JPH0375064A - Artificial dialytic device - Google Patents

Artificial dialytic device

Info

Publication number
JPH0375064A
JPH0375064A JP1211748A JP21174889A JPH0375064A JP H0375064 A JPH0375064 A JP H0375064A JP 1211748 A JP1211748 A JP 1211748A JP 21174889 A JP21174889 A JP 21174889A JP H0375064 A JPH0375064 A JP H0375064A
Authority
JP
Japan
Prior art keywords
tank
metering
water
dialysate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1211748A
Other languages
Japanese (ja)
Inventor
Akihiro Suga
菅 章宏
Masahito Amamiya
雨宮 正仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1211748A priority Critical patent/JPH0375064A/en
Publication of JPH0375064A publication Critical patent/JPH0375064A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE:To simplify a metering mechanism for a removal water amount with a single metering tank by guiding removal water straight into the metering tank to be stored, at the time of metering the removal water amount, and accumulating inflow removal water temporarily in a buffer tank at the time of discharging liquid in the removal water tank. CONSTITUTION:For instance, when valves V4 and V7 are opened with valves V5 and V6 closed, removal water, fed by a pump P3a, is guided to the first metering tank 8a, and liquid in the second metering tank 8b is discharged. When a removal water amount in the first metering tank 8a reaches a liquid level sensor LA2 from a liquid sensor LA1, the valves V5 and V6 are opened with the valves V4 and V7 closed, and the removal water from the pump P3a is guided to the second metering tank 8b with liquid in the first metering tank 8a discharged. Thus by alternately placing the removal water amount in the two metering tanks, the total removal water amount is metering- calculated from a number of alternation times in a metering arithmetic circuit 9. A metering tank 80 is connected in series to a buffer tank BT through a valve V8, and because the inflow removal water can be temporarily accumulated in the buffer tank BT at the time of discharging liquid in the metering tank, the removal water amount can be metered interruptedly while continuously removing water.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明′は、ダイアライザの透析液回路の出口側に設け
られたバイパス回路における除水量の計量を行うことが
できる人工透析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention' relates to an artificial dialysis apparatus capable of measuring the amount of water removed in a bypass circuit provided on the outlet side of a dialysate circuit of a dialyzer.

〈従来の技術〉 この種の従来の技術としては、例えば、第4図の人工透
析装置の概要ブロック構成図に示すような人工透析装置
が公知である(例えば特開昭63−99870号公報参
照)。
<Prior art> As a conventional technology of this kind, an artificial dialysis apparatus as shown in the schematic block diagram of an artificial dialysis apparatus in FIG. ).

第4図において、チューブ状の膜2aで内室2bと外室
2Cに仕切られていて夫々に血液と透析液が反対方向に
流されるダイアライザ2には、その血液側入口2b+に
は患者1から取出した血液を送検するために設けられた
ポンプPOによる送検血液が流れる血液回路3aが接続
され、一方血液側出口2b2は患者1へ透析後の血液を
戻す為の血液回路3bが接続されている。又、ダイアラ
イザ2の透析液側入口2c、には、定流量の透析液を送
液する第1のポンプP + +入口開通析液回路に流れ
る透析液流量を検出するために設けられたオリフィス6
a及び常時開のパルプ、バルブV1が設けられ他透析液
回路4aが接続される。一方、透析液側出口2C2には
、チエツクバルブCV(t&述する第5図のようにバル
ブ■3を用いても良い〉、第2のポンプP 2 +及び
出口側透析液回路4bに流れる透析液流量を検出するた
めに設けられたオリフィス6bが設けられた透析液回路
4bと、第3のポンプP3が設けられた透析液バイパス
回路4Cが接続される。透析液回路4a、 4bとを接
続する回路上に常時閉のバルブ■2が設けられる。そし
て、オリフィス6aの上流側圧7L、下流側圧M2及び
オリフィス6bの上流測圧M3.下流開圧M4の検出圧
力は圧力測定部5に導かれ、M、とM2の差から入口側
の透析液回路4aの流量が求められ、M、とM4の差か
ら出口側の透析液回路4bの流量が求められる。
In FIG. 4, the dialyzer 2 is partitioned into an inner chamber 2b and an outer chamber 2C by a tube-shaped membrane 2a, and blood and dialysate flow in opposite directions in each chamber. A blood circuit 3a is connected to which the blood to be sampled flows by a pump PO provided for sending the extracted blood to the test, while a blood circuit 3b for returning blood after dialysis to the patient 1 is connected to the blood side outlet 2b2. . Further, at the dialysate side inlet 2c of the dialyzer 2, there is an orifice 6 provided in order to detect the flow rate of the dialysate flowing into the first pump P + + inlet opening analysis liquid circuit which sends a constant flow rate of dialysate.
A and a normally open pulp valve V1 are provided, and another dialysate circuit 4a is connected. On the other hand, the dialysate side outlet 2C2 has a check valve CV (valve 3 may be used as shown in FIG. A dialysate circuit 4b provided with an orifice 6b provided for detecting the fluid flow rate is connected to a dialysate bypass circuit 4C provided with a third pump P3.The dialysate circuits 4a and 4b are connected. A normally closed valve 2 is provided on the circuit where the orifice 6a is operated, and the detected pressures of the upstream pressure 7L of the orifice 6a, the downstream pressure M2, the upstream pressure measurement M3 of the orifice 6b, and the downstream opening pressure M4 are led to the pressure measurement section 5. , M, and M2, the flow rate of the dialysate circuit 4a on the inlet side is determined, and the flow rate of the dialysate circuit 4b, on the outlet side, is determined from the difference between M and M4.

