JPH0374592A - Variable capacity compressor - Google Patents

Variable capacity compressor

Info

Publication number
JPH0374592A
JPH0374592A JP1161145A JP16114589A JPH0374592A JP H0374592 A JPH0374592 A JP H0374592A JP 1161145 A JP1161145 A JP 1161145A JP 16114589 A JP16114589 A JP 16114589A JP H0374592 A JPH0374592 A JP H0374592A
Authority
JP
Japan
Prior art keywords
vane
back pressure
control member
rotor
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1161145A
Other languages
Japanese (ja)
Other versions
JP2764864B2 (en
Inventor
Nobufumi Nakajima
中島 信文
Toshio Yamaguchi
利夫 山口
Yuji Kawashima
川島 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to US07/525,846 priority Critical patent/US5020976A/en
Priority to DE4016865A priority patent/DE4016865C2/en
Priority to KR1019900007622A priority patent/KR900018543A/en
Publication of JPH0374592A publication Critical patent/JPH0374592A/en
Application granted granted Critical
Publication of JP2764864B2 publication Critical patent/JP2764864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To prevent the chattering and the like of vanes by providing a control member for controlling the compression start timing by its rotation with back pressure lead-in holes to be communicated with vane grooves when the control member is in a partial operating position so as to lead vane back pressure in and block the lead-in of vane back pressure when the control member is in a busy position. CONSTITUTION:A variable capacity compressor is formed by enclosing a rotor 2, provided with plural vanes advancing/receding in the radial direction, into a cam ring 1, and is provided with a compressed space 12 formed by the circumferential displacement by 180 deg. between the cam ring 1 and the rotor 2. A rear side block 4 is provided with a ring-formed recessed part 26 on its surface on the rotor side, and a ring-formed control member 27 is fitted thereinto. The compression start timing is controlled by the rotation of the control member 27. In this case, the control member 27 is provided with two symmetric back pressure lead-in holes 29 circumferentially displaced by 180 deg.. Each back pressure lead-in hole 29 is communicated with a vane groove when the control member 27 is in a partial operating position, and blocked at the end face of the vane when the control member 27 is in the busy position.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧縮開始時期を制御して吐出容量を可変制御す
る可変容量型圧縮機に関し、特にベーンのチャタリング
の発生の防止を図った可変容量型圧縮機に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a variable displacement compressor that variably controls the discharge capacity by controlling the compression start timing, and in particular a variable capacity compressor that is designed to prevent vane chattering. Regarding mold compressors.

(従来の技術) 従来、可変容量型圧縮機としては、圧縮機の作動中ベー
ン背圧低下によるチャタリングの発生及び反対に過度の
背圧導入によるベーン先端部の摩耗を防止するために、
吸入行程開始時から圧縮行程の途中までの間、ベーン溝
底部の穴に、シリンダの一側のサイドブロックのロータ
側端面に形成された背圧導入溝を連通して該底部の穴内
に中間圧のベーン背圧を導入する一方、該底部の穴と前
記背圧導入溝との連通が断たれてから吐出行程終了時ま
での間、咳底部の穴と連通し該底部の穴内に高圧のベー
ン背圧を導入するようにした背圧用送油孔を前記−側の
サイドブロックに設けたものが提案されている(実願昭
63−37834) 。
(Prior Art) Conventionally, in variable capacity compressors, in order to prevent chattering due to a decrease in vane back pressure during compressor operation, and conversely, wear out of vane tips due to introduction of excessive back pressure,
From the start of the suction stroke to the middle of the compression stroke, the hole at the bottom of the vane groove is connected to the back pressure introduction groove formed on the end surface of the rotor side of the side block on one side of the cylinder, so that an intermediate pressure is maintained in the hole at the bottom. While introducing high pressure vane back pressure into the bottom hole, the high pressure vane communicates with the bottom hole and maintains high pressure inside the bottom hole from the time when the communication between the bottom hole and the back pressure introduction groove is cut off until the end of the discharge stroke. It has been proposed that a back pressure oil feed hole for introducing back pressure is provided in the negative side block (Utility Application No. 63-37834).

この提案された可変容量型圧縮機では、ベーン溝底部の
穴と背圧導入溝との連通が断たれてから吐出行程終了時
までの間では、全稼働時及び一部稼働時のいずれの場合
にも同じ高圧のベテン背圧を導入し、該高圧のベーン背
圧と遠心力との合力によりベーン先端をカムリングの内
周面に押し付けるようにし、チャタリングの発生及びベ
ーン先端部の摩耗を防止することを図っている。
In this proposed variable displacement compressor, during the period from when the communication between the hole at the bottom of the vane groove and the back pressure introduction groove is cut off until the end of the discharge stroke, both during full operation and during partial operation. The same high-pressure vane back pressure is introduced into the cam ring, and the vane tip is pressed against the inner peripheral surface of the cam ring by the combined force of the high-pressure vane back pressure and centrifugal force, thereby preventing chattering and wear of the vane tip. That's what I'm trying to do.

