JPH0375285A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH0375285A
JPH0375285A JP1210963A JP21096389A JPH0375285A JP H0375285 A JPH0375285 A JP H0375285A JP 1210963 A JP1210963 A JP 1210963A JP 21096389 A JP21096389 A JP 21096389A JP H0375285 A JPH0375285 A JP H0375285A
Authority
JP
Japan
Prior art keywords
layer
superconducting
ceramic substrate
oxidation
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1210963A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
高田 善典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1210963A priority Critical patent/JPH0375285A/en
Publication of JPH0375285A publication Critical patent/JPH0375285A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting material having excellent superconducting properties and resistant to the diffusion of a ceramic component to the superconducting layer by applying a thin film of an oxide superconductor to a ceramic substrate having a surface layer consisting of an oxidation-resistant intermetallic compound and sintering the coated product. CONSTITUTION:A thin film of an oxide superconductor (e.g. YBa2Cu3Oy or Bi2Sr2Ca2Cu3Oy) is formed on the surface of a ceramic substrate composed of an oxidation-resistant intermetallic compound (e.g. molybdenum silicide, zirconium silicide, hafnium silicide or titanium silicide) as at least the surface part and the coated ceramics sintered to form a superconducting layer. The diffusion of the ceramic components into the formed superconducting layer can be inhibited and a ceramic substrate having a superconducting layer with excellent superconducting characteristics such as critical temperature can be produced by this process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セラミック基板の上に超電導特性に優れる酸
化物超電導体層を形成するようにした超電導体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a superconductor in which an oxide superconductor layer having excellent superconducting properties is formed on a ceramic substrate.

従来の技術 支持基板上に酸化物超電導体の薄層を有する超電導体の
製造方法として、支持基板上にスパッタリング方式等で
酸化物超電導体の薄層を形成する方法が知られている。
2. Description of the Related Art As a method for manufacturing a superconductor having a thin layer of oxide superconductor on a support substrate, a method is known in which a thin layer of oxide superconductor is formed on the support substrate by sputtering or the like.

スパッタリング方式等の場合には、層形成過程で超電導
層が形成されるため焼結処理を要しないが、高度な設備
や技術を要して製造効率に劣り、大型品の製造が困難な
問題点があった。
In the case of sputtering methods, etc., a superconducting layer is formed during the layer formation process, so sintering is not required, but it requires advanced equipment and technology, resulting in poor manufacturing efficiency and problems that make it difficult to manufacture large products. was there.

発明が解決しようとする課題 前記の問題点に鑑みて本発明者は、酸化物超電導体の粉
末等を展開するなどして薄層を形成し、これを焼結処理
して超電導層とする方法に想到した。この方法によれば
、スパッタリング設備やスパッタリング技術等が不要に
なり、大型品も容易に、かつ効率よく製造することがで
きる。
Problems to be Solved by the Invention In view of the above-mentioned problems, the present inventor has devised a method of forming a thin layer by spreading powder of an oxide superconductor, etc., and sintering the thin layer to form a superconducting layer. I came up with this idea. According to this method, sputtering equipment, sputtering technology, etc. are not required, and large products can be manufactured easily and efficiently.

しかしながら薄層の支持基板として酸化物系セラミック
基板を用いた場合、基板の成分が超電導層に拡散して超
電導特性を低下させることが判明した。本発明はかかる
問題の克服を課題とする。
However, it has been found that when an oxide-based ceramic substrate is used as a thin layer support substrate, components of the substrate diffuse into the superconducting layer and deteriorate the superconducting properties. The present invention aims to overcome this problem.

課題を解決するための手段 本発明は、表面に耐酸化性金属間化合物の層を有する基
板を用いることにより前記課題を克服したものである。
Means for Solving the Problems The present invention overcomes the above problems by using a substrate having a layer of an oxidation-resistant intermetallic compound on its surface.

すなわち本発明は、少なくとも表面が耐酸化性金属間化
合物からなるセラミック基板の上に、酸化物超電導体か
らなる薄層を形成し、これを焼結処理して超電導層を形
成することを特徴とする超電導体の製造方法を提供する
ものである。
That is, the present invention is characterized in that a thin layer made of an oxide superconductor is formed on a ceramic substrate at least the surface of which is made of an oxidation-resistant intermetallic compound, and this is sintered to form a superconducting layer. The present invention provides a method for manufacturing a superconductor.

