JPH03750Y2 - - Google Patents

Info

Publication number
JPH03750Y2
JPH03750Y2 JP1060879U JP1060879U JPH03750Y2 JP H03750 Y2 JPH03750 Y2 JP H03750Y2 JP 1060879 U JP1060879 U JP 1060879U JP 1060879 U JP1060879 U JP 1060879U JP H03750 Y2 JPH03750 Y2 JP H03750Y2
Authority
JP
Japan
Prior art keywords
winding
signal
windings
delay line
bobbin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1060879U
Other languages
Japanese (ja)
Other versions
JPS55109917U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1060879U priority Critical patent/JPH03750Y2/ja
Publication of JPS55109917U publication Critical patent/JPS55109917U/ja
Application granted granted Critical
Publication of JPH03750Y2 publication Critical patent/JPH03750Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は主にカラーテレビジヨン受像機に用い
られる分布定数形デイレーラインに関するもので
ある。 一般にカラーテレビジヨン受像機においては映
像検波回路後の映像増幅回路にデイレーラインを
組込んで色信号の遅れと一致させるように構成さ
れているが、その検波回路の方式によりデイレー
ラインのプリシユートの発生量を調整しなければ
ならない。 又、デイレーラインのプリシユート量と位相特
性、すなわち、群遅延時間特性には密接な関係が
あり、周波数に対し群遅延時間をフラツトに近づ
ける程プリシユート量は小さくなる。 本考案はこの上記の関係を利用し、主にプリシ
ユート量を小さくするために位相特性を改善でき
るように改善した分布定数形デイレーラインであ
る。 一般に同一ボビン内で構成される分布定数形デ
イレーラインは隣接巻線溝間のインダクタンスに
付属する橋絡浮遊容量を考えると第1図に示すラ
チス回路の数個及び十数個の組合せと考えられる
から、群遅延時間は第2図に示すように周波数の
増加に対し減少する方向となり、又その減少度合
は結合係数Kにより異なる。 なお、第1図において、L0は各巻線溝に巻回
される信号巻線のインダクタンス、2C0は各巻線
溝の信号巻線とアース電極巻線間のキヤパシタン
ス、C0/2は隣接する信号巻線間の浮遊容量、
Kは隣接する信号巻線間の結合係数を示してい
る。 なお、結合係数Kは K=m2−1/m2+1 で表わされており、mは信号巻線間の誘導m型の
係数である。 したがつて、結合係数Kは誘導m型係数mを変
えることによつて変化することになり、群遅延時
間は誘導m型係数mを変えることによつて第2図
のように変化することになる。 よつてこの結合係数Kを変化させる方法として
は一般的にボビン芯径や巻線溝間隔、すなわちボ
ビンのツバ幅の大小により行なうことができる
が、この方法にすればプリシユート量によりボビ
ン形状を変更しなければならず、量産時における
そのボビンの管理等に問題がありコスト的にも不
利であつた。 そこで本考案は上記の欠点を除去し同一ボビン
で信号巻線の巻き方を工夫することにより、位相
補償を行ない、プリシユート量を小さくできるよ
うにした分布定数形デイレーラインを提供するも
のである。 以下本考案の実施例について図面第3図〜第5
図により説明する。 第3図は本考案の分布定数形デイレーラインの
一実施例の断面図で複数個の鍔4により複数個の
巻線溝2,3を備えた絶縁ボビン1に絶縁被膜の
備えた導線を連続して上記巻線溝2,3に巻回し
てなるアース電極巻線6,7を構成し、その中間
に絶縁被膜を備えた導線にて隣接する巻線溝毎に
交互に巻数差を持たせ信号巻線5,5′を連続し
て巻回して分布定数形デイレーラインを構成して
いる。なお、8,9は信号巻線5,5′の端子、
10はアース電極巻線6,7の端子でともに絶縁
ボビン1の両端に鍔4に植設されている。 上記構成の分布定数形デイレーラインは第4図
のような結線図となり、信号巻線5,5′とアー
ス電極巻線6,7で所望のキヤパシタンス分C1
C2を得るようにアース電極巻線6,7の巻数を
設定し、信号巻線5でインダクタンス分L、信号
巻線5でインダクタンス分L′と所望の位相特性を
得るようにターン数及びインダクタンス分L,
L′の比率を決定し巻回されている。 上記構成の分布定数形デイレーラインの等価回
路を第5図に示す。第5図においてLは信号巻線
5のインダクタンス分、L′は信号巻線5′のイン
ダクタンス分、C1は信号巻線5または5′とアー
ス電極巻線7とのキヤパシタンス分、C2は信号
巻線5または5′とアース電極巻線6とのキヤパ
シタンス分、Cp1は隣接する信号巻線5と5′間の
橋絡浮遊容量、Cp2は1つの信号巻線をとばした
信号巻線間の橋絡浮遊容量、Cpoは両端の信号巻
線間の橋絡浮遊容量を示し、K1は隣接する信号
巻線間の結合係数、K2は1つの信号巻線をとば
した信号巻線間の結合係数、Koは両端の信号巻
線間の結合係数を示している。 入力INから見ると、アース電極巻線6と第1
段目の信号巻線5でキヤパシタンス分C2が形成
され、この信号巻線5でインダクタンス分Lを構
成し、この信号巻線5とアース電極巻線7でキヤ
パシタンス分C1を形成し、次段のアース電極巻
線6と信号巻線5′でキヤパシタンス分C2が形成
され、この信号巻線5′でインダクタンス分L′を
構成し、信号巻線5′とアース電極巻線7でC1
形成するといつたことが連続的に構成されてい
き、結果的に第5図に示す等価回路図となる。 以上のように、インダクタンス分LとL′を得る
ための信号巻線5と5′のターン数の比率を決定
することにより結合係数K1,K2……Koを変える
ことになりその結果として位相補償が可能とな
る。 なお、本考案においては、信号巻線5と5′の
巻数に差をもたせることで位相補償を可能として
いるため、アース電極巻線6,7の構成は上記実
施例に限定されるものではない。 次に、第6図に実施例の実際の特性例について
説明する。 第6図のAの特性例は従来の分布定数形デイレ
ーラインの誘導m型係数m=1.44のものの特性、
すなわち隣接溝の信号巻線の巻数が同巻数の場合
の特性例である。Bは従来と全く同形状の絶縁ボ
ビンにおいて隣接溝の信号巻線の巻数比率を
100:80で巻回し誘導m型係数mを1.36とした場
合の特性例である。Cは同様に100:50で誘導m
型係数mを1.29とした場合、Dも同様に100:25
の比率で巻回し誘導m型係数m=1.22とした場合
の特性例である。 ただし、上記A〜Dのものは絶縁ボビンとして
鍔の寸法を一定として隣接溝の信号巻線の巻数比
率を変えたものであり、A〜Dに示す巻数比率を
変えることにより両信号巻線間の結合係数Kを測
定し、K=m2−1/m2+1の式からそれぞれの誘導m型 係数mを算出した。 上記結合係数Kは、それぞれの信号巻線のイン
ダクタンス分LとL′を測定し、次に2つの信号巻
線を接続したトータルインダクタンスLTを測定
し、一般式
The present invention mainly relates to a distributed constant delay line used in color television receivers. Color television receivers are generally configured to incorporate a delay line into the video amplification circuit after the video detection circuit to match the delay of the color signal. The amount generated must be adjusted. Furthermore, there is a close relationship between the delay line preshoot amount and the phase characteristic, that is, the group delay time characteristic, and the closer the group delay time is to a flat value with respect to the frequency, the smaller the preshoot amount becomes. The present invention utilizes the above relationship to provide an improved distributed constant delay line that can improve the phase characteristics mainly to reduce the amount of preshoot. In general, a distributed constant delay line constructed within the same bobbin can be considered to be a combination of several or more than ten lattice circuits as shown in Figure 1, considering the bridging stray capacitance attached to the inductance between adjacent winding grooves. Therefore, the group delay time tends to decrease as the frequency increases, as shown in FIG. 2, and the degree of decrease varies depending on the coupling coefficient K. In Figure 1, L 0 is the inductance of the signal winding wound in each winding groove, 2C 0 is the capacitance between the signal winding and the ground electrode winding in each winding groove, and C 0 /2 is the adjacent Stray capacitance between signal windings,