(発明が解決しようとする課題) しかし、上記提案技術においては、第8図に示すように
、圧縮機の吐出圧Pdが低下するとき、即ち吐出容量が
最小となる一M稼働位置に制御部材がある時ベーン背圧
Pkが急激に低下し、ベーンのチャタリングが発生する
。かかるベーン背圧Pkの低下は、一部Wm時にロータ
が前記−側のサイドブロック側に片寄った状態になるた
めに前記−側のサイドブロックとロータとの隙間が狭く
なり、背圧油が導入されにくくなるために生ずると考え
られる。前記ロータが片寄る原因は、回転軸の他側のサ
イドブロック側背面部には常に吸入圧Psが掛かってお
り、一部稼働時のように吐出圧Pdが低いと、前記ロー
タが前記−側のサイドブロック側に押しつけられるため
である。かかるベーン背圧Pkの急激な低下を紡ぐには
前記−側のサイドブロックに設けられた背圧用送油孔の
径を大きくして送泊量を増大させる方法が考えられるが
、−旦ロータが前記−側のサイドブロックに片寄ってし
まうと、その効果は小さく、その上ロータが他側のサイ
ドブロック側に片寄った場合には、ベーン背圧Pkが高
くなりすぎるためベーンの先端部が摩耗し、また圧縮機
駆動動力のロスが生じる等の不具合が生じる。
(Problem to be Solved by the Invention) However, in the above-mentioned proposed technology, as shown in FIG. When this occurs, the vane back pressure Pk suddenly decreases, causing chattering of the vane. This reduction in vane back pressure Pk is partly due to the fact that during Wm, the rotor is biased toward the side block on the negative side, so the gap between the side block on the negative side and the rotor narrows, and back pressure oil is introduced. This is thought to occur because it becomes difficult to The reason why the rotor shifts to one side is that the suction pressure Ps is always applied to the back side of the side block on the other side of the rotating shaft, and when the discharge pressure Pd is low such as during partial operation, the rotor shifts to the negative side. This is because it is pressed against the side block side. In order to counteract such a sudden drop in vane back pressure Pk, it is conceivable to increase the flow rate by increasing the diameter of the back pressure oil feed hole provided in the - side side block. If the rotor is biased toward the side block on the negative side, the effect will be small, and if the rotor is biased toward the side block on the other side, the vane back pressure Pk will become too high, causing the tip of the vane to wear out. In addition, problems such as loss of compressor driving power occur.

本発明は上記のamを解決、するために為されたもので
、一部稼働時のロータの片寄りによるベーンのチャタリ
ングを防止すると共に、全稼働時におけるベーン先端の
摩耗を防止することを図った可変容量型圧縮機を提供す
ることを目的とする。
The present invention has been made to solve the above problem, and aims to prevent chattering of the vanes due to the shift of the rotor during partial operation, as well as prevent wear of the tips of the vanes during full operation. The purpose of the present invention is to provide a variable capacity compressor with a variable displacement type.

(課題を解決するための手段) 本発明は上述の目的を解決するために、シリンダと、該
シリンダ内に嵌装されたロータと、該ロータのベーン溝
に放射方向に出没自在に嵌装された複数のベーンと、回
動により圧縮開始時期を制御する制御部材とを備えた可
変容量型圧縮機において、前記制御部材が−S稼働位置
にあるときはベーン溝と連通してベーン背圧を導入し、
前記制御部材が全稼働位置にあるときは閉塞されて前記
ベーン背圧の導入を遮断する背圧導入孔が、前記制御部
材に設けである。
(Means for Solving the Problem) In order to solve the above-mentioned object, the present invention includes a cylinder, a rotor fitted in the cylinder, and a rotor fitted in a vane groove of the rotor so as to be freely protrusive and retractable in a radial direction. In a variable displacement compressor equipped with a plurality of vanes, and a control member that controls the compression start timing by rotation, when the control member is in the -S operating position, it communicates with the vane groove to apply vane back pressure. introduced,
The control member is provided with a back pressure introduction hole that is closed to block introduction of the vane back pressure when the control member is in the fully operational position.

(作用) 一部稼働時においては制御部材に設けた背圧導入孔がベ
ーン溝と連通し、該ベーン溝にベーン背圧が導入され、
ベーン背圧の低下を防ぐ。一方、全稼働時においては背
圧導入孔が閉塞されてベーン背圧の導入が遮断され、ベ
ーン背圧の上昇を防ぐ。
(Function) During partial operation, the back pressure introduction hole provided in the control member communicates with the vane groove, and the vane back pressure is introduced into the vane groove.
Prevents reduction in vane back pressure. On the other hand, during full operation, the back pressure introduction hole is closed and the introduction of vane back pressure is blocked, thereby preventing an increase in vane back pressure.

(実施例) 以下、本発明の一実施例を添付図面に基づき説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例に係る可変容量型ベーン型圧
縮機を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a variable capacity vane type compressor according to an embodiment of the present invention.

第1図及び第21!lに示すように、可変容量型ベーン
型圧縮機は、略楕円形の内周面1aを有するカムリング
1とカムリング1のjlij(II端面を閉塞する如く
該両側端面に夫々固定されたフロントサイドブロック3
及びリヤサイドブロック4とから成るシリンダと、該シ
リンダ内に回転自在に収納された1ワ筒状のロータ2と
、該両サイドブロック3゜4の外側端面に夫々固定され
たフロントヘッド5゜リヤヘッド6と、ロータ2の回転
軸7とを主要構成要素としており、回転軸7は前記両サ
イドブロック3,4に夫々設けた軸受8,9に回転可能
に支持されている。
Figures 1 and 21! As shown in FIG. 1, the variable displacement vane type compressor includes a cam ring 1 having a substantially elliptical inner peripheral surface 1a, and front side blocks fixed to both end surfaces of the cam ring 1 so as to close the end surfaces thereof. 3
and a rear side block 4, a 1W cylindrical rotor 2 rotatably housed in the cylinder, and a front head 5 and a rear head 6 fixed to the outer end surfaces of both side blocks 3 and 4, respectively. and a rotating shaft 7 of the rotor 2. The rotating shaft 7 is rotatably supported by bearings 8 and 9 provided on both side blocks 3 and 4, respectively.

