に入射する。四角柱部材
9の各側面には内面反射するよう反射膜が蒸着さ
れており、入射する光束は走査角度θに応じて四
角柱部材9の側面の内面で反射されて射出面9b
より射出する。第1図は光軸方向にZ軸をとつた
場合のX−Z平面内での走査光束の様子を示す光
路図である。第1図に示したごとく走査光学装置
20により平行光束が四角柱部材9の入射面9a
の中央A0点を回転中心として回転し、X−Z平
面内で光軸となすθが+θ0〜0〜−θ0の範囲で連
続的に変化する。
FIG. 1 is an optical path diagram showing the basic structure of an illumination device according to the present invention, which illuminates an object plane 10 incoherently using a columnar member made of a transparent material as a light source image forming means. The coherent light from the laser light source 1 is expanded to a predetermined beam diameter by the scanning optical device 20, and is two-dimensionally scanned over a predetermined angular range within the X-Z plane.
The light enters into the quadrangular prism member 9 from the entrance surface 9a of the quadrangular prism member 9 as shown in the perspective view of the figure. A reflective film is deposited on each side surface of the square prism member 9 for internal reflection, and the incident light beam is reflected by the inner surface of the side surface of the rectangular prism member 9 according to the scanning angle θ and reaches the exit surface 9b.
Eject more. FIG. 1 is an optical path diagram showing the state of the scanning light beam in the X-Z plane when the Z-axis is taken in the optical axis direction. As shown in FIG.
The optical axis rotates around the central point A 0 of , and the angle θ between the optical axis and the optical axis in the X-Z plane changes continuously in the range of +θ 0 to 0 to −θ 0 .

平行光束の傾角θがいま時計方向に0〜θ0まで
変化する場合を説明すれば、0〜θ1までは平行光
束は側面で反射されることなく直接射出面9bに
達するが、θ1〜θ2の時には第1図中下方の側面で
内面反射されて射出面9bに達するためこの範囲
では、光束があたかも下方側面に関してA0点と
対象なA1点を中心として供給されるように射出
面9bに達する。そしてさらに大きな角度のθ2
θ0の時には、下方側面で反射された後、上方側面
でも反射されるため、光束はあたかも上方側面に
関してA1点と対象なA2点を中心として供給され
るように射出面に達する。他方、平行光束の傾角
θが反時計方向に0〜θ0まで変化する場合には、
0〜θ1では光束は直接射出面9bに達し、θ1〜θ2
の範囲では光束はあたかも上方側面に関してA0
点と対象なA1′点より供給されるごとくして射出
面9bに達し、θ2〜θ0の範囲では光束はあたかも
下方側面に関してA1′点と対称なA2′点より供給
されるように射出面9bに達する。従つて、第1
図に示したX−Z平面図で四角柱部材9に入射す
る光束の角度が0→+θ0→0→−θ0→0と1周期
走査されると、射出面9bには、あたかも順に、
A0,A1,A2,A1,A0,A1′,A2′,A1,A0の各
点から順次光束が供給されることとなり、四角柱
部材9の側面での内面反射により実質的には極め
て大きな光源より光束が供給される状態となる。
この状態は第1図に示したX−Z平面と直交する
Y−Z平面内でも同様に形成されるため、四角柱
部材9の射出面9b近傍の物体面10は四角柱部
材9aの入射面9aを含むX−Y平面上の極めて
大きな領域から照明されることとなる。
To explain the case where the inclination angle θ of the parallel light flux changes clockwise from 0 to θ 0 , from 0 to θ 1 the parallel light flux directly reaches the exit surface 9b without being reflected by the side surface, but from θ 1 to θ 1 . At θ 2 , it is internally reflected from the lower side surface in Fig. 1 and reaches the exit surface 9b, so in this range, the light beam is emitted as if it were supplied centered on point A 1 , which is symmetrical to point A 0 with respect to the lower side surface. It reaches surface 9b. And an even larger angle θ 2 ~
When θ 0 , the light beam reaches the exit surface as if it were being supplied centered on point A 1 and point A 2, which is symmetrical with respect to the upper side surface, because it is reflected at the lower side surface and then also reflected at the upper side surface. On the other hand, when the inclination angle θ of the parallel light flux changes counterclockwise from 0 to θ 0 ,
0 to θ 1 , the luminous flux directly reaches the exit surface 9b, and θ 1 to θ 2
In the range A 0
The light reaches the exit surface 9b as if it were supplied from point A 1 ', which is symmetrical to point A 1 ', and in the range of θ 2 to θ 0 , the luminous flux is supplied from point A 2 ', which is symmetrical to point A 1 ' with respect to the lower side surface. The light reaches the exit surface 9b in this manner. Therefore, the first
When the angle of the light beam incident on the quadrangular prism member 9 is scanned for one period from 0 → +θ 0 →0 → −θ 0 →0 in the X-Z plan view shown in the figure, the exit surface 9b has the following in sequence:
The luminous flux is sequentially supplied from each point A 0 , A 1 , A 2 , A 1 , A 0 , A 1 ′, A 2 ′, A 1 , A 0 , and the inner surface of the side surface of the quadrangular prism member 9 Due to reflection, a state in which a luminous flux is essentially supplied from a very large light source is created.
This state is also formed in the Y-Z plane perpendicular to the X-Z plane shown in FIG. It will be illuminated from an extremely large area on the X-Y plane including 9a.