このような構成においては、ダイアライザ2の透析液側
出口2C2から供給透析液に血液から除水された水が加
わった量の排液が、透析液回路4b並びに透析液バイパ
ス回路4Cを通ってドレインされるが、この時透析液回
路4bを流れる排液流量は、M3とM4の差圧から求め
られる。第2のポンプP2が透析液回路4a、 4bに
流れる流量が一致するように、例えば破線で示されるよ
うに圧力測定部5で制御される時に、透析液バイパス回
路4Cを流れる排液量が血液から除水された水の量に対
応することとなるから、これを第3のポンプP3の回転
数から飼えば図示しない計量演算回路により求めること
ができる(即ち第3のポンプを計量ポンプとして用いる
)、言替えれば、この様な構成にあって所望の限外濾過
量を得るには、透析液回路4a、 4bの流量を一致さ
せつつ、透析液バイパス回路4Cを流れる流量が所望の
限外濾過量となるように第3のポンプP3を制御すれば
よいことになる。
In such a configuration, the drained fluid in an amount that is the sum of the supplied dialysate and the water removed from the blood from the dialysate side outlet 2C2 of the dialyzer 2 passes through the dialysate circuit 4b and the dialysate bypass circuit 4C and is drained. However, the flow rate of the drainage fluid flowing through the dialysate circuit 4b at this time is determined from the differential pressure between M3 and M4. When the second pump P2 is controlled by the pressure measuring unit 5, for example as shown by the broken line, so that the flow rates flowing into the dialysate circuits 4a and 4b match, the amount of waste fluid flowing through the dialysate bypass circuit 4C is equal to the amount of blood flowing through the dialysate bypass circuit 4C. Since this corresponds to the amount of water removed from the pump, it can be determined from the rotation speed of the third pump P3 using a metering calculation circuit (not shown) (i.e., the third pump is used as a metering pump). ), In other words, in order to obtain the desired amount of ultrafiltration with such a configuration, the flow rates of the dialysate circuits 4a and 4b must be matched while the flow rate of the dialysate bypass circuit 4C must be below the desired ultrafiltration rate. It is only necessary to control the third pump P3 so that the amount of filtration is achieved.

ところで、この第3のポンプの回転数から除水量を求め
ることとは別に更に正確を期するために、計量タンクに
よる計量方法がある。この計量方法による構成図を、第
5図の従来の計量タンクを用いて除水量を測定すること
ができる人工透析装置の概要構成図として示す、尚、第
4図と重複する部分は同一番号を付してその説明は省略
する。
By the way, in addition to determining the amount of water removed from the rotational speed of the third pump, there is a measuring method using a measuring tank in order to ensure further accuracy. A block diagram based on this measurement method is shown as a schematic block diagram of an artificial dialysis apparatus that can measure the amount of water removed using the conventional measuring tank shown in Figure 5.The parts that overlap with those in Figure 4 are designated by the same numbers. The explanation will be omitted.

第5図において、7a、 7bは透析液バイパス回路4
Cを流れる流量をポンプP3aで送出した後に計量のた
めに分岐して設けられた計量分岐バイパス回路(以下7
aを第1分岐回路、8bを第2分岐回路という)である
、そして、第1分岐回路7aにはバルブv4を介して第
1計量タンク8aが設けられ、第2分岐回路7bにはバ
ルブv6を介して第2計量タンク8bが設けられ、第1
計量タンク8aの排出液はパルプv5介し第2計量タン
ク8bの排出液はパルプV5介して後に合流する形で第
4図に基づけば出口側透析液回路4bを介して外部に排
出されることとなる。第1計量タンク8a内の液量は上
下に設けられた液位センサL^1 (下部液位検出)及
びL^2 (上部液位検出)間にて検出されその情報が
計量演算回路9に導かれる。又第2計量タンク8b内の
液量も同様に液位センサLB、  (下部液位検出)及
びLB2(上部液位検出)間にて検出されその情報が計
量演算回路9に導かれる。そして計量演算部において、
計量回数から除水総量を算出する。
In FIG. 5, 7a and 7b are dialysate bypass circuits 4.
After the flow rate flowing through C is sent out by pump P3a, a metering branch bypass circuit (hereinafter referred to as 7
a is called a first branch circuit, and 8b is called a second branch circuit), and the first branch circuit 7a is provided with a first metering tank 8a via a valve v4, and the second branch circuit 7b is provided with a valve v6. A second metering tank 8b is provided via the first metering tank 8b.
The liquid discharged from the measuring tank 8a passes through the pulp V5, and the liquid discharged from the second measuring tank 8b passes through the pulp V5 and later joins together, and based on FIG. 4, they are discharged to the outside via the dialysate circuit 4b on the outlet side. Become. The liquid level in the first measuring tank 8a is detected between the liquid level sensors L^1 (lower liquid level detection) and L^2 (upper liquid level detection) provided above and below, and the information is sent to the measuring calculation circuit 9. be guided. The amount of liquid in the second metering tank 8b is similarly detected between the liquid level sensors LB, (lower liquid level detection) and LB2 (upper liquid level detection), and the information is led to the metering calculation circuit 9. Then, in the metric calculation section,
Calculate the total amount of water removed from the number of measurements.