フロントヘッド5の上面には熱媒体である冷媒ガスの吐
出口5aが、リヤヘッド6の上面には冷媒ガスの吸入口
6aが夫々形成されている。吐出口5aはフロントヘッ
ド5とフロントサイドブロック3とによりl!li處さ
れる吐出室10に、吸入口6aはリヤヘッド6とリヤサ
イドブロック4とにまり画成される吸入室11に夫々連
通している。
A discharge port 5a for refrigerant gas, which is a heat medium, is formed on the upper surface of the front head 5, and an inlet port 6a for refrigerant gas is formed on the upper surface of the rear head 6, respectively. The discharge port 5a is formed by the front head 5 and the front side block 3. The suction port 6a communicates with the discharge chamber 10, which is operated by the vehicle, and a suction chamber 11 defined by the rear head 6 and the rear side block 4, respectively.

カムリングlの内周面1aとロータ2の外周面との間に
、周方向に180度偏位して対称的に2つの圧縮空間1
2.12が画成されている。ロータ2にはその径方向に
沿うベーン溝13m〜13sが周方向に等間隔を存して
複数(例えば5個)設けられており、これらのベーン溝
131〜13!!内にベーン141〜14sがそれぞれ
放射方向に沿って出没自在に嵌装されている。
Between the inner peripheral surface 1a of the cam ring l and the outer peripheral surface of the rotor 2, two compression spaces 1 are formed symmetrically and offset by 180 degrees in the circumferential direction.
2.12 is defined. The rotor 2 is provided with a plurality (for example, five) of vane grooves 13m to 13s along its radial direction at equal intervals in the circumferential direction, and these vane grooves 131 to 13! ! Vanes 141 to 14s are fitted therein so as to be freely retractable along the radial direction.

リヤサイドブロック4には、第1131に示す吸入ボー
ト!5が周方向に180度偏位して対称的に設けられて
いる。各吸入ボート15はリヤサイドブロック4の厚さ
方向に貫通しており、各吸入ボート15を介して吸入室
口と圧縮空間12,12ヒが夫々連通されている。
In the rear side block 4, there is a suction boat shown in No. 1131! 5 are provided symmetrically and offset by 180 degrees in the circumferential direction. Each suction boat 15 penetrates through the rear side block 4 in the thickness direction, and the suction chamber opening and the compression spaces 12, 12 are communicated with each other via each suction boat 15.

カムリングlの外周壁には、第2図に示すように、吐出
ボート16.16が周方向の対称な位置に穿設されてい
る。該吐出ボート16.16のあるカムリング!の外周
壁には、弁止め部17aを有する吐出弁カバー17がボ
ルト18により固定されている。カムリングlの外周壁
と弁止め部17aとの間には、吐出弁カバー■7側に保
持された吐出弁19が介装され、該吐出弁19は吐出圧
を受けたときに開ブPして吐出ボートi6をilJ[J
するように或っている。さらに、カムリングlには、第
9図に示すように、各吐出弁19の開弁時に各吐出ボー
ト16に夫々連通ずる連通路20が、フロントサイドブ
ロック3には該各連通路20に夫々連通する連通路21
が夫々周方向の対称な位置に形成されている。そして、
各吐出ボート16が開口したときには、圧縮空間12内
の圧縮された冷媒ガスは吐出ボート16、連通路20,
21、吐出室10及び吐出口5aを順次介して吐出され
るように威っている。
As shown in FIG. 2, discharge boats 16, 16 are bored in the outer peripheral wall of the cam ring I at symmetrical positions in the circumferential direction. The cam ring with the discharge boat 16.16! A discharge valve cover 17 having a valve stop portion 17a is fixed to the outer peripheral wall of the discharge valve with bolts 18. A discharge valve 19 held on the side of the discharge valve cover 7 is interposed between the outer peripheral wall of the cam ring l and the valve stop portion 17a, and the discharge valve 19 opens when receiving discharge pressure. and set the discharge boat i6 to ilJ[J
There is something like that. Furthermore, as shown in FIG. 9, the cam ring l has communication passages 20 that communicate with each discharge boat 16 when each discharge valve 19 is opened, and the front side block 3 communicates with each communication passage 20. communication path 21
are formed at symmetrical positions in the circumferential direction. and,
When each discharge boat 16 opens, the compressed refrigerant gas in the compression space 12 is transferred to the discharge boat 16, the communication passage 20,
21, the liquid is discharged sequentially through the discharge chamber 10 and the discharge port 5a.

第1因に示すように、吐出室10及び吸入室11の各底
部は油溜室10a、lObになっており、該油溜室IO
bは壁部11bにより吸入室口とは隔絶されている。各
油溜室10a、10bは、フロントサイドブロック3、
カムリングl及びリヤサイドブロック4の各測路3a、
・lb及び4aを介して連通している。
As shown in the first factor, the bottoms of the discharge chamber 10 and the suction chamber 11 are oil reservoir chambers 10a and lOb, and the oil reservoir chambers IO
b is isolated from the suction chamber inlet by a wall portion 11b. Each oil reservoir chamber 10a, 10b includes a front side block 3,
Each survey path 3a of the cam ring l and rear side block 4,
・Communicate via lb and 4a.

第1図及び第4図に示すように、フロントサイドブロッ
ク3のロータ側端面には、2つの背圧導入溝22と谷溝
に対し2つの背圧用送油孔23εが設けられている。
As shown in FIGS. 1 and 4, two back pressure oil feed holes 23ε are provided in the rotor side end surface of the front side block 3, corresponding to the two back pressure introduction grooves 22 and the valley groove.

