JPH0375033B2 - - Google Patents

Info

Publication number
JPH0375033B2
JPH0375033B2 JP60274431A JP27443185A JPH0375033B2 JP H0375033 B2 JPH0375033 B2 JP H0375033B2 JP 60274431 A JP60274431 A JP 60274431A JP 27443185 A JP27443185 A JP 27443185A JP H0375033 B2 JPH0375033 B2 JP H0375033B2
Authority
JP
Japan
Prior art keywords
weight
valve plate
epoxy resin
valve
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60274431A
Other languages
Japanese (ja)
Other versions
JPS62134257A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60274431A priority Critical patent/JPS62134257A/en
Publication of JPS62134257A publication Critical patent/JPS62134257A/en
Publication of JPH0375033B2 publication Critical patent/JPH0375033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Check Valves (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は内燃機関などの吸気制御に使用するリ
ードバルブ用の改良された弁板に関するものであ
る。さらに詳しくいえば、本発明は、エンジンの
高速運転における追従性を損うことなく、使用耐
久性の改良された繊維強化プラスチツク製リード
バルブ用弁板に関するものである。 従来の技術 2サイクルエンジンなどの内燃機関には通常吸
気制御用のリードバルブが設けられており、この
リードバルブに用いられる弁板は、エンジンの性
能を向上させるためには、高い固有振動数を有す
ることが必要である。 従来、前記リードバルブ用弁板として、金属製
弁板が用いられていたが、このものは、厚みを増
して固有振動数を高めようとすると、開弁抵抗も
増加して、リードバルブが開きにくくなるなど、
追従性が悪くなるという欠点があつた。これに対
し、繊維強化プラスチツク製弁板は、前記金属製
弁板に比べて、同厚み、同サイズの場合、比弾性
率(弾性率/比重)が大きくて、エンジンの高速
運転における追従性がよいという特徴を有するこ
とから、近年該金属製弁板に変わつて広く用いら
れてきている。この繊維強化プラスチツク製リー
ドバルブ用弁板としては、例えば補強用繊維を一
方向に配列させ、これにプラスチツクを含浸させ
たシートと、該繊維によるクロス織にプラスチツ
クを含浸させた布織シートとを一体化した複合材
から成るものが知られている(実開昭57−63162
号公報)。 発明が解決しようとする問題点 しかしながら、これまでの繊維強化プラスチツ
ク製リードバルブ用弁板においては、プレス加工
や打抜きあるいは切削加工時に、繊維とプラスチ
ツク間に微小な不完全接着部や剥離部が生じやす
く、運転中にこの不完全接着部や剥離部からさら
に亀裂や剥離が進行して破損を生じ、また、たと
えプレス加工や打抜きあるいは切削加工時に該不
完全接着部や剥離部が生じなくても、長期間運転
すると、亀裂や内部層間の剥離を生じて破損する
など、耐久性に問題があつた。 したがつて、より長期間にわたつて使用しうる
耐久性の優れた繊維強化プラスチツク製リードバ
ルブ用弁板の開発が望まれていた。 本発明の目的はこのような要望にこたえ、エン
ジンの高速運転における追従性を損うことなく、
使用耐久性の改良された繊維強化プラスチツク製
リードバルブ用弁板を提供することにある。 問題点を解決するための手段 本発明者らは鋭意研究を重ねた結果、特定の共
重合体を所定量含有する硬化性エポキシ樹脂組成
物と強化用繊維との熱硬化成形体から成るものが
前記目的に適合しうることを見出し、この知見に
基づいて本発明を完成するに至つた。 すなわち、本発明は、(A)両末端にカルボキシル
基を有するブタジエン−アクリロニトリル共重合
体を組成物全量当り5〜50重量%含有する硬化性
エポキシ樹脂組成物と、(B)強化用繊維との熱硬化
成形体から成るリードバルブ用弁板である。 本発明のリードバルブ用弁板に(A)成分として用
いられる硬化性エポキシ樹脂組成物は(イ)エポキシ
樹脂、(ロ)両末端にカルボキシル基を有するブタジ
エン−アクリロニトリル共重合体及び(ハ)硬化剤を
含有し、かつ(ロ)成分の含有量が該組成物に対し5
〜50重量%の範囲にあるものである。 前記(イ)成分のエポキシ樹脂については特に制限
はなく、通常グリシジルアミン系エポキシ樹脂、
ノボラツク系エポキシ樹脂、ビスフエノールA系
エポキシ樹脂、ウレタン変性ビスフエノールA系
エポキシ樹脂、脂環式エポキシ樹脂などが用いら
れるが、特にグリシジルアミン系エポキシ樹脂、
ノボラツク系エポキシ樹脂及びビスフエノールA
系エポキシ樹脂が好適である。これらのエポキシ
樹脂はそれぞれ単独で用いてもよいし、2種以上
組み合わせて用いてもよい。 (ロ)成分の両末端にカルボキシル基を有するブタ
ジエン−アクリロニトリル共重合体は、通常アク
リロニトリル単位15〜30重量%及びカルボキシル
基2〜3重量%を含有し、かつ27℃の温度におけ
る粘度が100000〜700000cpsの範囲にあるものが
用いられる。このようなものとしては、例えばハ
イカーCTBN1300×8、同CTBN1300×9、同
CTBN1300×13、同CTBN1300×15(いずれも商
品名でザ・ビー・エフ・グツドリツチケミカル社
製)などが市販されている。 この両末端にカルボキシル基を有するブタジエ
ン−アクリロニトリル共重合体は、例えば特公昭
43−28474号公報に記載されている方法に従い、
第三ブタノール中、アゾジシアノ吉草酸の存在下
でブタジエンとアクリロニトリルを共重合させる
ことによつて製造することができる。 本発明においては、前記の両末端にカルボキシ
ル基を有するブタジエン−アクリロニトリル共重
合体は、硬化性エポキシ樹脂組成物中に5〜50重
量%好ましくは10〜40重量%の割合で含有させる
ことが必要である。この量が5重量%未満では耐
久性に劣り、一方50重量%を超えるとエンジン効
率が低くなる。 また、(ハ)成分の硬化剤については、エポキシ樹
脂硬化用のものであれば特に制限はなく、例えば
公知のアミン系、酸無水物系、フエノール系、ア
ミド系、イミダゾール系、BF3アミンコンプレツ
クス系などの硬化剤が用いられる。これらの硬化
剤は通常単独で用いてもよいが、所望の硬化時間
で硬化させるために、硬化促進剤として、例えば
イミダゾール系、BF3アミンコンプレツクス系、
第三級アミン系のものやジシアンジアミドなどと
併用してもよい。 これらの(イ)成分、(ロ)成分及び(ハ)成分を用いて(A
)
成分のエポキシ樹脂組成物を製造する好適な方法
の1例について説明すると、まず(ロ)成分のカルボ
キシル基に対して、(イ)成分のエポキシ基が2当量
以上なるように(イ)成分の一部と(ロ)成分とを反応さ
せ、次いでこの反応物に残りの(イ)成分と(ハ)成分と
を配合することによつて、該エポキシ樹脂組成物
が得られる。 本発明のリードバルブ用弁板において(B)成分と
して用いる強化用繊維としては、炭素繊維、ボロ
ン繊維、ガラス繊維などの無機繊維や、アラミド
繊維、全芳香族ポリエステル繊維などの有機繊維
が挙げられるが、これらの中で特に炭素繊維が好
適である。 次に、本発明のリードバルブ用弁板の好適な製
造方法の1例について説明すると、まず前記のよ
うにして硬化性エポキシ樹脂組成物を調製したの
ち、これを例えばアセトン、メチルエチルケト
ン、メチルセロソルブなどの溶剤に溶かして溶液
状となし、次いでこの溶液を前記強化繊維に含浸
させ、80〜130℃の温度で乾燥、半硬化してプリ
プレグシートを作成したのち、このプリプレグシ
ートを重ね合わせプレスで加圧し、120〜150℃の
温度で加熱硬化させて厚さ0.3mm程度の積層板と
し、次に該積層板を切削加工により、所望形状の
弁板、例えば第1図に示すような形状のリードバ
ルブ用弁板を作成する。 前記プリプレグシートを作成する際の強化用繊
維の形態としては、一方向にシート状に配列させ
たもの、平織織物、朱子織織物、不織布などがあ
るが、本発明においては、一方向にシート状に配
列させたものから成るプリプレグシートと、平織
織物、朱子織織物、不織布などから成るプリプレ
グシートとを組み合わせて積層板を作成するのが