このような構成において、例えばバルブV4及びV7が
開(第5図においてはパルプの色を塗潰した形で表示す
る。他のパルプについても同様とする)、バルブV5及
びv6が閉とすると、ポンプP3’aLにより送られて
くる除水は第1計量タンク8aに導かれることとになり
、第2計量タンク8b内の液は排出されることとなる。
In such a configuration, for example, if valves V4 and V7 are open (in FIG. 5, the pulp is shown in solid color. The same applies to other pulps), and valves V5 and V6 are closed. The water removed by the pump P3'aL will be guided to the first metering tank 8a, and the liquid in the second metering tank 8b will be discharged.

そして第1計量タンク8aにおいては、除水は液位セン
サLA、からLA2となる迄の一定量が蓄積されていく
こととなる。そして除水量が液位センサLA2となると
、バルブv4〜V7及び第1.2計量タンク8a、 8
bにおける関係が逆転し、バルブv5及びV6が開、バ
ルブV4及びV7が閉となり、ポンプP3aからの除水
は第2計量タンク8bに導かれ、第1計量タンク8a内
の液は排出されることとなる。このように除水量は2つ
の計量タンクに交互に入れられることにより、計量演算
回路9においてはその回数から除水総量が計量算出され
ることとなる。尚、バルブの制御は、例えば計量演算回
路9にその制御a能を持たせることによってできるがこ
こではこの様な制御系統は省略した形で示しである。
In the first measuring tank 8a, a certain amount of removed water is accumulated from the liquid level sensor LA to LA2. When the amount of water removed reaches the liquid level sensor LA2, the valves v4 to V7 and the 1.2 measuring tanks 8a and 8
The relationship in b is reversed, valves v5 and V6 are opened, valves V4 and V7 are closed, the water removed from pump P3a is guided to the second metering tank 8b, and the liquid in the first metering tank 8a is discharged. That will happen. In this way, the amount of water removed is alternately put into the two measuring tanks, so that the measurement calculation circuit 9 calculates the total amount of water removed from the number of times. The valves can be controlled by, for example, providing the metering calculation circuit 9 with the control function, but such a control system is omitted here.

〈発明が解決しようとする問題点〉 この様な従来の技術にあっては、第5図に示す用に、ブ
ルブv4〜v7.第1,2計量タンク8a。
<Problems to be Solved by the Invention> In such a conventional technique, as shown in FIG. First and second measuring tanks 8a.

8b及びこれの前後に用いられる配管系統の数等と計量
に係わる部分が多くなるために製作過程が複雑化するた
めに組立て工数が掛かり、且つ装置が大型化する上から
コストアップの原因ともなり、又メンテナンスも繁雑と
なる等各種の問題点があった。
8b and the number of piping systems used before and after this, as well as the parts related to measurement, complicate the manufacturing process, requiring more man-hours for assembly, and increase the size of the device, which also causes an increase in costs. In addition, there were various problems such as complicated maintenance.

本発明は、従来の技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、バッ
ファタンクを用いることにより計量タンクを1つとして
、除水量の計量タンクを用いた計量機構の簡略化を図4
た人工透析装置を提供するものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to use a buffer tank as one measuring tank, and to use a measuring tank for the amount of water removed. Figure 4 shows the simplification of the weighing mechanism.
The present invention provides an artificial dialysis device.