各背圧導入溝22は、各ベーン溝13t〜13sの底部
の穴1310〜13soに吐出圧Pdと吸入圧Psの中
間圧のベーン背圧Pkを導入するためのもので、吸入行
程開始時から圧縮行程の途中までの間該底部の穴13u
ox1360と連通ずる周方向の対称な位置に配置され
ている。各背圧導入溝22は各圧縮空間12に対応して
おり、該各背圧導入溝22は細い通路22aで互いに連
通している。
Each back pressure introduction groove 22 is for introducing a vane back pressure Pk, which is an intermediate pressure between the discharge pressure Pd and the suction pressure Ps, into the holes 1310 to 13so at the bottom of each of the vane grooves 13t to 13s, and starts from the start of the suction stroke. The hole 13u at the bottom until the middle of the compression stroke
It is arranged at a symmetrical position in the circumferential direction communicating with ox1360. Each back pressure introduction groove 22 corresponds to each compression space 12, and each back pressure introduction groove 22 communicates with each other through a narrow passage 22a.

各背圧用送側孔23は、底部の穴13so〜13s。Each back pressure sending hole 23 is a bottom hole 13so to 13s.

に吐出圧I’dより僅かに低く前記中間圧のベーン背圧
1’により高い高圧のベーン背圧Pkを導入するための
ものである。背圧用送油孔23は、底部の穴13+o〜
13soと背圧導入溝22との連通が断たれてから吐出
行程終了時までの間該底部の穴1.3so〜13soと
連通する周方向の対称な位置に2つずつ配置されている
。各背圧用送油孔23には、1llIlff室tea内
の仙が吐出圧Pdを受けてオリフィス24及びフロント
サイドブロック3内の測路3bを介して導入されるよう
に戊っている。
This is to introduce a high vane back pressure Pk that is slightly lower than the discharge pressure I'd and higher than the intermediate vane back pressure 1'. The back pressure oil supply hole 23 is located at the bottom hole 13+o~
Two of them are arranged at symmetrical positions in the circumferential direction communicating with the bottom holes 1.3so to 13so from the time the communication between the back pressure introduction groove 22 and the back pressure introduction groove 22 is cut off until the end of the discharge stroke. Each back pressure oil feed hole 23 is bored so that oil in the 1lllff chamber tea receives the discharge pressure Pd and is introduced through the orifice 24 and the survey path 3b in the front side block 3.

また、フロントサイドブロック3には、輪受8の周囲に
軸受室3cが画成されている。該軸受室3cは、回転軸
7内の通路7a及びリヤサイドブロック4内の通路4d
を介して吸入室INと連通していると井に、フロントサ
イドブロック3内の通路3dを介して圧縮空間12と連
通している。
Furthermore, a bearing chamber 3c is defined in the front side block 3 around the wheel bearing 8. The bearing chamber 3c includes a passage 7a in the rotating shaft 7 and a passage 4d in the rear side block 4.
It communicates with the suction chamber IN through a passageway 3d in the front side block 3, and with the compression space 12 through a passageway 3d in the front side block 3.

これによって、吸入室ti内の冷媒ガスの一部が通路4
d、7a、軸受室3c及び通路3dを通って圧縮空間1
2へ流れ、軸受8の潤滑がなされる。
As a result, part of the refrigerant gas in the suction chamber ti is transferred to the passage 4.
d, 7a, the compression space 1 through the bearing chamber 3c and the passage 3d.
2, and the bearing 8 is lubricated.

一方、リヤサイドブロック4には、軸受9の周囲に軸受
室4bが画成されている。該軸受室4bは、通路4C及
びオリフィス25を介して油溜室Jobと連通しており
、該軸受室4b内に油溜室tobのihが吐出圧Pdを
受けて導入され、軸受9の潤滑がなされるようにしであ
る。
On the other hand, in the rear side block 4, a bearing chamber 4b is defined around the bearing 9. The bearing chamber 4b communicates with the oil sump chamber Job through the passage 4C and the orifice 25, and the ih of the oil sump chamber tob is introduced into the bearing chamber 4b under the discharge pressure Pd, thereby lubricating the bearing 9. This is what will happen.

第1[1!I及び第5図に示すように、前記リヤサイド
ブロック4には、そのロータ2側表面に環状凹部26が
設けられており、該環状四部26内には、第5図に示す
ようなリング状の制御部材27が第1図及び第6図に示
すように正逆回転可能に嵌装されている。該制御部材2
7の外周縁にはその周方向に180度偏位して対称な位
置に円弧状の切欠i’1128,28が設けられている
1st [1! As shown in FIG. 1 and FIG. 5, the rear side block 4 is provided with an annular recess 26 on its rotor 2 side surface, and a ring-shaped recess 26 as shown in FIG. A control member 27 is fitted so as to be rotatable in forward and reverse directions as shown in FIGS. 1 and 6. The control member 2
Arc-shaped notches i' 1128, 28 are provided on the outer peripheral edge of 7 at symmetrical positions offset by 180 degrees in the circumferential direction.

制御部材27には、2つの背圧導入孔29が周方向に1
80度嬬位して対称的に設けられている。
The control member 27 has two back pressure introduction holes 29 arranged one in the circumferential direction.
It is placed symmetrically at an 80 degree angle.

各背圧導入孔29はベーン背圧Pkの低下を補償するた
めのもので、制御部材27がベーン背圧Pkが低下する
一部稼働位置にある時には、ロータ2の回転により通過
するベーンm13+〜13sと連通すると共に、制御部
材27が吐出圧Pdが高くベーン背圧が低下しないよう
な全稼働位置にある時には、回転する各ベーン141〜
1411の端面によって閉塞されるような位置に設定し
である。
Each back pressure introduction hole 29 is for compensating for a decrease in the vane back pressure Pk, and when the control member 27 is in a partially operating position where the vane back pressure Pk decreases, the vanes m13+~ passing by due to the rotation of the rotor 2 13s, and when the control member 27 is in the full operating position where the discharge pressure Pd is high and the vane back pressure does not decrease, each of the rotating vanes 141-
It is set in such a position that it is closed by the end face of 1411.

