JPH0374464A - Asphalt composition - Google Patents
Asphalt compositionInfo
- Publication number
- JPH0374464A JPH0374464A JP20944889A JP20944889A JPH0374464A JP H0374464 A JPH0374464 A JP H0374464A JP 20944889 A JP20944889 A JP 20944889A JP 20944889 A JP20944889 A JP 20944889A JP H0374464 A JPH0374464 A JP H0374464A
- Authority
- JP
- Japan
- Prior art keywords
- asphalt
- molecular weight
- sbr
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 72
- 239000000203 mixture Substances 0.000 title claims abstract description 33
- 229920003048 styrene butadiene rubber Polymers 0.000 claims abstract description 42
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 claims abstract description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims description 11
- 239000003607 modifier Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 abstract description 9
- 238000006116 polymerization reaction Methods 0.000 abstract description 6
- 238000007720 emulsion polymerization reaction Methods 0.000 abstract description 3
- 239000000178 monomer Substances 0.000 abstract description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 33
- 229920000126 latex Polymers 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 229920001971 elastomer Polymers 0.000 description 16
- 239000005060 rubber Substances 0.000 description 16
- 239000004816 latex Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000004575 stone Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- FRQQKWGDKVGLFI-UHFFFAOYSA-N 2-methylundecane-2-thiol Chemical compound CCCCCCCCCC(C)(C)S FRQQKWGDKVGLFI-UHFFFAOYSA-N 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 239000004576 sand Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- HFGHRUCCKVYFKL-UHFFFAOYSA-N 4-ethoxy-2-piperazin-1-yl-7-pyridin-4-yl-5h-pyrimido[5,4-b]indole Chemical compound C1=C2NC=3C(OCC)=NC(N4CCNCC4)=NC=3C2=CC=C1C1=CC=NC=C1 HFGHRUCCKVYFKL-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000011384 asphalt concrete Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010556 emulsion polymerization method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- 229920001174 Diethylhydroxylamine Polymers 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000012093 association test Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- FVCOIAYSJZGECG-UHFFFAOYSA-N diethylhydroxylamine Chemical compound CCN(O)CC FVCOIAYSJZGECG-UHFFFAOYSA-N 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Road Paving Structures (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、道路舗装用アスファルト組成物に関するもの
であり、特に重交通道路舗装などのように耐流動性、耐
摩耗性、耐ひび割れ性等の要求のきびしい分野に適した
ゴム含有アスファルト組成物を提供するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an asphalt composition for road paving, particularly for heavy traffic road pavement, etc. The present invention provides a rubber-containing asphalt composition suitable for fields with severe demands.
(従来の技術)
アスファルトに骨材を配合してなる組成物は、比較的安
定であり、摩耗特性に優れ、施工時に長期の養生期間を
必要としない等の特徴があり、また、安価なため、道路
等の舗装材どして広く用いられている。(Prior art) A composition made by blending asphalt with aggregate is relatively stable, has excellent abrasion characteristics, does not require a long curing period during construction, and is inexpensive. It is widely used as a paving material for roads, etc.
しかしながら、アスファルトの粘度は温度依存性が大き
いため夏期には、軟化してわだち堀れを生じ易く、逆に
冬期には硬化してひび割れを生じたり、チェーン等の交
通による摩耗が激しい等の難点がある。However, as the viscosity of asphalt is highly temperature dependent, it tends to soften in the summer and cause ruts, and conversely hardens in the winter, causing cracks, and suffers from severe wear due to traffic such as chains. There is.
(発明が解決しようとする課題)
これを改質するため、ゴムや樹脂などの高分子材群を添
加した改質アスファルトを結合材とした舗装用混合物が
使用されているが、特に車の多い重交通舗装等では必ず
しも十分な改質効果が得られず短期間のうちにわだち堀
れや流動、波うちなどの流動変形現象や、摩耗、ひび割
れ、剥離といった問題が生じている。そのため、さらな
る改良が切望されており1例えば、スチレン・ブタジェ
ンゴム(以下SBRと略す)への極性基の導入(4?公
昭A/−249142号公報)カルボキシ変性ポリオレ
フィンの添加(特開昭乙O−/!ざ=!6号公報)、S
BRの粒径肥大化(%開閉1,0−2!2b’l’1号
公報)、高ムーニーSBRと低ムーニーSBRのブレン
ド(特開昭A/−9!f101号公報)等の方法が提案
されている。(Problem to be solved by the invention) In order to modify this, paving mixtures are used that use modified asphalt as a binder to which polymeric materials such as rubber and resin are added. In heavy traffic pavements, etc., a sufficient reforming effect is not necessarily obtained, and problems such as flow deformation phenomena such as rutting, flow, and waves, as well as wear, cracking, and peeling occur in a short period of time. Therefore, further improvements are desired.1 For example, introduction of polar groups into styrene-butadiene rubber (hereinafter abbreviated as SBR) (4? Publication No. 249142) and addition of carboxy-modified polyolefin (Japanese Patent Laid-open Publication No. 2002-249142). /!Za=!6 Publication), S
Methods such as increasing the particle size of BR (% opening/closing 1,0-2!2b'l'1 publication) and blending high Mooney SBR and low Mooney SBR (Japanese Patent Application Laid-Open No. 1998-9!F101) are available. Proposed.