K indicates the coupling coefficient between adjacent signal windings. Note that the coupling coefficient K is expressed as K=m 2 −1/m 2 +1, where m is the coefficient of the m-type induction between the signal windings. Therefore, the coupling coefficient K changes by changing the induction m-type coefficient m, and the group delay time changes as shown in Figure 2 by changing the induction m-type coefficient m. Become. Therefore, the coupling coefficient K can generally be changed by changing the bobbin core diameter and the winding groove spacing, that is, the width of the brim of the bobbin, but with this method, the bobbin shape can be changed depending on the pre-cut amount. However, there were problems with the management of the bobbin during mass production, and it was also disadvantageous in terms of cost. Therefore, the present invention eliminates the above-mentioned drawbacks and provides a distributed constant type delay line in which the signal winding is wound on the same bobbin, thereby performing phase compensation and reducing the amount of preshoot. . Embodiments of the present invention are shown below in drawings 3 to 5.
This will be explained using figures. FIG. 3 is a cross-sectional view of one embodiment of the distributed constant type delay line of the present invention, in which a conductor coated with an insulating film is connected to an insulating bobbin 1 having a plurality of winding grooves 2 and 3 using a plurality of collars 4. The earth electrode windings 6 and 7 are formed by continuously winding the winding grooves 2 and 3, and the conductor wire is provided with an insulating film in between, and the number of turns is alternately varied between adjacent winding grooves. The parallel signal windings 5 and 5' are continuously wound to form a distributed constant delay line. Note that 8 and 9 are the terminals of the signal windings 5 and 5',
Reference numeral 10 denotes terminals of the ground electrode windings 6 and 7, which are both implanted in the collar 4 at both ends of the insulating bobbin 1. The distributed constant type delay line with the above configuration has a connection diagram as shown in FIG .
Set the number of turns of the ground electrode windings 6 and 7 so as to obtain C 2 , and set the number of turns and inductance so as to obtain the desired phase characteristics such as inductance L in signal winding 5 and inductance L' in signal winding 5. Minute L,
The ratio of L' is determined and wound. An equivalent circuit of the distributed constant type delay line having the above configuration is shown in FIG. In Fig. 5, L is the inductance of the signal winding 5, L' is the inductance of the signal winding 5', C1 is the capacitance between the signal winding 5 or 5' and the ground electrode winding 7, and C2 is the capacitance between the signal winding 5 or 5' and the ground electrode winding 7. C p1 is the capacitance between the signal winding 5 or 5' and the ground electrode winding 6, C p1 is the bridging stray capacitance between the adjacent signal windings 5 and 5', and C p2 is the signal winding with one signal winding skipped. The bridging stray capacitance between the wires, C po indicates the bridging stray capacitance between the signal windings at both ends, K 1 is the coupling coefficient between adjacent signal windings, and K 2 is the signal that skips one signal winding. The coupling coefficient between the windings, K o , indicates the coupling coefficient between the signal windings at both ends. Viewed from the input IN, the ground electrode winding 6 and the first
The signal winding 5 of the stage forms a capacitance C2, this signal winding 5 forms an inductance L, this signal winding 5 and the ground electrode winding 7 form a capacitance C1 , and then The ground electrode winding 6 and the signal winding 5 ' of the stage form a capacitance C2, the signal winding 5' forms an inductance L', and the signal winding 5' and the ground electrode winding 7 form a capacitance C2. 1 , the above are successively constructed, resulting in the equivalent circuit diagram shown in FIG. As described above, by determining the ratio of the number of turns in the signal windings 5 and 5' to obtain the inductances L and L', the coupling coefficients K 1 , K 2 ...K o can be changed, resulting in Phase compensation is possible as follows. In addition, in the present invention, phase compensation is made possible by providing a difference in the number of turns of the signal windings 5 and 5', so the configuration of the earth electrode windings 6 and 7 is not limited to the above embodiment. . Next, an example of actual characteristics of the embodiment will be explained with reference to FIG. The characteristic example of A in Fig. 6 is the characteristic of a conventional distributed constant type delay line with an induced m-type coefficient m = 1.44.
That is, this is an example of the characteristic when the number of turns of the signal windings in adjacent grooves is the same. B is the turn ratio of the signal winding in the adjacent groove in an insulated bobbin with exactly the same shape as the conventional one.
This is an example of the characteristics when the winding induction m type coefficient m is 1.36 with a ratio of 100:80. Similarly, C is guided m at 100:50.
If the type coefficient m is 1.29, D is also 100:25.
This is an example of the characteristics when the winding induction m-type coefficient m = 1.22 at the ratio of . However, the above A to D are insulated bobbins with constant collar dimensions and different turn ratios of the signal windings in the adjacent grooves. The coupling coefficient K was measured, and each induced m-type coefficient m was calculated from the formula K=m 2 -1/m 2 +1. The above coupling coefficient K can be calculated by measuring the inductance L and L' of each signal winding, then measuring the total inductance L T connecting the two signal windings, and using the general formula

