JPH0375555A - Manufacture of biosensor - Google Patents

Manufacture of biosensor

Info

Publication number
JPH0375555A
JPH0375555A JP1212041A JP21204189A JPH0375555A JP H0375555 A JPH0375555 A JP H0375555A JP 1212041 A JP1212041 A JP 1212041A JP 21204189 A JP21204189 A JP 21204189A JP H0375555 A JPH0375555 A JP H0375555A
Authority
JP
Japan
Prior art keywords
enzyme
biosensor
sensor
electrode
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1212041A
Other languages
Japanese (ja)
Inventor
Shigeyuki Miyamoto
重幸 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1212041A priority Critical patent/JPH0375555A/en
Publication of JPH0375555A publication Critical patent/JPH0375555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make it possible to manufacture a biosensor based on the direct movement of electrons between enzyme and an electrode by immobilizing the enzyme at 45 deg.C or more with electrolytic-polymerization macromolecules. CONSTITUTION:Electrolytic polymerization is performed in a solution containing electrolytic polymerization material and enzyme. Thus an immobilizing step for immobilizing the enzyme to the polymerization film is provided in the manufacturing method of a biosensor. In this method, the biosensor is manufactured at the temperature of 45 deg.C or higher in electrolytic polymerization. The biosensor wherein the enzyme is immobilized in this way can impart current response depending on the concentration of a substrate even if enzyme and a mediator are not present. The fact is estimated such that the high-order structure of the enzyme is changed reversibly in the electrolytic polymerization, conductive macromolecules are formed in the vicinity of the active center of the enzyme and the direct electron movement between the enzyme and the electrode becomes possible. There is no restriction on the concentration of oxygen in comparison with the biosensor which requires enzyme. Therefore, the substrate having the more higher concentration can be measured. Since a potential which is applied on the sensor for measurement is low, the interference on the reaction of the sensor by other materials is low.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基質濃度を迅速・簡便に測定できるバイオセ
ンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a biosensor that can quickly and easily measure substrate concentration.

(従来の技術) 溶液中の物質の濃度を測定するために、その物質を基質
とする酵素を電極表面に固定化したバイオセンサの作製
が試みられている。グルコースオキシダーゼ(COD)
等の酸化酵素は、酸素を消費して過酸化水素を生成する
。この酵素反応による酸素の減少量や過酸化水素の増加
量から基質濃度を算出する、最も単純な原理に基づくバ
イオセンサは数多く作製されている。近年、酸素の代わ
りに、酵素と電極との間の電子移動を媒介する物質、メ
ゾイエイタ−をバイオセンサに応用した例が報告されて
いる。例えば、GODとともにメゾイエイタ−である1
、1′−ジメチルフェロセンを固定化したグルコースセ
ンサが報告されている(アナリテイカル・ケミストリー
56.667−671 (1984))。
(Prior Art) In order to measure the concentration of a substance in a solution, attempts have been made to create a biosensor in which an enzyme using the substance as a substrate is immobilized on the surface of an electrode. Glucose oxidase (COD)
Oxidases such as oxidases consume oxygen and produce hydrogen peroxide. Many biosensors have been created based on the simplest principle, which calculates the substrate concentration from the amount of decrease in oxygen or increase in hydrogen peroxide due to this enzymatic reaction. In recent years, examples have been reported in which mesoieters, which are substances that mediate electron transfer between enzymes and electrodes, are applied to biosensors instead of oxygen. For example, 1 which is a mesoiator along with GOD
, a glucose sensor in which 1'-dimethylferrocene is immobilized has been reported (Analytical Chemistry 56.667-671 (1984)).

一方、電解重合性物質によって酵素を固定化したバイオ
センサについては、ポリピロールを用いてグルコースオ
キシダーゼを固定化したグルコースセンサが作製されて
いる(アナリティカル・ケミストリー58.2979〜
2983 (1986))。
On the other hand, regarding a biosensor in which an enzyme is immobilized using an electrolytically polymerizable substance, a glucose sensor in which glucose oxidase is immobilized using polypyrrole has been produced (Analytical Chemistry 58.2979~
2983 (1986)).