実施例 本発明において用いるセラミック基板は、少なくとも超
電導層を形成する面を耐酸化性金属間化合物で形成した
ものである。従って外周を耐酸化性金属間化合物の層で
被覆した形態のものや、全体を耐酸化性金属間化合物で
形成したものなどであってもよい。基板を構成するセラ
ミックについては特に限定はない。一般には、耐酸化性
金属間化合物ノホカ、Mg O1Y S Z 1A l
 20 s 、S io 2、S r T i O3な
どからなるものが用いられる。
EXAMPLE The ceramic substrate used in the present invention has at least the surface on which the superconducting layer is formed made of an oxidation-resistant intermetallic compound. Therefore, the outer periphery may be coated with a layer of an oxidation-resistant intermetallic compound, or the entire structure may be made of an oxidation-resistant intermetallic compound. There are no particular limitations on the ceramic that constitutes the substrate. Generally, oxidation-resistant intermetallic compound Nohoka, Mg O1Y S Z 1A l
20 s , S io 2 , S r T i O3, etc. are used.

基板の厚さは適宜に決められ、通例3鴎以下である。耐
酸化性金属間化合物としては例えば、ケイ化モリブデン
、ケイ化ジルコニウム、ケイ化タングステンの如きシリ
サイド、窒化ハフニウム、窒化チタンの如き金属窒化物
などが用いられる。基板の表層のみに耐酸化性金属間化
合物の層を形成する方式としては例えば、マグネトロン
スパッタリング方式やイオンブレーティング方式の如き
PVD方式、CvD方式、活性化化成蒸着方式、有機物
熱分解方式などがあげられる。
The thickness of the substrate is determined appropriately and is usually 3 mm or less. Examples of oxidation-resistant intermetallic compounds used include silicides such as molybdenum silicide, zirconium silicide, and tungsten silicide, and metal nitrides such as hafnium nitride and titanium nitride. Examples of methods for forming an oxidation-resistant intermetallic compound layer only on the surface layer of the substrate include PVD methods such as magnetron sputtering method and ion blating method, CvD method, activated chemical vapor deposition method, and organic material thermal decomposition method. It will be done.

セラミック基板の耐酸化性金属間化合物面の上に付与す
る酸化物超電導体からなる薄層は、ゾル・ゲル法、有機
物熱分解法、噴霧熱分解法など、適宜な方式で形成して
よい。形成する薄層の厚さは任意である。一般には2O
n以下とされる。
The thin layer of the oxide superconductor provided on the oxidation-resistant intermetallic compound surface of the ceramic substrate may be formed by any suitable method, such as a sol-gel method, an organic material pyrolysis method, or a spray pyrolysis method. The thickness of the formed thin layer is arbitrary. Generally 2O
n or less.

薄層を形成する酸化物超電導体についても特に限定はな
い。YBaz Cu30yの如きY系酸化物超電導体、
Bia Sr2 Ca2 Cu30yの如きBi系酸化
物超電導体、その他La系酸化物超電導体、TI系酸化
物超電導体など、また前記のY等の成分を他の希土類元
素で置換したもの、ないしBa等の成分を他のアルカリ
土類金属で置換したものなど公知のいずれの酸化物超電
導体からなっていてもよい。
There are no particular limitations on the oxide superconductor that forms the thin layer. Y-based oxide superconductor such as YBaz Cu30y,
Bi-based oxide superconductors such as Bia Sr2 Ca2 Cu30y, other La-based oxide superconductors, TI-based oxide superconductors, etc., and those in which the above-mentioned components such as Y are replaced with other rare earth elements, or those such as Ba etc. It may be made of any known oxide superconductor, such as one whose components are replaced with other alkaline earth metals.