各背圧導入孔29は、軸受室4b、通路4c。Each back pressure introduction hole 29 includes a bearing chamber 4b and a passage 4c.

オリフィス25を介して7111溜室10bと連通して
おり、該η11溜室lOb内の抽が吐出圧Pdを受けて
導入され、ベーン背圧の低下を補償するようにされてい
る。制御部材27の一側面には周方向に180度偏位し
て対称的に突片状の受圧部30゜30が一体的に突設さ
れ、各々リヤサイドブロック4のmj記環状凹部26の
底部内の空間を2つの圧力作動室(図示せず)にLl威
している。
It communicates with the 7111 reservoir chamber 10b via the orifice 25, and the bleed water in the η11 reservoir chamber lOb is introduced in response to the discharge pressure Pd, thereby compensating for a decrease in vane back pressure. On one side of the control member 27, protruding pressure receiving portions 30° 30 are integrally provided and symmetrically offset by 180 degrees in the circumferential direction. The space is divided into two pressure working chambers (not shown).

該容管圧部の一側面には低圧である吸入圧Psが、その
他側面には圧縮空間12からの吐出圧1)dがオリフィ
ス(図示せず)を介して導入されて形成される高圧であ
る制御圧Pcが夫々作用するように或っている。該R1
1JI’f圧Pcは、吸入圧Psが所定の設定線となる
ように開閉弁機m(第9図)により制御される。そして
、制御部材27は、前記圧力作動室の一方に供給される
吸入圧Psとねじりコイルばね31との合力と、他方の
圧力作動室内に形成される制御圧Pcとの差により回動
して圧縮開始時期を制御する。即ち、制御部材27は、
制御圧Pcが大きくなるにつれて第2図で示す全種(至
)位置側に、制御圧Pcが小さくなるにつれて第3図で
示す一部稼働位置側に夫々回動する。
A low suction pressure Ps is introduced into one side of the volume pressure section, and a high pressure created by introducing the discharge pressure 1)d from the compression space 12 into the other side through an orifice (not shown). A certain control pressure Pc is applied to each of them. The R1
1JI'f pressure Pc is controlled by an on-off valve machine m (FIG. 9) so that the suction pressure Ps is at a predetermined set line. The control member 27 is rotated by the difference between the resultant force of the suction pressure Ps supplied to one of the pressure working chambers and the torsion coil spring 31, and the control pressure Pc formed in the other pressure working chamber. Controls when compression starts. That is, the control member 27
As the control pressure Pc increases, it rotates toward the fully operated position shown in FIG. 2, and as the control pressure Pc decreases, it rotates toward the partial operation position shown in FIG. 3.

この全稼働位置では、制御部材27の各切欠部28の前
側端部28aはロータ回転方向における最も後側の位置
にあって圧縮開始時期が最も早く、相前後する2つのベ
ーン間に閉じ込められる冷媒ガスの体積が最大となって
吐出容量が最大となる。
In this full operating position, the front end 28a of each notch 28 of the control member 27 is at the rearmost position in the rotor rotational direction, and the compression start time is the earliest, allowing the refrigerant to be trapped between two successive vanes. The gas volume becomes maximum and the discharge capacity becomes maximum.

−力前記一部稼働位置では、各切欠部28の前側端部2
8aはロータ回転方向における最もnII側の位置にあ
って圧縮開始時期が最も遅く、相前後する2つのベーン
間に閉じ込められる冷媒ガスの体積が最小となって吐出
容量が最小となる。
- the front end 2 of each notch 28 in the partially activated position;
8a is located at the position closest to nII in the rotor rotational direction, has the latest compression start time, and the volume of refrigerant gas trapped between two successive vanes is the minimum, resulting in the minimum discharge capacity.

次に上記構成を有する可変容量型ベーン型圧縮機の作動
を説明する。
Next, the operation of the variable capacity vane compressor having the above configuration will be explained.

各圧縮空間12において、吸入行程にある相13後する
2つのベーン間の各圧縮空間12内に冷媒ガスが吸入室
11から吸入ボート15及び制御部材の切欠部28を介
して夫々吸入され、該2つのベーンのロータ回転方向後
側ベーンが各切欠部28の前側端部28aを通過し、こ
れによって前記2つのベーン間の圧縮空間12と吸入ボ
ート15との連通が断たれた時点で圧縮行程が開始され
、圧縮行程終了後に吐出行程が開始される。
In each compression space 12, refrigerant gas is sucked from the suction chamber 11 through the suction boat 15 and the notch 28 of the control member, respectively, into the compression space 12 between the two vanes after the phase 13 on the suction stroke. The compression stroke begins when the rear vanes in the rotor rotational direction of the two vanes pass through the front end 28a of each notch 28, thereby cutting off the communication between the compression space 12 between the two vanes and the suction boat 15. is started, and after the compression stroke is completed, the discharge stroke is started.

前記吸入行程は、制御部材27が第2図で示す全稼働位
置にある全稼働時ではat位置からa2位置までの区間
であり、制御部材27が第3図で示す一部稼働位置にあ
る一部稼働時では81位置から82’までの区間である
。また、圧縮行程の開始時期は、制御部材27が第2図
の全稼働位置から第3図の一部稼働位置側に回転するに
つれ遅くなり、これによって吐出容量が連続的に減少す
る。
The suction stroke is a section from the at position to the a2 position when the control member 27 is in the full operation position shown in FIG. When the unit is in operation, this is the section from position 81 to position 82'. Further, the start timing of the compression stroke becomes later as the control member 27 rotates from the fully operated position shown in FIG. 2 to the partially operated position shown in FIG. 3, and thereby the discharge capacity decreases continuously.