好ましい。なお、一方向にシート状に繊維を配列
させたものを用いる場合、第1図に示すA−A方
向に繊維が配向されるように配置するのが望まし
い。 また、プリプレグシート中の強化用繊維の含有
量は通常40〜70体積%、好ましくは50〜65体積%
の範囲で選ばれる。 このようにして得られた弁板は、例えば2サイ
クルガソリンエンジンなどのリードバルブに取付
け使用される。 発明の効果 本発明のリードバルブ用弁板は繊維強化プラス
チツクから成るものであつて、マトリツクス樹脂
として両末端にカルボキシル基を有するブタジエ
ン−アクリロニトリル共重合体を特定量含有する
硬化性エポキシ樹脂組成物を用いているので、該
組成物と強化用繊維との間の親和性や接着性が優
れていて、エンジンの高速運転における追従性を
損うことなく、使用耐久性が従来品に比べて改良
された実用的価値の高いものである。また、弁板
作成工程における打抜きあるいは切削加工時に、
微小な亀裂が打抜きあるいは切削部に発生しにく
く、このことも該弁板の使用耐久性の改良に寄与
している。 実施例 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 ビスフエノールA系エポキシ樹脂エピコート
828(油化シエルエポキシ社製)75重量部、同エピ
コート1001(油化シエルエポキシ社製)10重量部、
ノボラツク系エポキシ樹脂エピコート154(油化シ
エルエポキシ社製)10重量部、カルボキシル当量
約1500のハイカーCTBN1300×9(ザ・ビー・エ
フ・グツドリツチケミカル社製)12重量部とエポ
キシ当量約190のエピコート828 5重量部との反
応物及び2−エチル−3−シアノエチル−4−メ
チルイミダゾール5重量部をメチルエチルケトン
に溶解し、両末端にカルボキシル基を有するブタ
ジエン−アクリロニトリル共重合体10重量%を含
有する硬化性エポキシ樹脂組成物の40重量%溶液
を調製した。次いで、この溶液を一方向に配列し
た炭素繊維シートに含浸させたのち、120℃で乾
燥、半硬化して樹脂分45体積%、厚み0.1mmのプ
リプレグシートを作成した。また、炭素繊維の平
織織物を用い、前記と同様にして樹脂分45体積
%、厚み0.1mmのプリプレグシート2枚を作成し
た。 次いで、第2図に示すように2枚の炭素繊維平
織織物プリプレグシートの間に炭素繊維を一方向
に配列したプリプレグシートを介在させて3層と
し、130℃で加圧加熱硬化して、厚み0.28mmの積
層板を作成したのち、この積層板を切削して、第
1図に示すようなリードバルブ用弁板を作成し
た。この弁板の端面を拡大鏡にて観察したが亀裂
は認められなかつた。 次に、このようにして得られた弁板の実装テス
トを以下に示すようにして行つた。 2サイクルのガソリンエンジンを備えた発電機
の出力側に小型ボイラーを接続した装置を準備
し、前記弁板をエンジンのリードバルブに取付け
て100時間の高速運転を行い、その間における蒸
気発生量を測定するとともに、100時間運転後の
弁板を取外し、該弁板の損傷(亀裂など)の発生
状況をチエツクした。これらの結果を別表に示
す。 実施例 2 エピコート828 55重量部、エピコート1001 10
重量部、エピコート154 10重量部、ハイカー
CTBN1300×9 70重量部とエピコート828 25
重量部との反応生成物及び2−エチル−3−シア
ノエチル−4−メチルイミダゾール5重量部を用
い、両末端にカルボキシル基を有するブタジエン
−アクリロニトリル共重合体40重量%を含有する
硬化性エポキシ樹脂組成物の40重量%メチルエチ
ルケトン溶液を調製し、以下実施例1と同様にし
てリードバルブ用弁板を作成し、実装テストを行
つた。その結果を別表に示す。 また、この弁板の端面を拡大鏡にて観察したが
亀裂は認められなかつた。 比較例 1 実施例1において、エピコート828の量を80重
量部に変え、かつ両末端にカルボキシル基を有す
るブタジエン−アクリロニトリル共重合体を用い
ないこと以外は、実施例1と全く同様にしてリー
ドバルブ用弁板を作成し、実装テストを行つた。
その結果を別表に示す。 また、弁板の端面を拡大鏡にて観察したとこ
ろ、微小な亀裂が認められた。 比較例 2 エピコート828 25重量部、エピコート1001 10
重量部、エピコート154 10重量部、ハイカー
CTBN1300×9 160重量部とエピコート828 55
重量部との反応物及び2−エチル−3−シアノエ
チル−4−メチルイミダゾール5重量部を用い、
両末端にカルボキシル基を有するブタジエン−ア
クリロニトリル共重合体60重量%を含有する硬化
性エポキシ樹脂組成物の40重量%メチルエチルケ
トン溶液を調製し、以下実施例1と同様にしてリ
ードバルブ用弁板を作成し、実装テストを行つ
た。その結果を別表に示す。 また、この弁板の端面を拡大鏡にて観察した
が、亀裂は認められなかつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to an improved valve plate for a reed valve used for intake control in internal combustion engines and the like. More specifically, the present invention relates to a valve plate for a reed valve made of fiber-reinforced plastic that has improved durability in use without impairing followability during high-speed engine operation. Prior Art Internal combustion engines such as two-stroke engines are usually equipped with a reed valve for intake control, and the valve plate used in this reed valve must have a high natural frequency in order to improve engine performance. It is necessary to have Conventionally, a metal valve plate has been used as the valve plate for the reed valve, but if you try to increase the thickness of this plate to increase the natural frequency, the opening resistance will also increase, making it difficult for the reed valve to open. For example, it becomes difficult to
There was a drawback that followability deteriorated. On the other hand, fiber-reinforced plastic valve plates have a higher specific elastic modulus (elastic modulus/specific gravity) than the metal valve plates when they have the same thickness and size, and have poor followability during high-speed engine operation. Due to its favorable characteristics, it has recently been widely used in place of the metal valve plate. This fiber-reinforced plastic reed valve plate may be made of, for example, a sheet in which reinforcing fibers are arranged in one direction and impregnated with plastic, and a cloth sheet in which a cross-woven fabric made of the fibers is impregnated with plastic. One made of an integrated composite material is known (Utility Model No. 57-63162