耐酸化性金属間化合物の面上に形成した酸化物超電導体
からなる薄層の焼結処理は、酸化物超電導体の種類等に
応じ適宜な温度で行ってよい。−船釣な焼結温度は、8
00〜1000℃である。また焼結時間は、通例250
時間以下、就中2〜200時°間であるがこれに限定さ
れない。焼結処理により酸化物超電導体系の粒子ないし
粉末が結合して一体化し、超電導体の連続層を形成する
と共に、基板とも密着する。
The sintering treatment of the thin layer of the oxide superconductor formed on the surface of the oxidation-resistant intermetallic compound may be performed at an appropriate temperature depending on the type of the oxide superconductor. -The sintering temperature for boat fishing is 8
00-1000°C. The sintering time is usually 250
The duration is not limited to 2 to 200 hours, particularly 2 to 200 hours. The sintering process binds and integrates the particles or powders of the oxide superconductor to form a continuous layer of superconductor and also adheres closely to the substrate.

なお本発明において、酸化物超電導体からなる薄層が有
機物を含有する場合には必要に応じ、焼結処理前に熱分
解して薄層中の有機成分を除去してもよい。
In the present invention, if the thin layer made of an oxide superconductor contains organic substances, the organic components in the thin layer may be removed by thermal decomposition before the sintering process, if necessary.

発明の効果 本発明によれば、耐酸化性金属間化合物の面上に酸化物
超電導体の薄層を設けて焼結処理するようにしたので、
形成される超電導層へのセラミック成分の拡散を阻止で
きて、臨界温度等の超電導特性に優れる超電導層を有す
るセラミック基板を得ることができる。
Effects of the Invention According to the present invention, a thin layer of oxide superconductor is provided on the surface of the oxidation-resistant intermetallic compound and then sintered.
It is possible to obtain a ceramic substrate having a superconducting layer that can prevent diffusion of ceramic components into the formed superconducting layer and has excellent superconducting properties such as critical temperature.

実施例1 80℃に加温した純プロピオン酸100m1に、酢酸イ
ツトリウム0.007モル、酢酸バリウム0.014モ
ル及び酢酸鋼0.021モルを溶解させてなる溶液に、
厚さ0.5−の酸化マグネシウム多結晶板の外周に厚さ
1.5u−の窒化ハフニウム層を設けてなるセラミック
基板を浸漬し、0.2m/秒の速度で引き上げて基板上
にプロピオン酸溶液を塗布し、1時間自然乾燥させたの
ち0.ITorr s 150℃の条件で1時間真空加
熱乾燥し、これを450℃で1時間加熱処理して塗布層
(ゲル)を熱分解させた。
Example 1 In a solution prepared by dissolving 0.007 mol of yttrium acetate, 0.014 mol of barium acetate and 0.021 mol of steel acetate in 100 ml of pure propionic acid heated to 80°C,
A ceramic substrate consisting of a 1.5 u-thick hafnium nitride layer provided on the outer periphery of a 0.5-thick magnesium oxide polycrystalline plate is immersed and pulled up at a speed of 0.2 m/sec to coat the substrate with propionic acid. After applying the solution and letting it air dry for 1 hour, it became 0. It was dried under vacuum heat at 150° C. for 1 hour, and then heated at 450° C. for 1 hour to thermally decompose the coated layer (gel).

前記の浸漬−乾燥一億布層の熱分解操作を5回、繰り返
したのち、酸素雰囲気下950℃で120分間加熱し、
さらに400℃で5時間加熱してYBaz Cu5O7
系の単一層からなる厚さ4.7#neの超電導層が表面
に強固に密着したセラミック基板を得た。
After repeating the pyrolysis operation of the soaked and dried 100 million cloth layers 5 times, the mixture was heated at 950°C for 120 minutes in an oxygen atmosphere,
Further heat at 400℃ for 5 hours to produce YBaz Cu5O7
A ceramic substrate was obtained in which a 4.7#ne thick superconducting layer consisting of a single layer of the system was firmly adhered to the surface.

実施例2 セラミック基板として、表面に厚さ2nのケイ化モリブ
デン層を形成した厚さ1閣のYSz基板を用いたほかは
実施例1に準じてセラミック基板に強固に密着した超電
導層を得た。
Example 2 A superconducting layer firmly adhered to a ceramic substrate was obtained according to Example 1, except that a YSz substrate with a thickness of 1 mm on which a 2n-thick molybdenum silicide layer was formed on the surface was used as the ceramic substrate. .

比較例 セラミック基板として、窒化ハフニウム層を有しない酸
化マグネシウム基板を用いたほかは実施例1に準じて超
電導層を得た。
Comparative Example A superconducting layer was obtained according to Example 1, except that a magnesium oxide substrate without a hafnium nitride layer was used as the ceramic substrate.