ロータ2の回転中、各ベーン141〜14sは第1図及
び第4図に示す背圧導入溝22を介して各ベーン溝13
t〜13sの底部の穴131o〜135゜に導入される
ベーン背圧Pkを受け、このベーン背圧Pkと遠心力に
よって各ベーン14+〜145の先端はカムリング1内
の内周面1aに押し付けられる。
During the rotation of the rotor 2, each vane 141 to 14s is connected to each vane groove 13 through the back pressure introduction groove 22 shown in FIGS. 1 and 4.
Receives the vane back pressure Pk introduced into the holes 131o to 135° at the bottom of t to 13s, and the tips of each vane 14+ to 145 are pressed against the inner peripheral surface 1a in the cam ring 1 by this vane back pressure Pk and centrifugal force. .

ロータ2の回転により例えばベーン溝底部の穴131o
が半径方向外方に移行して前記背圧導入溝22との連通
が断たれると、該底部の穴13+oが対応する背圧用送
側孔23と連通する。油溜室10a内吐出圧I’dを有
する柚がオリフィス24、力11路3b及び前記背圧用
送側孔23を介して底部の穴131o内に導入され、こ
れにより底部の穴内に高圧のベーン背圧Pkが形成され
る。該高圧のベーン背圧Pkと遠心力によりベーンの先
端がカムリング1の内周面1aに押し付けられる。
Due to the rotation of the rotor 2, for example, the hole 131o at the bottom of the vane groove
When the groove moves radially outward and communication with the back pressure introducing groove 22 is cut off, the hole 13+o at the bottom communicates with the corresponding back pressure sending hole 23. Yuzu having a discharge pressure I'd in the oil sump chamber 10a is introduced into the bottom hole 131o through the orifice 24, the force 11 path 3b and the back pressure feed hole 23, thereby causing a high-pressure vane in the bottom hole. A back pressure Pk is created. The tip of the vane is pressed against the inner peripheral surface 1a of the cam ring 1 by the high vane back pressure Pk and centrifugal force.

一部稼働時において制御部材27の回動に仔っで第7図
(a)に示すように背圧導入孔29はベーン14+の基
端より半径方向内方となる位置に移動する。従ってロー
タが回転し該背圧導入孔29は通過するベーン14+の
ベーン溝13tの下部と連通し、n;j記泊溜室lOb
の柚がオリフィス25、油路4c、軸受4b、及び背圧
導入孔29を介してベーン溝!31に導入される。よっ
てa−夕2がフロントサイドブロック3側へ片寄ったと
きでも第8図に示すようにベーン背圧Pkの低下を防止
することができ、lIj記ベーンの先#A部はカムリン
グ】の内角面1aに押し付けられる。したがって、ベー
ン14s〜14sのチャタリングを防ぐことができる。
During partial operation, as the control member 27 rotates, the back pressure introduction hole 29 moves to a position radially inward from the base end of the vane 14+, as shown in FIG. 7(a). Therefore, as the rotor rotates, the back pressure introduction hole 29 communicates with the lower part of the vane groove 13t of the passing vane 14+, and the n;
The vane groove passes through the orifice 25, oil passage 4c, bearing 4b, and back pressure introduction hole 29! It was introduced in 31. Therefore, even when the A-Y 2 is biased toward the front side block 3, it is possible to prevent the vane back pressure Pk from decreasing as shown in FIG. It is pressed against 1a. Therefore, chattering of the vanes 14s to 14s can be prevented.

一方、全稼働時において背圧導入孔29は、制御部材2
7の回動に件って第7図(b)に示すようにベーン14
iの基端より半径方向外力となる位置に移動する。従っ
て、ロータが回転し背圧導入孔29を通過するベーンに
よって閉塞されるため、油溜室fobからの抽のベーン
溝への導入が遮断される。よって全稼働時においては必
要以上のベーン背圧Pkがベーンに掛からず、ベーンの
先端部はカムリングlの内角面1aに強く押し付けられ
ることはない。したがって、ベーン141〜146の先
端部の摩耗を防ぐことができる。
On the other hand, during full operation, the back pressure introduction hole 29
Regarding the rotation of the vane 14, as shown in FIG. 7(b),
Move from the proximal end of i to a position where an external force is applied in the radial direction. Therefore, since the rotor rotates and the back pressure introduction hole 29 is blocked by the vane, the introduction of the oil from the oil sump chamber fob into the vane groove is blocked. Therefore, during full operation, no more than necessary vane back pressure Pk is applied to the vane, and the tip of the vane is not strongly pressed against the inner corner surface 1a of the cam ring l. Therefore, wear of the tips of the vanes 141 to 146 can be prevented.

尚、上記実施例では背圧用送油孔23と背圧導入孔29
の双方を設けたmFli、について説明したが、071
者を省略し、背圧導入孔29のみを設けるmtとしても
よい。
In the above embodiment, the back pressure oil supply hole 23 and the back pressure introduction hole 29 are
We have explained mFli which has both 071
It is also possible to omit this and provide only the back pressure introduction hole 29.

第9図は、本発明の他の実施例に係る可変容量型ベーン
型圧線機を示す縦断面図である。
FIG. 9 is a longitudinal sectional view showing a variable capacity vane type pressure line machine according to another embodiment of the present invention.