く課題を解決するための手段〉 上記目的を達成するために、本発明は、透析膜を隔てて
血液と透析液とが流されるダイアライブ、該ダイアライ
ザの透析液側入口及び透析液側出口に夫々接続された透
析液回路、及び前記透析液側出口に接続される透析液回
路から分岐して設けられたバイパス回路を有し、該バイ
パス回路に流れる液量を除いて前記透析液側出口に接続
される透析液回路に流れる流量と前記透析液側入口に接
続される透析液回路に流れる流量が一致するように制御
することにより前記バイパス回路に流れる液lから前記
ダイアライザで除去する除水量を計量するように構成し
た人工透析装置において、前記バイパス回路上に設けら
れて後部に設置するバッファタンクの除水量が最高にな
った場合においても十分な吐出圧を持つ除水ポンプと、
少なくとも1回分の後部に配置される計量タンクの上下
に設置された液位センサ間の計量容量が収容可能な構造
から成る前記バッファタンクの後部に配置されて閉動作
でバッファタン内に前記除水を貯蔵するように制御され
る後部に前記計量タンクが接続配置されるバルブと、前
記計量タンクの後部に#続装置されてその開閉動作によ
り該計量タンク内の除水状態の制御をするバルブと、を
具備し、除水量計量時にはストレートに前記計量タンク
内に除水を導き計量のための貯蔵を行い、計量タンク内
の液排出時には流入除水を一時的に前記バッファタンク
内に溜め、連続的に除水を行いながら且つ断続的に計量
をして除水総量を得ることを特徴とするものである。
Means for Solving the Problems> In order to achieve the above object, the present invention provides a dialyzer in which blood and dialysate flow through a dialysis membrane, a dialyzer inlet and outlet on the dialysate side. A bypass circuit is provided branching off from the dialysate circuit connected to the dialysate side outlet, and the dialysate circuit is connected to the dialysate side outlet. The amount of water removed by the dialyzer from the liquid l flowing into the bypass circuit is controlled so that the flow rate flowing into the connected dialysate circuit matches the flow rate flowing into the dialysate circuit connected to the dialysate side inlet. In an artificial dialysis apparatus configured to meter, a water removal pump provided on the bypass circuit and having sufficient discharge pressure even when the amount of water removed in a buffer tank installed at the rear reaches the maximum;
The water is removed into the buffer tank by closing the buffer tank, which is arranged at the rear of the buffer tank and has a structure capable of accommodating the measuring capacity between the liquid level sensors installed above and below the measuring tank which is arranged at the rear of the measuring tank for at least one batch. a valve connected to the rear portion of the metering tank and controlled to store water; and a valve connected to the rear portion of the metering tank and controlling the state of water removal in the metering tank by opening and closing the valve. When measuring the amount of water removed, the removed water is led straight into the measuring tank and stored for measurement, and when the liquid in the measuring tank is drained, the inflow removed water is temporarily stored in the buffer tank, and continuously This method is characterized in that the total amount of water removed is obtained by periodically removing water and measuring it intermittently.

く作用〉 除水ポンプ、バッファタンク及び計量タンクを一列に配
置し、バッファタンクと計量タンクとの間及び計量タン
クの後にバルブを配置した計量ラインの構造とし、この
時に、前記除水ポンプはバッファタンクの液位が最高に
なった場合に生ずるバッファータンクの内圧以上の十分
な吐出圧を持つように構成し、又前記バッファータンク
は少なくとも1回分の計量容量を収容できる位の容量を
具備することを条件として設計された物として、除水ポ
ンプの送液流量、バッファタンクからの流出流量及び計
量タンクからの排出流量と各部を結ぶ配管の管路抵抗を
加味した上で、流出流量を送液流量より十分大きくなる
ようにし且つ排出流量がバッファタンク内への送液流量
の流入量が1回の計量容量より十分少ない時間内に計量
タンク内の液が急速に排出されるように2つのバルブを
含む管路抵抗を十分低く設定する。このようにすること
により、計量タンクにおいて除水1計量時にはストレー
トに計量タンク内に除水が流入するようにでき、又、計
量タンク内の液の排出時には流入してくる除水を一時的
にバッファタンク内に溜めるようにすることで、連続的
に除水を行いながら且つ断続的に除水量の計量をするが
できるから、従来と変らない除水総量を計量することが
可能となる。
A water removal pump, a buffer tank, and a metering tank are arranged in a line, and a metering line has a structure in which valves are placed between the buffer tank and the metering tank and after the metering tank, and at this time, the water removal pump is connected to the buffer tank. The buffer tank should be configured to have a discharge pressure sufficient to exceed the internal pressure of the buffer tank that occurs when the liquid level of the tank reaches its maximum, and the buffer tank should have a capacity that can accommodate at least one measurement volume. As a product designed under the condition that Two valves are installed so that the liquid in the metering tank is sufficiently larger than the flow rate, and the liquid in the metering tank is rapidly discharged within a time period in which the inflow of the liquid sending flow into the buffer tank is sufficiently smaller than the one-time metering capacity. Set the conduit resistance including By doing this, it is possible to allow the removed water to flow straight into the measuring tank when measuring one removed water in the measuring tank, and to temporarily block the incoming removed water when discharging the liquid in the measuring tank. By storing the water in the buffer tank, it is possible to measure the amount of water removed intermittently while removing water continuously, making it possible to measure the total amount of water removed, which is the same as before.