(発明が解決しようとする課題) 酸素を必要とするバイオセンサは、試料中の溶存酸素濃
度が一定である必要があること、酸素不足によって高濃
度の基質の測定ができないこと等の短所がある。メゾイ
エイタ−用いたバイオセンサにほこのような欠点はない
が、メゾイエイタ−の固定化が難しい、メゾイエイタ−
のセンサからの脱離によって寿命が短いという問題が生
じる。
(Problems to be solved by the invention) Biosensors that require oxygen have disadvantages such as the need for a constant dissolved oxygen concentration in the sample and the inability to measure highly concentrated substrates due to lack of oxygen. . Although biosensors using mesoiators do not have such drawbacks, it is difficult to immobilize mesoiators, and mesoiators are difficult to immobilize.
Detachment from the sensor causes the problem of short lifespan.

メゾイエイタ−により媒介なしに酵素と電極間の電子移
動が実現できれば、このような問題を解決できるが、従
来の固定化方法では、酵素と電極間に直接電子移動がお
こるようなバイオセンサを作製することはできない。
If electron transfer between the enzyme and the electrode could be achieved without an intermediary using a mesoiator, this problem could be solved, but conventional immobilization methods make it difficult to create a biosensor in which electron transfer occurs directly between the enzyme and the electrode. It is not possible.

本発明の目的は、測定に酸素やメゾイエイタ−を必要と
しない、酸素と電極間の直接電子移動がおこるようなバ
イオセンサを提供することにある。
An object of the present invention is to provide a biosensor that does not require oxygen or a mesoiator for measurement and allows direct electron transfer between oxygen and electrodes.

(課題を解決するための手段) 本発明は、電解重合性物質と酵素を含有する溶液中で電
解重合をおこなって酵素を固定化し、バイオセンサを作
製する際、電解重合時の溶液温度を45°C以上にする
ことを特徴としている。
(Means for Solving the Problems) The present invention immobilizes enzymes by performing electropolymerization in a solution containing an electropolymerizable substance and an enzyme, and when producing a biosensor, the solution temperature during electropolymerization is set to 45%. It is characterized by being heated to over °C.

(作用) このような方法で酵素を固定化したバイオセンサは、酸
素やメゾイエイタ−がなくとも基質濃度に依存する電流
応答を与えた。このことは、電解重合時に酵素の高次構
造が可逆的に変化して、導電性高分子が酵素の活性中心
近傍に形成されて、酵素と電極との直接電子移動が可能
になったためと推測される。このバイオセンサは、酵素
を必要とするバイオセンサに比べて、酸素濃度の制約が
ないので、より高濃度の基質を測定できる。また、測定
のためにセンサに印加する電位が低いので、他物質によ
るセンサ反応への妨害が少ない。
(Function) The biosensor in which the enzyme was immobilized using this method gave a current response that depended on the substrate concentration even in the absence of oxygen or mesoiator. We speculate that this is because the higher-order structure of the enzyme changes reversibly during electropolymerization, and a conductive polymer is formed near the active center of the enzyme, allowing direct electron transfer between the enzyme and the electrode. be done. Compared to biosensors that require enzymes, this biosensor is not limited by oxygen concentration, so it can measure substrates at higher concentrations. Furthermore, since the potential applied to the sensor for measurement is low, there is less interference with the sensor reaction by other substances.

さらに、メゾイエイタ−を使用していないので、メゾイ
エイタ−の脱離によるセンサの劣化がない。
Furthermore, since no mesoiator is used, there is no deterioration of the sensor due to detachment of the mesoiator.