ここで、第1図の光路図から明らかな如く、
A0,A1A1′,A2′A2′の各点上に形成される各光
源の像から物体面Oまでの光路長はそれぞれ異な
るため、多数の光源像の全体としては空間的にコ
ヒーレンシイの低減した光源が形成されることに
なる。すなわち、第1図に示した如く、四角柱部
材9での反射により形成される複数の光源像から
なる拡大された光源において、1回反射による光
源像ともいうべき点A1,A1′からの照明光と、2
回反射による光源像ともいうべき点A2,A2′から
の照明光とは、光路長が異なり、また点A0から
の反射を受けない照明光ともそれぞれ異なる光路
長を有するため、レーザー光源からの光のコヒー
レンシイを低減できるのである。そして、所定の
時間内の走査についてみれば、その時間内に光源
像の位置が変わることにより、時間的にもコヒー
レンシイを低減させることができ、実質的なイン
コヒーレント照明を行うことが可能となる。この
ようなインコヒーレント照明において、物体面1
0へ達する照明光の開口数N.A.は走査光束の最
大傾斜角によつて決定される。
Here, as is clear from the optical path diagram in Figure 1,
Since the optical path length from each light source image formed on each point of A 0 , A 1 A 1 ′, A 2 ′A 2 to the object plane O is different, the spatial A light source with reduced coherency is formed. That is, as shown in FIG. 1, in an enlarged light source consisting of a plurality of light source images formed by reflection on the square prism member 9, from points A 1 and A 1 ', which can be called light source images due to one reflection, illumination light, and 2
The illumination light from points A 2 and A 2 ′, which can be called light source images due to multiple reflections, has a different optical path length, and also has a different optical path length from the illumination light that does not receive reflection from point A 0 . This makes it possible to reduce the coherency of light from the When looking at scanning within a predetermined period of time, by changing the position of the light source image within that period of time, coherency can be reduced temporally, making it possible to perform essentially incoherent illumination. Become. In such incoherent illumination, the object plane 1
The numerical aperture NA of the illumination light reaching 0 is determined by the maximum inclination angle of the scanning beam.

尚、上記の構成において、実質的な拡大された
インコヒーレント光源面の位置が、四角柱部材の
入射面9aに合致しているが、これは走査される
光束の回転中心A0が四角柱部材9の入射面9a
上に位置するからであり、上記に配置に限られる
ものではない。また、Y−Z平面内とY−Z平面
内とで各走査光束の回転中心の位置が一致する必
要がないことはいうまでもない。また四角柱部材
の光軸方向の長さが長いほど、内面反射の回数が
多くなり、それだけ光束の実質的供給源の数が増
し、より均一で面光源に近い光源を形成し得る
が、反射率や透過率の低下が避けられないため適
当な長さに選定することが望ましい。
In the above configuration, the position of the substantially enlarged incoherent light source surface coincides with the incident surface 9a of the square prism member, which means that the rotation center A 0 of the scanned light beam is located on the square prism member. Incident surface 9a of 9
This is because the arrangement is not limited to the above arrangement. Furthermore, it goes without saying that the positions of the centers of rotation of the respective scanning light beams do not need to be the same in the Y-Z plane and in the Y-Z plane. In addition, the longer the length of the quadrangular prism member in the optical axis direction, the greater the number of internal reflections, which increases the number of substantial sources of luminous flux, making it possible to form a more uniform light source close to a surface light source. It is desirable to select an appropriate length since a decrease in the light transmission rate and transmittance is unavoidable.