以下、具体的に説明する。This will be explained in detail below.

〈実施例〉 実施例について図面を参照して説明する。<Example> Examples will be described with reference to the drawings.

尚、以下の図面において、第4図乃至第5図と重複する
部分は同一番号を付してその説明は省略する。
In the following drawings, parts that overlap with those in FIGS. 4 and 5 are given the same numbers, and their explanations will be omitted.

第1図は本発明の人工透析装置の具体的実施例であり主
として除水計量装置部分を示す図である。
FIG. 1 is a diagram showing a specific embodiment of the artificial dialysis apparatus of the present invention, mainly showing the water removal measuring device.

第2図は第1図の動作の説明に供する図である。FIG. 2 is a diagram for explaining the operation of FIG. 1.

第1図において、BTはバイパス回路4C上において除
水ポンプP30 aの後部に配置されたバッファタンク
、80はバッファタンクBTの後部に配置されてバルブ
V6を介してバッファタンクBTに直列接続された計量
タンク、■9はその開閉動作により計量タンク内に除水
を溜めるか又はこの溜められた除水を排出するかの制御
を司どるために設けられたバルブであり、ポンプP31
iL〜バルブVg迄がバイパス回路上に・−列に配置さ
れて除水量の計量をする計量ラインを形成する。そして
、この時の除水ポンプP、。aはバルブV8が“閉”の
状態においてバッファタンクBTの液位が最高になった
場合においても尚且つそれまでと同じ状態で送液動作が
機能するように、バッファタンク最高液位によって生ず
るバッファータンク内圧以上の十分な吐出圧を持つよう
に構成されている物を用いる必要がある。又バッファタ
ンクBTについては、少なくとも1回分の計量タンク8
0の液位センサLCT 、 LC2間の貯蔵容量である
計量容量を収容できる位の容積を有する構造となってい
る。更に、除水ポンプP3゜aの送液流量を91とし、
パブファタンクBTの流出流量を92とし、且つ、計量
タンク80の排出流量を93とした時、管路抵抗を加味
した上での流量条件は、 q 2 :> q 1               
・・・(1)とし、更に、排出流量q3はバッファタン
ク内への送液流量qlの流入量が1回の計量容量より十
分少ない時間内に計量タンク内の液が急速に排出される
ように、バルブVB、Vgを含む計量ラインの管路抵抗
は十分低く設定する。
In FIG. 1, BT is a buffer tank placed at the rear of the water removal pump P30a on the bypass circuit 4C, and 80 is placed at the rear of the buffer tank BT and connected in series to the buffer tank BT via a valve V6. The metering tank (■9) is a valve provided to control whether the removed water is stored in the metering tank or the collected removed water is discharged by its opening/closing operation, and the pump P31
The valves iL to Vg are arranged in rows on the bypass circuit to form a measuring line for measuring the amount of water removed. And the water removal pump P at this time. a is the buffer generated by the highest liquid level in the buffer tank so that even when the liquid level in the buffer tank BT reaches its maximum when valve V8 is "closed", the liquid feeding operation still functions in the same state as before. It is necessary to use a device configured to have a sufficient discharge pressure higher than the tank internal pressure. In addition, regarding the buffer tank BT, there is a measuring tank 8 for at least one batch.
The structure has a volume large enough to accommodate the measuring capacity which is the storage capacity between the liquid level sensors LCT and LC2. Furthermore, the liquid sending flow rate of the water removal pump P3゜a is set to 91,
When the outflow flow rate of the Pafa tank BT is 92 and the discharge flow rate of the metering tank 80 is 93, the flow rate condition after taking into account the pipe resistance is q 2 :> q 1
...(1), and furthermore, the discharge flow rate q3 is set such that the liquid in the metering tank is rapidly discharged within a time period in which the flow rate of liquid feeding flow rate ql into the buffer tank is sufficiently smaller than the metering capacity at one time. In addition, the pipe resistance of the metering line including valves VB and Vg is set to be sufficiently low.

このような構成において、計量動作は以下のようにして
行なわれる。この動作を第2図を併せて用いながら説明
する。
In such a configuration, the metering operation is performed as follows. This operation will be explained using FIG. 2 as well.

■:第1図に示すように、バルブV8が“開”でバルブ
V9が“閉”の状態に例えば計量演算回路(勿論能に装
置全体を制御するための制御回路を設けてそこからの制
御信号に応じて制御されるようにしてもよい)制御され
る。この状態においてポンプP30 aから送られてく
る除水液(送液流Jlq+)はバッファタンク8Tをそ
のまま通過して計量タンク80の内部に注入される。
■: As shown in Figure 1, when valve V8 is "open" and valve V9 is "closed," for example, a metering calculation circuit (of course, a control circuit for controlling the entire device) is installed, and control from there is performed. may be controlled in response to a signal). In this state, the water removing liquid (liquid feeding flow Jlq+) sent from the pump P30a passes through the buffer tank 8T as it is and is injected into the measuring tank 80.