Publication No.). Problems to be Solved by the Invention However, in conventional valve plates for reed valves made of fiber-reinforced plastic, small imperfectly bonded parts or peeled parts occur between the fibers and the plastic during pressing, punching, or cutting. During operation, cracks and peeling progress further from these incompletely bonded areas and peeled areas, causing damage.Also, even if these incompletely bonded areas and peeled areas do not occur during press working, punching, or cutting. However, when operated for a long period of time, there were problems with durability, such as cracks and peeling between internal layers, resulting in damage. Therefore, it has been desired to develop a valve plate for a reed valve made of fiber-reinforced plastic that has excellent durability and can be used for a longer period of time. The purpose of the present invention is to meet these demands, and to achieve this without impairing the followability of the engine during high-speed operation.
To provide a valve plate for a reed valve made of fiber-reinforced plastic with improved durability in use. Means for Solving the Problems As a result of extensive research, the present inventors have discovered a thermosetting molded product of a curable epoxy resin composition containing a predetermined amount of a specific copolymer and reinforcing fibers. It was discovered that the above object could be met, and based on this knowledge, the present invention was completed. That is, the present invention comprises (A) a curable epoxy resin composition containing 5 to 50% by weight of a butadiene-acrylonitrile copolymer having carboxyl groups at both ends, and (B) reinforcing fibers. This is a valve plate for a reed valve made of a thermoset molded body. The curable epoxy resin composition used as component (A) in the valve plate for reed valves of the present invention is (a) an epoxy resin, (b) a butadiene-acrylonitrile copolymer having carboxyl groups at both ends, and (c) curing. and the content of component (b) is 5% relative to the composition.
~50% by weight. There are no particular restrictions on the epoxy resin of component (a), and it is usually a glycidylamine-based epoxy resin,
Novolac type epoxy resin, bisphenol A type epoxy resin, urethane modified bisphenol A type epoxy resin, alicyclic epoxy resin, etc. are used, but especially glycidylamine type epoxy resin,
Novolak epoxy resin and bisphenol A
epoxy resins are preferred. These epoxy resins may be used alone or in combination of two or more. The butadiene-acrylonitrile copolymer having carboxyl groups at both ends of component (b) usually contains 15 to 30% by weight of acrylonitrile units and 2 to 3% by weight of carboxyl groups, and has a viscosity of 100,000 to 100,000 at a temperature of 27°C. Anything in the range of 700,000 cps is used. Examples of such items include Hiker CTBN1300×8, Hiker CTBN1300×9, and Hiker CTBN1300×9.
CTBN1300×13 and CTBN1300×15 (both trade names manufactured by The B.F. Gutsudoritsuchi Chemical Co., Ltd.) are commercially available. This butadiene-acrylonitrile copolymer having carboxyl groups at both ends is, for example,
According to the method described in Publication No. 43-28474,
It can be produced by copolymerizing butadiene and acrylonitrile in the presence of azodicyanovaleric acid in tertiary butanol. In the present invention, the butadiene-acrylonitrile copolymer having carboxyl groups at both ends must be contained in the curable epoxy resin composition in an amount of 5 to 50% by weight, preferably 10 to 40% by weight. It is. If this amount is less than 5% by weight, durability will be poor, while if it exceeds 50% by weight, engine efficiency will be low. There are no particular restrictions on the curing agent for component (iii) as long as it is used for curing epoxy resins, such as known amine-based, acid anhydride-based, phenol-based, amide-based, imidazole-based, BF 3 amine complexes, etc. A curing agent such as Tux-based is used. These curing agents can usually be used alone, but in order to cure in a desired curing time, for example, imidazole type, BF 3 amine complex type, etc. can be used as a curing accelerator.