第3図は本発明の実施例に用いられる走査光学
装置の例を示す概略斜視図である。レーザ光源1
からの光束はビームエキスパンダー21により光
束径を拡大され、Y軸方向に回転軸を有する第1
回転ミラー22に入射し、ここでの反射後アフオ
ーカルレンズ系23を通つて、X軸方向に回転軸
を有する第2回転ミラー24に入射する。第2回
転ミラー24で反射された光束は、2つの正レン
ズ群26a,26bからなる所謂ケプラー型のア
フオーカルレンズ系26を通つて、走査面3上に
達する。
FIG. 3 is a schematic perspective view showing an example of a scanning optical device used in an embodiment of the present invention. Laser light source 1
The beam diameter of the beam from the beam expander 21 is expanded by the beam expander 21.
The light enters the rotating mirror 22, and after being reflected there, passes through the afocal lens system 23 and enters the second rotating mirror 24 having its rotation axis in the X-axis direction. The light beam reflected by the second rotating mirror 24 reaches the scanning surface 3 through a so-called Kepler-type afocal lens system 26 consisting of two positive lens groups 26a and 26b.

ここで第1及び第2回転ミラー22,24がそ
れぞれ回転することにより、アフオーカルレンズ
系26に入射する光束は、所定の角度範囲で第1
図に示す如く走査する。第1及び第2回転ミラー
22,24はそれぞれ多面鏡として構成すること
もできるし、第1、第2回転ミラーの間に設けら
れるアフオーカルレンズ23に関して、両ミラー
が共役位置に構成されることも有効であり、二次
元走査のための構成は図示したものに限られるも
のではない。
Here, as the first and second rotating mirrors 22 and 24 rotate, the light beam incident on the afocal lens system 26 is rotated within a predetermined angle range.
Scan as shown in the figure. The first and second rotating mirrors 22 and 24 can each be configured as a polygonal mirror, and both mirrors are configured in a conjugate position with respect to the afocal lens 23 provided between the first and second rotating mirrors. This is also effective, and the configuration for two-dimensional scanning is not limited to what is illustrated.

第4図は第1図に示したインコヒーレント照明
の原理的構成を投影露光装置に応用した実施例の
光学系配置図である。第4図の構成例では走査光
学装置20′により走査される平行光束の回転中
心A0点が、四角柱部材9の入射面9aから離れ
た位置にあり、A0を含むX−Y平面上に実質的
に拡大されたインコヒーレント光源が形成され
る。そして、四角柱部材の射出面9bの近傍に配
置された被照明物体としてのレチクルRがインコ
ヒーレント照明され、投影対物7′によりレチク
ルR上のパターンがウエハW上に投影される。こ
の時、被照明物体としてのウエハW上も均一に照
明され、ウエハWが四角柱部材の射出面9bの近
傍と共役に配置されていることは言うまでもな
い。レチクルRを照明する実質的な光源面がA0
点にあるため、投影対物レンズ7′はその入射瞳
がこのA0点の近傍に形成されるものであること
が望ましい。また、四角柱部材9とレチクルRと
の間にコンデンサーレンズを挿入する場合は、こ
のコンデンサーレンズに関して、投影対物レンズ
7′の入射瞳とA0点とが共役になるよう構成する
ことが望ましい。この場合、被照明物体としての
レチクルRが、コンデンサーレンズに関して、四
角柱部材の射出面9bの近傍と共役に配置される
べきことは言うまでもない。
FIG. 4 is an optical system layout diagram of an embodiment in which the principle configuration of incoherent illumination shown in FIG. 1 is applied to a projection exposure apparatus. In the configuration example shown in FIG. 4, the rotation center point A0 of the parallel light beam scanned by the scanning optical device 20' is located away from the incident surface 9a of the square prism member 9, and is located on the X-Y plane including A0 . A substantially expanded incoherent light source is formed. Then, the reticle R, which is an object to be illuminated and is placed near the exit surface 9b of the quadrangular prism member, is incoherently illuminated, and the pattern on the reticle R is projected onto the wafer W by the projection objective 7'. At this time, it goes without saying that the wafer W as the object to be illuminated is also uniformly illuminated, and the wafer W is arranged conjugately with the vicinity of the exit surface 9b of the quadrangular prism member. The actual light source surface that illuminates the reticle R is A 0
Therefore, it is desirable that the entrance pupil of the projection objective lens 7' be formed in the vicinity of this point A0 . Further, when a condenser lens is inserted between the quadrangular prism member 9 and the reticle R, it is desirable to configure the condenser lens so that the entrance pupil of the projection objective lens 7' and the A0 point are conjugate. In this case, it goes without saying that the reticle R as the object to be illuminated should be arranged conjugately with respect to the condenser lens near the exit surface 9b of the quadrangular prism member.