【式】で計算される。 ただし、M=LT−(L×L′)/2とする。 以上のように、本考案の分布定数形デイレーラ
インは従来の同一ボビン及び同一巻線方法にて隣
接溝毎の巻数調整のみで位相補償ができるため、
従来と全く同じ量産方法で行なえるから量産性、
コストも損なわず、かつ従来と同形状にて位相特
性の改善ができるという利点がある。
Calculated using [Formula]. However, it is assumed that M=L T -(L×L')/2. As mentioned above, the distributed constant type delay line of the present invention can perform phase compensation by simply adjusting the number of turns for each adjacent groove using the conventional same bobbin and same winding method.
Mass production is possible because it can be done using the same mass production method as before.
It has the advantage of being able to improve the phase characteristics without sacrificing cost and with the same shape as the conventional one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はラチス回路の等価回路図、第2図は同
群遅延時間特性図、第3図は本考案の分布定数形
デイレーラインの一実施例の断面図、第4図は同
結線図、第5図は同等価回路図、第6図は本考案
の実施例の群遅延時間特性図である。 1……絶縁ボビン、2,3……巻線溝、4……
鍔、5,5′……信号巻線、6,7……アース電
極巻線、8〜10……端子。
Fig. 1 is an equivalent circuit diagram of the lattice circuit, Fig. 2 is a group delay time characteristic diagram of the same, Fig. 3 is a sectional view of an embodiment of the distributed constant delay line of the present invention, and Fig. 4 is a connection diagram of the same. , FIG. 5 is an equivalent circuit diagram, and FIG. 6 is a group delay time characteristic diagram of an embodiment of the present invention. 1... Insulating bobbin, 2, 3... Winding groove, 4...
Tsuba, 5, 5'... Signal winding, 6, 7... Earth electrode winding, 8 to 10... Terminal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数個の鍔により複数個の巻線溝を形成したボ
ビンの巻線溝にアース電極巻線を設け、その巻線
溝に絶縁被膜を有する導線を同一方向に巻回して
信号巻線を設け、かつ、隣接巻線溝における信号
巻線に交互に巻線差を持たせるとともに1つおき
の巻線溝の巻数を等しく構成した分布定数形デイ
レーライン。
A ground electrode winding is provided in a winding groove of a bobbin in which a plurality of winding grooves are formed by a plurality of flanges, and a signal winding is provided by winding a conductive wire having an insulating coating in the same direction in the winding groove, Further, the distributed constant type delay line is configured such that the signal windings in adjacent winding grooves are alternately given a winding difference, and the number of turns in every other winding groove is made equal.
JP1060879U 1979-01-29 1979-01-29 Expired JPH03750Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060879U JPH03750Y2 (en) 1979-01-29 1979-01-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060879U JPH03750Y2 (en) 1979-01-29 1979-01-29