上述の実施例においては、制御部材が全稼働位置にある
とき背圧導入孔29はベーン14+〜14!1の端面に
よって閉塞され、また一部稼働時に背圧導入孔29とベ
ーン溝14+〜夏45とが直接連通し、その結果オリフ
ィス25、通路4c及び軸受室4bを介して?+11溜
室10bかも送り込まれた油が背圧導入孔29を通じて
ベーン溝13m〜13sに導入される場合について述べ
た。
In the embodiment described above, when the control member is in the full operating position, the back pressure introduction hole 29 is closed by the end face of the vane 14+~14!1, and when the control member is in the fully operated position, the back pressure introduction hole 29 and the vane groove 14+~ 45, and as a result via the orifice 25, the passage 4c and the bearing chamber 4b? The case has been described in which the oil fed into the +11 reservoir chamber 10b is introduced into the vane grooves 13m to 13s through the back pressure introduction hole 29.

これに対し、本実施例においては、第9図に示すように
、連通路20.21を介して吐出室IOに連通ずるオリ
フィス33をカムリングlに設けるとともに、一部稼働
時にオリフィス33と連通して吐出圧Pdを軸受室4b
に導き、全稼働時にカムリング1により閉塞される背圧
導入孔34をI′1FJfs部材27に設けた。背圧導
入孔34は、第1O図に示すように、制御部材27のロ
ータ側端面側にザグリ加工してなる長溝部34aと、こ
の長溝部34aに連通する連通部34bとからなる。こ
れによりオリフィス33を介して導かれた高圧の冷媒ガ
スが長溝部34a及び連通部34bを通じて軸受室4b
に導かれ、更に回転柚7の外周と制 4゜御部材27の
内周とのすき間、並びに制御部材27のロータ2側端而
とロータ2の制御部材側端面とのすき間を通じてベーン
溝13+〜13Bに高圧の冷媒ガスが導入される。
In contrast, in this embodiment, as shown in FIG. 9, an orifice 33 that communicates with the discharge chamber IO via a communication passage 20.21 is provided in the cam ring l, and the orifice 33 communicates with the orifice 33 during partial operation. to increase the discharge pressure Pd to the bearing chamber 4b.
A back pressure introduction hole 34 is provided in the I'1FJfs member 27, and the back pressure introduction hole 34 is closed by the cam ring 1 during full operation. As shown in FIG. 1O, the back pressure introduction hole 34 is comprised of a long groove portion 34a formed by counterboring the end surface of the control member 27 on the rotor side, and a communication portion 34b communicating with the long groove portion 34a. As a result, the high-pressure refrigerant gas guided through the orifice 33 passes through the long groove portion 34a and the communication portion 34b to the bearing chamber 4b.
Vane grooves 13 High pressure refrigerant gas is introduced into 13B.

以上のような構成の本実施例によれば、第1図の実施例
の場合と同様の効果を得ることができる。
According to this embodiment configured as described above, the same effects as in the embodiment shown in FIG. 1 can be obtained.

(発明の効果) 以上説明したように本発明の可変容量型圧縮機によれば
、前記制御部材が一部稼働位置にあるときはベーン溝と
連通してベーン背圧を導入し、前記制御部材が全種(至
)位置にあるときは閉塞されて前記ベーン背圧の導入を
遮断する背圧導入孔が、前記制御部材に設けであるので
、一部稼働時のロータの片寄りによるベーン背圧の低下
を防ぎ、ベーンのチャタリングの発生を防止することが
できるとともに、全稼働時若しくはロータの片寄りがな
いときにはベーン背圧が過度に上昇するのを防ぎ、ベー
ンの先端部の摩耗を防止することができる。
(Effects of the Invention) As explained above, according to the variable displacement compressor of the present invention, when the control member is in the partially operating position, it communicates with the vane groove to introduce vane back pressure, and the control member Since the control member is provided with a back pressure introduction hole that is closed and blocks the introduction of the vane back pressure when the rotor is at the full position, the vane back pressure caused by the rotor shifting during partial operation is prevented. This prevents a drop in pressure and prevents chattering of the vanes, and also prevents vane back pressure from increasing excessively when the rotor is in full operation or when the rotor is not biased, thereby preventing wear on the tips of the vanes. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第7図は本発明の一実施例に係る可変容量型
ベーン型圧縮機を示しており、第1図は可変容量型ベー
ン型圧縮機の縦断面図、第2図は第1図の■−■線に沿
う横断面図で全稼働位置を示す図、第3図は第2図と同
様に断面図で一部稼働位置を示す図、第413!lはフ
ロントサイドブロックを示す端面図、第5図はりャサイ
ドブロック及び制御部材の分解斜視図、第6図は第1図
のVl−■線に沿う端面図、第7図(a)及び(b)は
背圧導入孔とベーンとの関係を説明するための図、第8
図は吐出圧、圧縮機回転数及びベーン背圧間の関係を示
すグラフ、第9図乃至第12図は本発明の他の実施例に
係る可変容量型ベーン型圧縮機を示し、第9図は可変容
量型ベーン型圧縮機の縦断面図、第10図は制御部材の
斜視図、第1’1図は第91!IのXI −XI線に沿
う横断面図で、全稼働位置を示す図、第12図は第11
図と同様の断面図で一部稼働位置を示す図である。 1・・・カムリング、1a・・・内周面、2・・・ロー
タ、3・・・フロントサイドブロック(−側のサイドブ
ロック)、4・・・リヤサイドブロック(他側のサイド
ブロック)、13+〜135・・・ベーン溝、1310
〜1350・・・ベーン溝底部の穴、14t〜145・
・・ベーン、27・・・制御部材、29.34・・・背
圧導入孔、Pk・・・ベーン背圧。
1 to 7 show a variable displacement vane compressor according to an embodiment of the present invention, FIG. 1 is a vertical sectional view of the variable displacement vane compressor, and FIG. Figure 3 is a cross-sectional view taken along the line ■-■ in the figure, showing the full operating position, and Figure 3 is a cross-sectional view similar to Figure 2, showing the partially operating position, No. 413! 1 is an end view showing the front side block, FIG. 5 is an exploded perspective view of the carrier side block and control member, FIG. 6 is an end view taken along line Vl-■ in FIG. 1, and FIGS. 7(a) and ( b) is a diagram for explaining the relationship between the back pressure introduction hole and the vane, No. 8
The figure is a graph showing the relationship between discharge pressure, compressor rotation speed, and vane back pressure. 1 is a vertical sectional view of a variable displacement vane type compressor, FIG. 10 is a perspective view of a control member, and FIG. 1'1 is a 91! Fig. 12 is a cross-sectional view taken along line XI-XI of I, showing all operating positions;
It is a sectional view similar to the figure, showing a partially operating position. 1... Cam ring, 1a... Inner peripheral surface, 2... Rotor, 3... Front side block (- side block), 4... Rear side block (other side side block), 13+ ~135... Vane groove, 1310
~1350... Hole at the bottom of the vane groove, 14t ~ 145.
... Vane, 27... Control member, 29.34... Back pressure introduction hole, Pk... Vane back pressure.