尚、上記実施例では四角柱部材により実質的な
拡大されたインコヒーレント光源を形成したが、
柱状部材であれば四角柱に限られるものではな
い。また、走査光学装置においてレーザー光源か
らの光束径をビームエキスパンダーによつて拡大
することは必ずしも必要ではなく、レーザー光源
からの光束を角度走査するだけで直ちに柱状部材
へ入射させることによつても十分にインコヒーレ
ント照明を行うことができる。
In addition, in the above embodiment, a substantially enlarged incoherent light source was formed by the square prism member.
As long as it is a columnar member, it is not limited to a square prism. In addition, in a scanning optical device, it is not necessarily necessary to use a beam expander to expand the diameter of the beam from the laser light source, and it is sufficient to simply angle-scan the beam from the laser light source and immediately make it incident on the columnar member. Incoherent illumination can be performed.

以上のごとく、本発明によれば、コヒーレンシ
イの高い光源を用いた場合にも、光束変換手段と
内面反射面を有する反射部材とにより、拡大され
た大きなインコヒーレント光源が形成されるた
め、簡単な構成にてコヒーレンシイの低下した光
源を形成することができ、対物光学系を介して効
率良く照明を行うことが可能である。そして、レ
ーザ光を小さな領域で走査することとすれば、実
質的にインコヒーレントな光源を形成することが
でき、簡単な構成によつて高速での走査が可能な
インコヒーレント照明装置が達成される。
As described above, according to the present invention, even when a light source with high coherency is used, an enlarged and large incoherent light source is formed by the light flux converting means and the reflecting member having an inner reflective surface, so that it is easy to use. With this configuration, it is possible to form a light source with reduced coherency, and it is possible to efficiently perform illumination via the objective optical system. If the laser beam is scanned over a small area, a substantially incoherent light source can be formed, and an incoherent illumination device capable of high-speed scanning can be achieved with a simple configuration. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による原理的構成を示す光路
図、第2図は柱状部材の斜視図、第3図は実施例
に用いられる走査光学装置の斜視図、第4図は本
発明による実施例の光学構成図である。 主要部分の符号の説明、1……レーザー光源、
2……光束変換手段、7……対物光学系、9……
内面反射可能な側面を有する反射部材。
Fig. 1 is an optical path diagram showing the principle configuration according to the present invention, Fig. 2 is a perspective view of a columnar member, Fig. 3 is a perspective view of a scanning optical device used in an embodiment, and Fig. 4 is an embodiment according to the present invention. FIG. Explanation of symbols of main parts, 1... Laser light source,
2... Luminous flux conversion means, 7... Objective optical system, 9...
A reflective member having a side surface capable of internal reflection.

Claims (1)

【特許請求の範囲】 1 所定の光軸に沿つてレーザ光を供給するレー
ザ光源と、前記光軸に垂直な面内で該光軸の周囲
に前記レーザ光の反射像を形成するために該光軸
の周囲に配置された内面反射可能な複数の側面を
有する反射部材と、該反射部材と前記光源との間
に配置されて前記反射部材に入射する前記レーザ
光源からの入射光束を所定の点を中心として所望
の角度で2次元的に交差する光に変換する光束変
換手段とを有し、前記反射部材の内面反射によつ
て前記光軸の周囲に分布する複数の光源像からな
りコヒーレンシイが低減された拡大光源を形成
し、前記コヒーレンシイが低減された拡大光源を
対物光学系の入射瞳上に形成すると共に、前記反
射部材の射出面近傍またはこれと共役な位置に被
照明物体を配置することによつて該被照明物体を
均一に照明することを特徴とする照明装置。 2 前記対物光学系は、所定のパターンを有する
レチクルをウエハ上に投影するための投影対物レ
ンズを有し、前記複数の光源像からなるコヒーレ
ンシイが低減された拡大光源を該投影対物レンズ
の入射瞳上に形成すると共に、前記レチクルを前
記被照明物体として均一照明することを特徴とす
る特許請求の範囲第1項記載の照明装置。 3 前記光束変換手段は、射出光束の交差角を時
間的に変化させる走査手段を有することを特徴と
する特許請求の範囲第2項記載の照明装置。
[Scope of Claims] 1. A laser light source that supplies laser light along a predetermined optical axis, and a laser light source for forming a reflected image of the laser light around the optical axis in a plane perpendicular to the optical axis. a reflective member having a plurality of side surfaces capable of internal reflection disposed around an optical axis; and a reflective member disposed between the reflective member and the light source to direct the incident light beam from the laser light source that is incident on the reflective member into a predetermined range. and a light flux converting means for converting light into light that intersects two-dimensionally at a desired angle with a point as the center, and a coherency image consisting of a plurality of light source images distributed around the optical axis by internal reflection of the reflecting member. The enlarged light source with reduced coherency is formed on the entrance pupil of the objective optical system, and the illuminated object is placed near the exit surface of the reflective member or at a position conjugate thereto. An illumination device characterized by uniformly illuminating the illuminated object by arranging. 2. The objective optical system includes a projection objective lens for projecting a reticle having a predetermined pattern onto a wafer, and an enlarged light source with reduced coherency made up of the plurality of light source images is incident on the projection objective lens. 2. The illumination device according to claim 1, wherein the illumination device is formed on a pupil and uniformly illuminates the reticle as the object to be illuminated. 3. The illumination device according to claim 2, wherein the light flux conversion means includes a scanning means for temporally changing the intersection angle of the emitted light flux.
JP1087787A 1989-04-06 1989-04-06 Illuminator Granted JPH01295215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087787A JPH01295215A (en) 1989-04-06 1989-04-06 Illuminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087787A JPH01295215A (en) 1989-04-06 1989-04-06 Illuminator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58100689A Division JPS59226317A (en) 1983-06-06 1983-06-06 Illuminating device