(比較例) 酵素としてGOD、電解重合性物質としてN−メチルピ
ロールを用いて本発明に基づくグルコースセンサを作製
した。センサのベースには、特願昭63−282721
に示した方法で作成した、サファイア基板上に金を蒸着
した電極を用いた。この電極の作用極の面積は0.18
5mmであった。この電極を0.1M硫酸ナトリウムに
浸漬、電極電位−1,5〜1.5V vs、 Ag/A
gC1,掃引速度200mV/秒で6分間電位掃引をお
こない、電極を清浄にした。10mg/ml GOD、
0.1MN−メチルビロールを含む0.1M塩化カリウ
ム水溶液中で、電極に0.8V vs、 Ag/AgC
1の電位を掛けて2.5mC通電し、定電位電解重合に
よって酵素固定化膜を形成した。電解重合の際、溶液を
25°Cにして作製した。上記のようにして作製したセ
ンサのサイクリックポルタモグラムを測定した。測定装
置の構成を第1図に示す。図中1はグルコースセンサ及
び対極、2は銀・塩化銀参照電極、3はグルコースを含
む0.1M塩化カリウム溶液、4はポテンシオスタット
及びファンクションジェネレータ、5は記録計である。
(Comparative Example) A glucose sensor based on the present invention was produced using GOD as an enzyme and N-methylpyrrole as an electrolytically polymerizable substance. The base of the sensor is based on the patent application No. 63-282721.
An electrode with gold vapor-deposited on a sapphire substrate was used, which was created using the method shown in . The area of the working electrode of this electrode is 0.18
It was 5 mm. This electrode was immersed in 0.1M sodium sulfate, electrode potential -1.5 to 1.5V vs. Ag/A
gC1, a potential sweep was performed for 6 minutes at a sweep rate of 200 mV/sec to clean the electrode. 10mg/ml GOD,
In a 0.1 M potassium chloride aqueous solution containing 0.1 M N-methylpyrrole, 0.8 V vs. Ag/AgC at the electrode.
A potential of 1 was applied and a current of 2.5 mC was applied to form an enzyme-immobilized membrane by potentiostatic electrolytic polymerization. During electrolytic polymerization, the solution was prepared at 25°C. A cyclic portammogram of the sensor produced as described above was measured. The configuration of the measuring device is shown in Figure 1. In the figure, 1 is a glucose sensor and a counter electrode, 2 is a silver/silver chloride reference electrode, 3 is a 0.1M potassium chloride solution containing glucose, 4 is a potentiostat and a function generator, and 5 is a recorder.

測定溶液は測定前に窒素ガスを吹き込んで溶存酸素を除
き、溶液温度は35°Cとした。サイクリックポルタモ
グラムは0〜−IV vs、 Ag/AgC1の電位を
50mV/秒で掃引して測定した。第2図は、測定した
サイクリックポルタモグラムである。図中破線はグルコ
ースがない場合、実線は40mMグルコースを添加した
場合のポルタモグラムである。
Before measurement, nitrogen gas was blown into the measurement solution to remove dissolved oxygen, and the solution temperature was 35°C. The cyclic portamogram was measured by sweeping the potential of 0 to -IV vs. Ag/AgC1 at 50 mV/sec. FIG. 2 shows the measured cyclic portamogram. In the figure, the dashed line is the portamogram in the absence of glucose, and the solid line is the portamogram in the case where 40 mM glucose is added.

−〇、5V vs、 Ag/AgC1付近にCODに由
来するピーク電流が観測されるが、グルコースを添加し
ても、ボルタモダラムに変化はなかった。即ち、この条
件で作製したセンサは、活性を有したGODと電極との
間の電子移動が起こらず、グルコースセンサとして機能
しなかった。
-〇, 5V vs. A peak current derived from COD was observed near Ag/AgC1, but there was no change in the voltamodalum even when glucose was added. That is, in the sensor produced under these conditions, electron transfer between the active GOD and the electrode did not occur, and the sensor did not function as a glucose sensor.

(実施例) 前記センサの作製条件において、電解重合の際の溶液を
50°Cにした。第3図はこのセンサのグルコースがな
い場合(破線〉と40mMグルコースを添加した場合(
実線)のサイクルポルタモグラムである。
(Example) Under the manufacturing conditions of the sensor, the temperature of the solution during electrolytic polymerization was 50°C. Figure 3 shows this sensor in the absence of glucose (dashed line) and in the presence of 40mM glucose (dotted line).
This is a cycle portammogram of solid line).

比較例の場合と異なり、40mMグルコースを加えるこ
とによって一〇、5V vs、 Ag/AgC1付近の
酸化ピーク電流が増加した。
Unlike the case of the comparative example, the oxidation peak current around 10.5 V vs. Ag/AgC1 increased by adding 40 mM glucose.