■:計量タンク80において、注入される除水液は次第
に増していき、第2図<A)に示すように、上部の液位
センサLC2に達すると、バルブVBが“閉”に制御さ
れてその除水液の注入が止まり、バルブV11が“開”
の状態に制御される。この状態においてポンプP3゜a
から送られてくる除水液(送液流量q+)はバッファタ
ンクBTに注入を開始する(バッファタンク内液位は計
量タンク80の液位上昇に伴って多少上昇する)。
■: In the measuring tank 80, the water removal liquid injected gradually increases, and when it reaches the upper liquid level sensor LC2, the valve VB is controlled to "close" as shown in Fig. 2<A). The water removal liquid injection stops and valve V11 opens.
is controlled to the state of In this state, pump P3゜a
The water removal liquid (liquid feeding flow rate q+) that is sent from the buffer tank BT starts to be injected into the buffer tank BT (the liquid level in the buffer tank rises somewhat as the liquid level in the measuring tank 80 rises).

■ニ一方、計量タンク80においては注入された除水液
は第2図(B)に示すように急速に排出流量q、として
排水(排出)が行なわれる。
(2) On the other hand, in the metering tank 80, the injected water removal liquid is rapidly drained (discharged) at a discharge flow rate q, as shown in FIG. 2(B).

■:第2図(C)に示すように計量タンク80の除水液
が下部の液位センサ1.C1に達すると、バルブV、が
“閉”に制御され、バルブV8が“開”に制御される。
■: As shown in FIG. 2(C), the water removal liquid in the measuring tank 80 is at the lower level of the liquid level sensor 1. When C1 is reached, valve V is controlled to be "closed" and valve V8 is controlled to be "open".

この結果、バッファタンクBT内においては液位が上昇
し内圧も上昇しているからバッファタンク内からの流出
流量q2として急速に計量タンク80に流入を行うこと
となる。この時同時に送液流量qlも計量タンク80内
に流入することとなる。
As a result, the liquid level in the buffer tank BT rises and the internal pressure also rises, so that the liquid rapidly flows into the metering tank 80 as an outflow flow rate q2 from within the buffer tank. At this time, the liquid feeding flow rate ql also flows into the metering tank 80.

■:これに従い第2図(D)に示すように計量タンク8
0の液位は上昇を開始する。バッファタンク内からの流
出流産q2がほぼ無くなった後においてはく即ちバッフ
ァタンク内の液位があるレベルになると送液流量qlと
の関係でその排出が停止し逆に前記したように若干の上
昇が認められるようになる)送液流量qlにより計量タ
ンク80の液位は上昇を続けることとなる。そしてこの
上昇が第2図(E)に示すように上部の液位センサLC
2に達すると、以後前記■の動作となり、計量タンク8
0内の排出が行なわれる。以後この様な一連の動作が継
続されることとなる。
■: According to this, the measuring tank 8 is
The liquid level at 0 starts to rise. After the outflow miscarriage q2 from inside the buffer tank has almost disappeared, that is, when the liquid level in the buffer tank reaches a certain level, its discharge stops in relation to the liquid feeding flow rate ql, and conversely, as mentioned above, there is a slight rise. The liquid level in the metering tank 80 continues to rise due to the liquid feeding flow rate ql. This rise causes the upper liquid level sensor LC to rise as shown in Figure 2 (E).
When it reaches 2, the operation will be as shown in (■) above, and the measuring tank 8 will be
Ejection within 0 is performed. From then on, this series of operations will continue.

このようにすることにより、除水量計量時に計量タンク
80においてストレートに計量タンク内に除水が流入で
き、計量タンク内の液の排出時には流入してくる除水を
一時的にバッファタンク内に溜めるようにできることか
ら、連続的に除水を行いながら且つ断続的に除水量の計
量ができる。従って、従来と変らない除水総量の計量が
可能となる。
By doing this, the removed water can flow straight into the measuring tank 80 when measuring the amount of removed water, and when the liquid in the measuring tank is being discharged, the inflowing removed water can be temporarily stored in the buffer tank. Since it is possible to perform water removal continuously, the amount of water removed can be measured intermittently. Therefore, it is possible to measure the total amount of water removed, which is the same as before.

くその池の実施例〉 本発明は以上説明した構成及び動作に限定されるもので
はない0例えば、計量タンク内の溶液を急速に排出する
ためには以下のように、排出時に空気ボンダで計量タン
ク内を加圧するようにしてもよい。
Embodiment of Kunoike〉 The present invention is not limited to the configuration and operation described above. For example, in order to rapidly drain the solution in the measuring tank, the following method is used to measure the solution with an air bonder at the time of draining. The inside of the tank may be pressurized.