Publications (2)

Publication Number Publication Date
JPH01295215A JPH01295215A (en) 1989-11-28
JPH0375846B2 true JPH0375846B2 (en) 1991-12-03

Family

ID=13924697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087787A Granted JPH01295215A (en) 1989-04-06 1989-04-06 Illuminator

Country Status (1)

Country Link
JP (1) JPH01295215A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638211A (en) 1990-08-21 1997-06-10 Nikon Corporation Method and apparatus for increasing the resolution power of projection lithography exposure system
US7656504B1 (en) 1990-08-21 2010-02-02 Nikon Corporation Projection exposure apparatus with luminous flux distribution
US6252647B1 (en) 1990-11-15 2001-06-26 Nikon Corporation Projection exposure apparatus
US5719704A (en) 1991-09-11 1998-02-17 Nikon Corporation Projection exposure apparatus
US6710855B2 (en) 1990-11-15 2004-03-23 Nikon Corporation Projection exposure apparatus and method
JP3005203B2 (en) 1997-03-24 2000-01-31 キヤノン株式会社 Illumination apparatus, exposure apparatus, and device manufacturing method
US6392742B1 (en) 1999-06-01 2002-05-21 Canon Kabushiki Kaisha Illumination system and projection exposure apparatus
US7948606B2 (en) 2006-04-13 2011-05-24 Asml Netherlands B.V. Moving beam with respect to diffractive optics in order to reduce interference patterns
US7728954B2 (en) 2006-06-06 2010-06-01 Asml Netherlands B.V. Reflective loop system producing incoherent radiation
US7649676B2 (en) 2006-06-14 2010-01-19 Asml Netherlands B.V. System and method to form unpolarized light

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693515A (en) * 1971-04-30 1972-09-26 Vari Typer Corp Optical reflector system
JPS56160040A (en) * 1980-05-14 1981-12-09 Canon Inc Printing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693515A (en) * 1971-04-30 1972-09-26 Vari Typer Corp Optical reflector system
JPS56160040A (en) * 1980-05-14 1981-12-09 Canon Inc Printing device

Also Published As

Publication number Publication date
JPH01295215A (en) 1989-11-28

Similar Documents

Publication Publication Date Title
JPS59226317A (en) Illuminating device
US4974919A (en) Illuminating device
JP3284045B2 (en) X-ray optical apparatus and device manufacturing method
JP3264224B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
JP4195434B2 (en) Lithographic apparatus and device manufacturing method
JP3278277B2 (en) Projection exposure apparatus and device manufacturing method using the same
US3650605A (en) Interferometric apparatus with controlled scanning means
JPH0375846B2 (en)
JP2017526968A (en) Faceted mirror for illumination optics unit for projection lithography
KR20000069918A (en) Three-mirror system for lithographic projection, and projection apparatus comprising such a mirror system
JP2586662B2 (en) Projection exposure equipment
JPS63114186A (en) Lighting apparatus
JPH11150051A (en) Exposure method and device
JPH07113736B2 (en) Lighting equipment
JP2765162B2 (en) Lighting equipment
JPH063616A (en) Polygon scanner
JPH0349213A (en) Exposure device
JPH0624180B2 (en) Projection exposure method and apparatus thereof
JPH01109720A (en) Illuminating apparatus
JP2712590B2 (en) Inverted microscope
JPH07117384B2 (en) Three-dimensional shape measuring device and measuring method
JP2788434B2 (en) Projection exposure method and apparatus
JPS63192234A (en) Lighting apparatus
JPH03175612A (en) Exposure apparatus