このセンサのグルコースに対する電流応答を測定した。The current response of this sensor to glucose was measured.

装置はサイクリックポルタモグラム測定の場合と同様で
あり、−〇、3V vs、 Ag/AgC1の一定電位
をセンサに印加したときの、グルコース添加による電流
の変化を記録した。印加電位−〇、3V vs。
The apparatus was the same as that for cyclic portammogram measurement, and when a constant potential of -0, 3 V vs. Ag/AgC1 was applied to the sensor, the change in current due to glucose addition was recorded. Applied potential -〇, 3V vs.

Ag/AgC1は、従来のグルコースセンサで、過酸化
水素を検出する電位0.5V vs、 Ag/AgC1
に比べて負電位側にあり、高い電位で酸化される物質に
よる電流応答の妨害が小さい。電流応答のグルコース濃
度依存性を第4図に示した。従来のセンサに比べて高濃
度の150mMまでのグルコースが検出できた。
Ag/AgC1 is a conventional glucose sensor, and the potential for detecting hydrogen peroxide is 0.5V vs. Ag/AgC1
It is on the negative potential side compared to , and there is less interference with the current response by substances that are oxidized at high potentials. The glucose concentration dependence of the current response is shown in FIG. It was able to detect higher concentrations of glucose up to 150mM compared to conventional sensors.

酵素と電極が直接電子移動をおこなうバイオセンサを作
製するための、電解重合溶液の温度は、用いる酵素や電
解重合性物質の種類や濃度、重合電位によって異なるが
、酵素の高次構造に影響を与える温度である45°C以
上が適している。
The temperature of the electrolytic polymerization solution used to create a biosensor in which electrons are transferred directly between the enzyme and the electrode varies depending on the type and concentration of the enzyme and electrolytically polymerizable substance used, as well as the polymerization potential, but it does not affect the higher-order structure of the enzyme. A temperature of 45°C or higher is suitable.

なお、上記の二つの実施例では、酵素としてCODを用
いたが、その他にも、D−アミノ酸オキシダーゼ、ピル
ビン酸オキシダーゼなど、補酵素としてフラビンアデニ
ジヌクレエチドを有する酸化酵素であればよい。また、
電解重合性物質としては、N−メチルビロールの他に、
ピロール、アニリンやその誘導体も利用できる。
In the above two examples, COD was used as the enzyme, but any other oxidase having flavin adenidine nucleotide as a coenzyme may be used, such as D-amino acid oxidase and pyruvate oxidase. Also,
In addition to N-methylpyrrole, electrolytically polymerizable substances include
Pyrrole, aniline and their derivatives can also be used.

(発明の効果) 本発明は、45℃以上で酵素を電解重合高分子で固定化
することで、酵素と電極の間の直接電子移動に基づくバ
イオセンサの作製を可能にする。その結果、メゾイエイ
タ−固定化が不要で、他物質の妨害が小さく、高濃度側
まで定量範囲が拡大したバイオセンサが得られた。
(Effects of the Invention) The present invention enables the production of a biosensor based on direct electron transfer between an enzyme and an electrode by immobilizing an enzyme with an electrolytically polymerized polymer at 45° C. or higher. As a result, a biosensor was obtained that did not require mesoiator immobilization, had little interference from other substances, and had a quantitative range extended to high concentrations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各実施例におけるセンサのサイクリックポル
タモグラム及びグルコース濃度に対する電流応答の測定
装置を示す図、第2図は比較例におけるセンサのサイク
リックポルタモグラムを表わす図、第3図は実施例にお
けるセンサのサイクリックポルタモグラムを表わす図、
第4図は実施例におけるセンサ電流応答のグルコース濃
度依存性を示す図である。 図中1はグルコースセンサ及び対極、2は銀・塩化銀参
照電極、3はグルコースを含む0.1M塩化カリウム溶
液、4はポテンシオスタット及びファンクションジェネ
レータ、5は記録計である。
FIG. 1 is a diagram showing the cyclic portamogram of the sensor in each example and a device for measuring current response to glucose concentration, FIG. 2 is a diagram showing the cyclic portammogram of the sensor in the comparative example, and FIG. is a diagram showing a cyclic portamogram of the sensor in the example,
FIG. 4 is a diagram showing the glucose concentration dependence of the sensor current response in the example. In the figure, 1 is a glucose sensor and a counter electrode, 2 is a silver/silver chloride reference electrode, 3 is a 0.1M potassium chloride solution containing glucose, 4 is a potentiostat and a function generator, and 5 is a recorder.