It may be used in combination with tertiary amine type products, dicyandiamide, etc. Using these components (a), (b) and (c), (A
)
To explain one example of a suitable method for producing the epoxy resin composition of component (B), first, component (B) is mixed so that the epoxy group of component (B) is 2 equivalents or more of the epoxy group of component (B). The epoxy resin composition is obtained by reacting a portion with component (B) and then blending the remaining components (A) and (C) with this reaction product. Examples of reinforcing fibers used as component (B) in the valve plate for reed valves of the present invention include inorganic fibers such as carbon fibers, boron fibers, and glass fibers, and organic fibers such as aramid fibers and wholly aromatic polyester fibers. However, among these, carbon fiber is particularly suitable. Next, one example of a preferred method for manufacturing the valve plate for a reed valve of the present invention will be described. First, a curable epoxy resin composition is prepared as described above, and then the curable epoxy resin composition is mixed with acetone, methyl ethyl ketone, methyl cellosolve, etc. This solution is then impregnated into the reinforcing fibers, dried at a temperature of 80 to 130°C, and semi-cured to create a prepreg sheet. This prepreg sheet is then processed using a stacking press. The laminate is pressed and heat-cured at a temperature of 120 to 150°C to form a laminate with a thickness of approximately 0.3 mm.The laminate is then cut into a valve plate of a desired shape, for example, a lead shaped as shown in Figure 1. Create a valve plate for the valve. Forms of the reinforcing fibers used in producing the prepreg sheet include those arranged in a sheet shape in one direction, plain weave fabrics, satin weave fabrics, nonwoven fabrics, etc., but in the present invention, reinforcing fibers arranged in a sheet shape in one direction, etc. It is preferable to create a laminate by combining a prepreg sheet made of a material arranged in the following manner with a prepreg sheet made of a plain weave fabric, a satin weave fabric, a nonwoven fabric, etc. In addition, when using one in which fibers are arranged in a sheet shape in one direction, it is desirable to arrange the fibers so that they are oriented in the direction AA shown in FIG. In addition, the content of reinforcing fibers in the prepreg sheet is usually 40 to 70% by volume, preferably 50 to 65% by volume.
selected within the range. The valve plate thus obtained is used, for example, by being attached to a reed valve in a two-stroke gasoline engine. Effects of the Invention The valve plate for a reed valve of the present invention is made of fiber-reinforced plastic, and contains a curable epoxy resin composition containing a specific amount of a butadiene-acrylonitrile copolymer having carboxyl groups at both ends as a matrix resin. Since the composition is used, the affinity and adhesion between the composition and reinforcing fibers are excellent, and the durability in use is improved compared to conventional products without impairing the followability during high-speed engine operation. It has high practical value. In addition, during punching or cutting in the valve plate creation process,
Microcracks are less likely to occur in the punched or cut portions, which also contributes to improved durability in use of the valve plate. Examples Next, the present invention will be explained in more detail with reference to Examples. Example 1 Bisphenol A-based epoxy resin Epicoat
828 (manufactured by Yuka Ciel Epoxy Co., Ltd.) 75 parts by weight, Epicote 1001 (manufactured by Yuka Ciel Epoxy Co., Ltd.) 10 parts by weight,