Publications (2)

Publication Number Publication Date
JPS55109917U JPS55109917U (en) 1980-08-01
JPH03750Y2 true JPH03750Y2 (en) 1991-01-11

Family

ID=28823517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060879U Expired JPH03750Y2 (en) 1979-01-29 1979-01-29

Country Status (1)

Country Link
JP (1) JPH03750Y2 (en)

Also Published As

Publication number Publication date
JPS55109917U (en) 1980-08-01

Similar Documents

Publication Publication Date Title
US2178653A (en) Building-out unit
JPS5854744B2 (en) high voltage transformer
JPH02122410A (en) Thin film magnetic head
JPH03750Y2 (en)
JPH0218613B2 (en)
JPS6130331Y2 (en)
JPS5910044B2 (en) Communication transformer
JPH03805B2 (en)
US2454865A (en) Time-delay network
JPH058661Y2 (en)
JPS5919480Y2 (en) broadband transformer circuit
JPS60102709A (en) Impedance converting transformer
JPS5934115Y2 (en) Delay line
JPS637010B2 (en)
KR820002126B1 (en) Input transformer arrangement for use in a television receiver
SU1636871A1 (en) Noise filter
SU788182A1 (en) Strip-type wire
JPS6114180Y2 (en)
JP2514673Y2 (en) Winding for transformer
JPH056804B2 (en)
KR200341465Y1 (en) The wideband multi-tap transformer for impedance matching
JPH0154842B2 (en)
JPS6036897Y2 (en) electromagnetic delay line
JPS5938734Y2 (en) Balanced unbalanced conversion transformer
JPS6117168B2 (en)