Claims (1)

【特許請求の範囲】[Claims] (1)電解重合性物質と酵素を含有する溶液中で電解重
合を行うことによって、酵素を前記重合膜に固定化する
工程を備えたバイオセンサの製造方法において、電解重
合時の溶液温度を45℃以上にして作製することを特徴
とするバイオセンサの製造方法。
(1) In a method for producing a biosensor comprising a step of immobilizing an enzyme on the polymer membrane by performing electropolymerization in a solution containing an electropolymerizable substance and an enzyme, the solution temperature during electropolymerization is set to 45%. A method for producing a biosensor, characterized in that the biosensor is produced at a temperature of at least ℃.
JP1212041A 1989-08-16 1989-08-16 Manufacture of biosensor Pending JPH0375555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212041A JPH0375555A (en) 1989-08-16 1989-08-16 Manufacture of biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212041A JPH0375555A (en) 1989-08-16 1989-08-16 Manufacture of biosensor

Publications (1)

Publication Number Publication Date
JPH0375555A true JPH0375555A (en) 1991-03-29

Family

ID=16615891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212041A Pending JPH0375555A (en) 1989-08-16 1989-08-16 Manufacture of biosensor

Country Status (1)

Country Link
JP (1) JPH0375555A (en)

Similar Documents

Publication Publication Date Title
Geise et al. Electropolymerized 1, 3-diaminobenzene for the construction of a 1, 1′-dimethylferrocene mediated glucose biosensor
Li et al. A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol‐gel matrix at a prussian blue modified electrode
Rahman et al. The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations
Foulds et al. Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors
EP1194585B1 (en) Amperometric sensor
HabermuÈller et al. An oxygen‐insensitive reagentless glucose biosensor based on osmium‐complex modified polypyrrole
Palmisano et al. A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly (pyrrole)/tetrathiafulvalene− tetracyanoquinodimethane composite
D O’Neill et al. Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate
Vostiar et al. Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe
Ghica et al. A glucose biosensor using methyl viologen redox mediator on carbon film electrodes
Koopal et al. Glucose sensor utilizing polypyrrole incorporated in tract-etch membranes as the mediator
Soylemez et al. Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol
Zhou et al. Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode
Gobi et al. Layer-by-layer construction of an active multilayer enzyme electrode applicable for direct amperometric determination of cholesterol
Roy et al. Vertically aligned carbon nanotube probes for monitoring blood cholesterol
US20130001102A1 (en) Process for the preparation of modified electrodes, electrodes prepared with said process, and enzymatic biosensors comprising said electrodes
Barsan et al. New CNT/poly (brilliant green) and CNT/poly (3, 4-ethylenedioxythiophene) based electrochemical enzyme biosensors
Serafín et al. Electrochemical biosensor for creatinine based on the immobilization of creatininase, creatinase and sarcosine oxidase onto a ferrocene/horseradish peroxidase/gold nanoparticles/multi-walled carbon nanotubes/Teflon composite electrode
Chen et al. Glucose biosensor based on three dimensional ordered macroporous self-doped polyaniline/Prussian blue bicomponent film
Bu et al. NAD (P) H sensors based on enzyme entrapment in ferrocene-containing polyacrylamide-based redox gels
Gros et al. Use of polypyrrole film containing Fe (CN) 63− as pseudo-reference electrode: application for amperometric biosensors
Huang et al. A highly-sensitive L-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode
Voitechovič et al. Development of label-free impedimetric platform based on new conductive polyaniline polymer and three-dimensional interdigitated electrode array for biosensor applications
Xu et al. Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion
Sanz et al. Disposable superoxide dismutase biosensors based on gold covered polycaprolactone fibers for the detection of superoxide in cell culture media