10 parts by weight of Novolac-based epoxy resin Epicoat 154 (manufactured by Yuka Ciel Epoxy Co., Ltd.), 12 parts by weight of Hiker CTBN 1300 x 9 (manufactured by The B.F. A reaction product with 5 parts by weight of Epicote 828 and 5 parts by weight of 2-ethyl-3-cyanoethyl-4-methylimidazole are dissolved in methyl ethyl ketone, and the mixture contains 10% by weight of a butadiene-acrylonitrile copolymer having carboxyl groups at both ends. A 40% by weight solution of a curable epoxy resin composition was prepared. Next, this solution was impregnated into a carbon fiber sheet arranged in one direction, and then dried and semi-cured at 120°C to create a prepreg sheet with a resin content of 45% by volume and a thickness of 0.1 mm. In addition, two prepreg sheets having a resin content of 45% by volume and a thickness of 0.1 mm were prepared in the same manner as described above using a carbon fiber plain-woven fabric. Next, as shown in Fig. 2, a prepreg sheet in which carbon fibers are arranged in one direction is interposed between two sheets of carbon fiber plain-woven fabric prepreg sheet to form three layers, and the prepreg sheet is cured under pressure and heat at 130°C to obtain a thickness. After creating a 0.28 mm laminated plate, this laminated plate was cut to create a valve plate for a reed valve as shown in Fig. 1. The end face of this valve plate was observed with a magnifying glass, but no cracks were observed. Next, a mounting test of the thus obtained valve plate was conducted as shown below. A device was prepared in which a small boiler was connected to the output side of a generator equipped with a two-stroke gasoline engine, the valve plate was attached to the reed valve of the engine, and high-speed operation was performed for 100 hours, during which time the amount of steam generated was measured. At the same time, the valve plate was removed after 100 hours of operation, and the occurrence of damage (cracks, etc.) on the valve plate was checked. These results are shown in the attached table. Example 2 Epicote 828 55 parts by weight, Epicote 1001 10
Parts by weight, Epicote 154 10 parts by weight, Hiker
CTBN1300×9 70 parts by weight and Epicote 828 25
A curable epoxy resin composition containing 40% by weight of a butadiene-acrylonitrile copolymer having carboxyl groups at both ends, using 5 parts by weight of the reaction product with 2-ethyl-3-cyanoethyl-4-methylimidazole. A 40% by weight methyl ethyl ketone solution was prepared, and a valve plate for a reed valve was prepared in the same manner as in Example 1, and a mounting test was conducted. The results are shown in the attached table. Furthermore, when the end face of this valve plate was observed using a magnifying glass, no cracks were observed. Comparative Example 1 A reed valve was produced in exactly the same manner as in Example 1, except that the amount of Epicote 828 was changed to 80 parts by weight, and the butadiene-acrylonitrile copolymer having carboxyl groups at both ends was not used. We created a valve plate for use and conducted a mounting test.
The results are shown in the attached table. Furthermore, when the end face of the valve plate was observed using a magnifying glass, minute cracks were observed. Comparative example 2 Epicote 828 25 parts by weight, Epicote 1001 10
Parts by weight, Epicote 154 10 parts by weight, Hiker
CTBN1300×9 160 parts by weight and Epicote 828 55
using the reaction product with parts by weight and 5 parts by weight of 2-ethyl-3-cyanoethyl-4-methylimidazole,
A 40% by weight methyl ethyl ketone solution of a curable epoxy resin composition containing 60% by weight of a butadiene-acrylonitrile copolymer having carboxyl groups at both ends was prepared, and a valve plate for a reed valve was prepared in the same manner as in Example 1. and conducted an implementation test. The results are shown in the attached table. Furthermore, when the end face of this valve plate was observed using a magnifying glass, no cracks were observed.