Claims (1)

【特許請求の範囲】[Claims] 1、シリンダと、該シリンダ内に嵌装されたロータと、
該ロータのベーン溝に放射方向に出没自在に嵌装された
複数のベーンと、回動により圧縮開始時期を制御する制
御部材とを備えた可変容量型圧縮機において、前記制御
部材が一部稼働位置にあるときはベーン溝と連通してベ
ーン背圧を導入し、前記制御部材が全稼働位置にあると
きは閉塞されて前記ベーン背圧の導入を遮断する背圧導
入孔が、前記制御部材に設けてあることを特徴とする可
変容量型圧縮機。
1. A cylinder, a rotor fitted in the cylinder,
In a variable capacity compressor comprising a plurality of vanes fitted into vane grooves of the rotor so as to be freely protrusive and retractable in a radial direction, and a control member that controls compression start timing by rotation, the control member is partially operated. The control member includes a back pressure introduction hole that communicates with the vane groove to introduce vane back pressure when the control member is in the vane position, and is closed to block introduction of the vane back pressure when the control member is in the fully operated position. A variable displacement compressor characterized by being installed in a.
JP1161145A 1989-05-26 1989-06-23 Variable displacement compressor Expired - Lifetime JP2764864B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/525,846 US5020976A (en) 1989-05-26 1990-05-21 Variale capacity vane compressor
DE4016865A DE4016865C2 (en) 1989-05-26 1990-05-25 Vane compressor with adjustable output
KR1019900007622A KR900018543A (en) 1989-05-26 1990-05-25 Variable capacity vane compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13367389 1989-05-26
JP1-133673 1989-05-26

Publications (2)

Publication Number Publication Date
JPH0374592A true JPH0374592A (en) 1991-03-29
JP2764864B2 JP2764864B2 (en) 1998-06-11

Family

ID=15110227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161145A Expired - Lifetime JP2764864B2 (en) 1989-05-26 1989-06-23 Variable displacement compressor

Country Status (2)

Country Link
JP (1) JP2764864B2 (en)
KR (1) KR900018543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518321A1 (en) * 2009-12-24 2012-10-31 Calsonic Kansei Corporation Vane compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280883A (en) * 1987-05-14 1988-11-17 Toyota Autom Loom Works Ltd Variable volume type vane compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280883A (en) * 1987-05-14 1988-11-17 Toyota Autom Loom Works Ltd Variable volume type vane compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518321A1 (en) * 2009-12-24 2012-10-31 Calsonic Kansei Corporation Vane compressor
CN102844571A (en) * 2009-12-24 2012-12-26 康奈可关精株式会社 Vane compressor
EP2518321A4 (en) * 2009-12-24 2014-06-11 Calsonic Kansei Corp Vane compressor
US8985963B2 (en) 2009-12-24 2015-03-24 Calsonic Kansei Corporation Stop mechanism for vane compressor
CN102844571B (en) * 2009-12-24 2015-07-08 康奈可关精株式会社 Vane compressor

Also Published As

Publication number Publication date
KR900018543A (en) 1990-12-21
JP2764864B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US4468180A (en) Vane compressor having intermittent oil pressure to the vane back pressure chamber
JPH0419395B2 (en)
US4653991A (en) Vane type compressor with fluid pressure biased vanes
US6152711A (en) Roller vane pump having a suction port through the cam ring
US6439183B1 (en) Valve timing adjusting device
JPH0374592A (en) Variable capacity compressor
US5096387A (en) Vane compressor with means for obtaining sufficient back pressure upon vanes at the start of compressor
US5020976A (en) Variale capacity vane compressor
US4516920A (en) Variable capacity vane compressor capable of controlling back pressure acting upon vanes
JPH02248681A (en) Lubricating oil supplying device for vane type compressor
US4986741A (en) Vane compressor with ball valve located at the end of vane biasing conduit
JPS6149189A (en) Variable displacement type rotary compressor
JP2582863Y2 (en) Vane pump
JP6977651B2 (en) Piston compressor
JP4009455B2 (en) Variable displacement vane pump
JPS63280883A (en) Variable volume type vane compressor
JPS63173893A (en) Gas compressor
JP2007120436A (en) Vane pump
JP2000038984A (en) Swash plate type compressor
JP4185723B2 (en) Gas compressor
JPH0320556Y2 (en)
JPS63201389A (en) Gas compressor
JP3759659B2 (en) Vane pump
JPH01237380A (en) Variable capacity vane type rotary compressor
KR910002785B1 (en) Variable capacity compressor