第3図(A)、(B)は本発明の他の実施例の説明に供
する図である。
FIGS. 3(A) and 3(B) are diagrams for explaining another embodiment of the present invention.

第3図(A)、(B)において、81は三方弁、82は
空気ポンプである。この様な構成としたことにより、 (1):計量タンク80に除水液が流入する時は三方弁
81は大気に開放されているのでその動作は第1図及び
第2図(C)の時と同様となる。
In FIGS. 3(A) and 3(B), 81 is a three-way valve and 82 is an air pump. With this configuration, (1): When the water removal liquid flows into the metering tank 80, the three-way valve 81 is open to the atmosphere, so its operation is as shown in Figures 1 and 2 (C). It will be the same as time.

(I+) :計量タンク80内の液を排出、する時は三
方弁81が切替わり、計量タンク80内が空気ポンプ8
2により加圧されることとなるから、計量タンク内の液
は更に前記第2図の時に説明したのよりも急速に排出さ
れることとなる。
(I+): When discharging the liquid in the measuring tank 80, the three-way valve 81 switches, and the air pump 8
Since the liquid in the metering tank is pressurized by 2, the liquid in the metering tank is further discharged more rapidly than described in FIG. 2 above.

〈発明の効果〉 本発明は、以上説明したように構成されているので、次
に記載するような効果を奏する。
<Effects of the Invention> Since the present invention is configured as described above, it produces the following effects.

■:バッファタンクと計量タンクが夫々直列に1つ配置
されることとなるので、計量タンクを2個並列に設置す
る構造に比較してバルブ数の減少や配管等が減少する等
部品点数の削減及び構成の簡略化がはかれることとなる
。このことは製造工程の軽減化やメンテナンス等の容易
化ともなる。
■: Since one buffer tank and one metering tank are placed in series, the number of parts is reduced, such as fewer valves and piping, compared to a structure in which two metering tanks are installed in parallel. And the configuration will be simplified. This also reduces the manufacturing process and facilitates maintenance.

■:ババル切替のシーケンスも単純となる。このことは
回路構成やこれに至る迄の設計製作の容易化ともなる。
■: The sequence of Babal switching is also simple. This also simplifies the circuit configuration and the design and manufacture up to this point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の人工透析装置の具体的実施例であり主
として除水計量装置部分を示す図、第2図は第1図の動
作の説明に供する図、第3図(A、)(B)は本発明の
その他の実施例を示す図、第4図は人工透析装置の概要
ブロック構成図、第5図は従来の計量タンクを用いて除
水量を測定することができる人工透析装置の概要構成図
である。 2・・・ダイアライザ、3a、 3b−・・血i回路、
4a、 4b・・・透析液回路、4c・・・バイパス回
路、5・・・圧力測定部、8a・・・第1計量タンク、
8b・・・第2計量タンク、80・・・計量タンク、B
T・・・バッファタンク内第 2 図 (D) 渉l (E)
Fig. 1 shows a specific embodiment of the artificial dialysis apparatus of the present invention, mainly showing the water removal measuring device part, Fig. 2 is a diagram used to explain the operation of Fig. 1, and Fig. 3 (A, ) ( B) is a diagram showing another embodiment of the present invention, FIG. 4 is a schematic block diagram of an artificial dialysis device, and FIG. 5 is a diagram of an artificial dialysis device that can measure the amount of water removed using a conventional measuring tank. It is a schematic configuration diagram. 2...Dializer, 3a, 3b-...Blood i circuit,
4a, 4b... Dialysate circuit, 4c... Bypass circuit, 5... Pressure measuring section, 8a... First measuring tank,
8b...Second measuring tank, 80...Measuring tank, B
T... Inside the buffer tank Figure 2 (D) Crossing (E)

Claims (1)