【表】 (注) 蒸気発生量:実施例1の蒸気発生量を
100として換算した値である。
この表から明らかなように、本発明のリードバ
ルブ用弁板は蒸気発生量が大きく、かつ使用耐久
性に優れていることが分かる。 なお、蒸気発生量が大きいことは、エンジンの
効率が大であることを意味し、エンジンの高速運
転における弁板の追従性が優れていることを意味
している。
[Table] (Note) Steam generation amount: Steam generation amount in Example 1
This is the value converted as 100.
As is clear from this table, it can be seen that the valve plate for a reed valve of the present invention generates a large amount of steam and has excellent durability in use. Note that a large amount of steam generation means that the efficiency of the engine is large, and that the followability of the valve plate during high-speed operation of the engine is excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のリードバルブ用弁板の1例の
平面図、第2図は第1図におけるA−A線断面図
の1例であり、図中符号1はリードバルブ用弁
板、2は固定用開口部、3は炭素繊維を一方向に
配列したシート部及び4は炭素繊維平織織物シー
ト部である。
FIG. 1 is a plan view of an example of a valve plate for a reed valve according to the present invention, and FIG. 2 is an example of a sectional view taken along the line A-A in FIG. 2 is a fixing opening, 3 is a sheet portion in which carbon fibers are arranged in one direction, and 4 is a carbon fiber plain weave fabric sheet portion.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)両末端にカルボキシル基を有するブタジエ
ン−アクリロニトリル共重合体を組成物全量当り
5〜50重量%含有する熱硬化性エポキシ樹脂組成
物と、(B)強化用繊維との熱硬化成形体から成るリ
ードバルブ用弁板。
1. A thermosetting molded product of (A) a thermosetting epoxy resin composition containing 5 to 50% by weight of a butadiene-acrylonitrile copolymer having carboxyl groups at both ends, based on the total amount of the composition, and (B) reinforcing fibers. Valve plate for reed valve consisting of.
JP60274431A 1985-12-06 1985-12-06 Valve plate for reed valve Granted JPS62134257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60274431A JPS62134257A (en) 1985-12-06 1985-12-06 Valve plate for reed valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60274431A JPS62134257A (en) 1985-12-06 1985-12-06 Valve plate for reed valve