評価試験 実施例、比較例で得たセラミック基板上の超電導層につ
き臨界温度(Tc)を調べた。臨界温度は、0.1A/
cjの電流密度下、液体ヘリウムで冷却しなから4端子
法により電気抵抗の温度による変化を測定し、電圧端子
間の発生電圧がOとなったときの温度である。
The critical temperature (Tc) of the superconducting layer on the ceramic substrate obtained in the evaluation test example and comparative example was investigated. The critical temperature is 0.1A/
The change in electrical resistance due to temperature was measured by the four-terminal method without cooling with liquid helium under a current density of cj, and this is the temperature when the voltage generated between the voltage terminals becomes O.

結果を表に示した。The results are shown in the table.

Claims (1)

【特許請求の範囲】[Claims] 1.少なくとも表面が耐酸化性金属間化合物からなるセ
ラミック基板の上に、酸化物超電導体からなる薄層を形
成し、これを焼結処理して超電導層を形成することを特
徴とする超電導体の製造方法。
1. Production of a superconductor characterized by forming a thin layer made of an oxide superconductor on a ceramic substrate at least the surface of which is made of an oxidation-resistant intermetallic compound, and sintering this to form a superconducting layer. Method.
JP1210963A 1989-08-16 1989-08-16 Production of superconductor Pending JPH0375285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1210963A JPH0375285A (en) 1989-08-16 1989-08-16 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1210963A JPH0375285A (en) 1989-08-16 1989-08-16 Production of superconductor

Publications (1)

Publication Number Publication Date
JPH0375285A true JPH0375285A (en) 1991-03-29

Family

ID=16598015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1210963A Pending JPH0375285A (en) 1989-08-16 1989-08-16 Production of superconductor

Country Status (1)

Country Link
JP (1) JPH0375285A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057270A (en) * 2006-09-01 2008-03-13 Bunka Shutter Co Ltd Opening-closing door device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057270A (en) * 2006-09-01 2008-03-13 Bunka Shutter Co Ltd Opening-closing door device

Similar Documents

Publication Publication Date Title
CN101273431A (en) A method to deposit a coating by sputtering
JPH08506216A (en) Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x
KR880014017A (en) Method of manufacturing thin film superconducting oxide film
Wang et al. Sputter deposition of yttria-stabilized zirconia and silver cermet electrodes for SOFC applications
Altenburg et al. Thick films of ceramic superconducting, electro-ceramic materials
US4983577A (en) Metalorganic deposition of superconducting Yb-Ba-Cu-O thin films by rapid thermal annealing
JPH0375285A (en) Production of superconductor
KR930008648B1 (en) Perovskite super conductor readiness process
EP0503941A1 (en) Sputtering method for forming superconducting films using water vapor addition
JPH07118012A (en) Oxide superconductor and its production
JPH01152770A (en) Substrate with superconducting thin-film
Face et al. Transport and structural properties of Bi-Sr-Ca-Cu-oxide thin films prepared by reactive magnetron sputtering
JPH0297421A (en) Production of high temperature superconducting thin film
JPH01188677A (en) Production of superconducting thin film
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPH0764679B2 (en) Method for producing ceramics superconductor thin film
Aschern et al. Manufacturing of YBa {sub 2} Cu {sub 3} O {sub 7} coatings by low pressure and atmospheric plasma spraying for magnetic shielding applications
Bohandy et al. Laser ablation deposition of superconducting Bi‐Sr‐Ca‐Cu‐O thin films on zirconia‐buffered crystalline quartz
JPH01203258A (en) Production of oxide superconducting sintered body
JPH05330992A (en) Production of yttrium-based oxide superconducting film
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
Arendt et al. Highly-Textured Tl-Ba-Ca-Cu-O Polycrystalline Superconducting Films on Ag Substrates
Yuan et al. Some aspects of fabrication of YBCO thin films by inverted cylindrical magnetron sputtering in large area
Weyten et al. Preparation of Yba 2 Cu 3 O 7-X. Superconducting Thin Films by Means of Single Target Rf-Sputtering+
Langlet et al. High Tc superconducting films prepared by pyrolysis of an ultrasonic-generated aerosol