【特許請求の範囲】[Claims] 透析膜を隔てて血液と透析液とが流されるダイアライザ
、該ダイアライザの透析液側入口及び透析液側出口に夫
々接続された透析液回路、及び前記透析液側出口に接続
される透析液回路から分岐して設けられたバイパス回路
を有し、該バイパス回路に流れる液量を除いて前記透析
液側出口に接続される透析液回路に流れる流量と前記透
析液側入口に接続される透析液回路に流れる流量が一致
するように制御することにより前記バイパス回路に流れ
る液量から前記ダイアライザで除去する除水量を計量す
るように構成した人工透析装置において、前記バイパス
回路上に設けられて後部に設置するバッファタンクの除
水量が最高になった場合においても十分な吐出圧を持つ
除水ポンプと、少なくとも1回分の後部に配置される計
量タンクの上下に設置された液位センサ間の計量容量が
収容可能な構造から成る前記バッファタンクの後部に配
置されて閉動作でバッファタン内に前記除水を貯蔵する
ように制御される後部に前記計量タンクが接続配置され
るバルブと、前記計量タンクの後部に接続配置されてそ
の開閉動作により該計量タンク内の除水状態の制御をす
るバルブと、を具備し、除水量計量時にはストレートに
前記計量タンク内に除水を導き計量のための貯蔵を行い
、計量タンク内の液排出時には流入除水を一時的に前記
バッファタンク内に溜め、連続的に除水を行いながら且
つ断続的に計量をして除水総量を得ることを特徴とする
人工透析装置。
A dialyzer through which blood and dialysate flow across a dialysis membrane, a dialysate circuit connected to a dialysate side inlet and a dialysate side outlet of the dialyzer, and a dialysate circuit connected to the dialysate side outlet. It has a bypass circuit provided in a branched manner, and the flow rate flowing to the dialysate circuit connected to the dialysate side outlet and the dialysate circuit connected to the dialysate side inlet except for the amount of liquid flowing to the bypass circuit. In an artificial dialysis apparatus configured to measure the amount of water removed by the dialyzer from the amount of liquid flowing into the bypass circuit by controlling the flow rates so that the flow rates match, the dialyzer is provided on the bypass circuit and installed at the rear. The metering capacity between the water removal pump, which has sufficient discharge pressure even when the amount of water removed from the buffer tank is at its maximum, and the liquid level sensors installed above and below the metering tank located at the rear of the tank for at least one a valve disposed at the rear of the buffer tank having a structure capable of accommodating the metering tank; It is equipped with a valve that is connected to the rear part and controls the state of water removal in the measuring tank by its opening/closing operation, and when measuring the amount of water removed, the removed water is led straight into the measuring tank and stored for measurement. and when the liquid in the measuring tank is discharged, the inflow removed water is temporarily stored in the buffer tank, and the total amount of removed water is obtained by continuously removing water and measuring intermittently. Dialysis machine.
JP1211748A 1989-08-17 1989-08-17 Artificial dialytic device Pending JPH0375064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211748A JPH0375064A (en) 1989-08-17 1989-08-17 Artificial dialytic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211748A JPH0375064A (en) 1989-08-17 1989-08-17 Artificial dialytic device

Publications (1)

Publication Number Publication Date
JPH0375064A true JPH0375064A (en) 1991-03-29

Family

ID=16610932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211748A Pending JPH0375064A (en) 1989-08-17 1989-08-17 Artificial dialytic device

Country Status (1)

Country Link
JP (1) JPH0375064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206651A1 (en) 2014-04-21 2015-10-22 Denso Corporation VEHICLE SUPPORT DEVICE FOR EXECUTING COLLISION PREVENTIVE OPERATIONS ON THE BASIS OF A POSITION AND A MOTION CONDITION OF A TARGET OBJECT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206651A1 (en) 2014-04-21 2015-10-22 Denso Corporation VEHICLE SUPPORT DEVICE FOR EXECUTING COLLISION PREVENTIVE OPERATIONS ON THE BASIS OF A POSITION AND A MOTION CONDITION OF A TARGET OBJECT

Similar Documents

Publication Publication Date Title
US5808181A (en) Method for testing a filter in a dialysis system
JP4221156B2 (en) Method and apparatus for detecting the presence of a leak in a system in which fluid is flowing
EP0298587B1 (en) Improved flow measurement system
JPH0518589B2 (en)
CN101193670A (en) Method for the air bubble-free filling of the blood-containing end of a hemodialyzer with a physiological electrolyte solution
JP2018027205A (en) Blood purification device
WO1988005526A1 (en) Flow measuring device
JPH0375064A (en) Artificial dialytic device
CN108712917A (en) The method of equipment and operation for the equipment of external haemodialysis for external haemodialysis
JPH03103266A (en) Device and method for measuring ultrafiltration in artificial kidney
CN109395588A (en) Peritoneal dialysis liquid online generating means dialysate filter device integrity testing system
CN108066836A (en) Flow and the hemodialysis system of Filtration Control are realized using weight balancing
JP3933512B2 (en) Hemodialysis machine
CN209348434U (en) Peritoneal dialysis liquid online generating means dialysate filter device integrity testing system
CN208596045U (en) A kind of dialyzer Performance Appraisal System
JP2769514B2 (en) Water removal control device for hemodialysis machine
JPH07248290A (en) Leak detector at time of damage of membrane in membrane filter apparatus
JPS5937959A (en) Ultrafiltration amount measuring apparatus
CN110736503A (en) continuous gas measuring device
CN218766056U (en) Concentration polarization testing device
CN219758070U (en) Water quality detection equipment with self-cleaning bubble removing function
JPS63234974A (en) Water removing amount control apparatus of dialytic apparatus
JPS5848618Y2 (en) Suspension concentration measuring device
JPH0630201Y2 (en) Water removal controller for hemodialysis machine
JPS61203971A (en) Water removing and stopping apparatus in blood dialysis