Publications (2)

Publication Number Publication Date
JPS62134257A JPS62134257A (en) 1987-06-17
JPH0375033B2 true JPH0375033B2 (en) 1991-11-28

Family

ID=17541578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60274431A Granted JPS62134257A (en) 1985-12-06 1985-12-06 Valve plate for reed valve

Country Status (1)

Country Link
JP (1) JPS62134257A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412963B2 (en) 2003-10-10 2010-02-10 旭有機材工業株式会社 Plastic parts for valves

Also Published As

Publication number Publication date
JPS62134257A (en) 1987-06-17

Similar Documents

Publication Publication Date Title
Konur et al. Effect of the properties of the constituents on the fatigue performance of composites: A review
KR20190071696A (en) Prepreg laminate, fiber-reinforced composite material and method for producing fiber-reinforced composite material
CN101705922A (en) Large-scale composite material wind-power blade and preparation method thereof
JP2016534868A (en) Composite material bonding method
US4868050A (en) Interleaf-containing, fiber-reinforced epoxy resin prepreg
US20100068497A1 (en) Adhesion promoting layer for composite assemblies
JPH10330513A (en) Prepreg and fiber-reinforced composite material
CN101781444A (en) Method for preparing rare-earth-modified glass-fiber epoxy-resin composite materials
JPH0375033B2 (en)
JP2001114915A (en) Prepreg and fiber-reinforced composite material
JPS6129613B2 (en)
CN101838442A (en) Preparation method of rare earth modified glass fiber epoxy resin composite material
JP2543810B2 (en) Valve plate for lead valve
JPH09174765A (en) Composite molding
JPS61109977A (en) Fiber-reinforced plastic reed valve
JPH025979A (en) Golf club
JPH01129A (en) Interleaf-containing fiber-reinforced epoxy resin prepreg material
JPS5861343A (en) Leaf spring
JP3218075B2 (en) Prepreg
JPH08176325A (en) Prepreg and fiber-reinforced composite material
JPH08121996A (en) Light weight impact resistant material
CN206653705U (en) A kind of laminate with cracking resistance structure
KR930009294B1 (en) Interply-hybridized laminated material
JPS63115746A (en) Fiber-reinforced composite material molded form
JPH07227939A (en) Honeycomb cocuring molding method