このような状況に鑑み、新規なゴム含有道路舗装用アス
ファルト組成物を開発すべく本発明者らは鋭意検討を重
ねた結果、本発明に到ったものである。In view of this situation, the present inventors have conducted intensive studies to develop a new rubber-containing asphalt composition for road paving, and as a result, have arrived at the present invention.
(課題を解決するための手段)
本発明は耐わだち堀れや耐流動性、耐ひび割れ、耐剥離
性等のアスファルト物性と施工性(作業性)の両方の優
れたアスファルト組成物を提供することを目的としたも
のであり、この目的はアスファルトに対し特定の分子量
調節剤を用いてその分子量分布を極端にブロードに重合
したSBRを配合することにより達成される。(Means for Solving the Problems) The present invention provides an asphalt composition that is excellent in both asphalt physical properties such as rutting resistance, flow resistance, cracking resistance, peeling resistance, etc., and workability (workability). This objective is achieved by blending SBR, which has been polymerized to extremely broad molecular weight distribution, into asphalt using a specific molecular weight regulator.
即ち、本発明は、分子量調節剤の内、n−オクチルメル
カプタン0.02〜夕、0重量部を必要成分として乳化
重合したSBR,を、少なくとも30重量%以上含有し
、低分子量成分として分子量が+、j X / 0’以
下の成分を71り重量%以上、かつ高分子量成分として
、分子量が5゜θ×/θ5以上の成分を30重量%以上
、含有する、結合スチレン量が10〜3!重量%、ムー
ニー粘度(ML1+4− / 00 ’C)が、k O
〜/ ! 0の範囲のSBRを、アスファルトioo重
量部に対し/〜70重量部配合してなる改質アスファル
ト及びこれに骨材を配合したアスファルト舗装組成物を
要旨とするものである。That is, the present invention contains at least 30% by weight of SBR, which is obtained by emulsion polymerization using 0.02 to 0 parts by weight of n-octyl mercaptan as a necessary component among the molecular weight regulators, and has a molecular weight as a low molecular weight component. +, j ! wt%, Mooney viscosity (ML1+4-/00'C), kO
~/! The gist of this invention is a modified asphalt prepared by blending an SBR in the range of 0 to 70 parts by weight based on ioo parts by weight of asphalt, and an asphalt pavement composition in which aggregate is blended with the modified asphalt.
なお、本発明において、SBRの分子量及び分子量分布
は次の条件で求めることができる。In the present invention, the molecular weight and molecular weight distribution of SBR can be determined under the following conditions.
東洋曹達■製″’ GP C(HLC−goxR,)”
カラム: WATER3社製1スタイラジェル“/ 0
6+ / 05+ /θ4+/θ3移動相;テトラヒド
ロフラン(THF)前処理;試料なTHFK溶解後、ミ
リボア社製/μmフィルターで試料溶液を済過し、済液
について測定する。Manufactured by Toyo Soda ``GP C (HLC-goxR,)''
Column: 1 Styla Gel manufactured by WATER3 / 0
6+/05+/θ4+/θ3 Mobile phase; Tetrahydrofuran (THF) pretreatment; After dissolving the sample THFK, the sample solution is filtered through a Millibore/μm filter, and the dissolved solution is measured.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明で使用するアスファルトは通常使用されているも
ので良く、舗装用ストレートアスファルト、レーキアス
ファルト、ブローンアスファルト、セ□ブローンアスフ
ァルト等である。The asphalt used in the present invention may be any commonly used asphalt, such as straight asphalt for pavement, rake asphalt, blown asphalt, and semi-blown asphalt.
また、本発明で使用するSBRは特定の分子量調節剤を
用いた乳化重合法により一段重合で得られる。ある一定
量の低分子量成分及び高分の異なったSBRのブレンド
等の方法も考えられるが、本発明の効果を発現さ・せる
ためには、分子量調節剤の必須成分としてn−オクチル
メルカプタンを用いることが不可欠である。一般に乳化
重合法によるSBRは広く工業的に生産されているが、
通常分子量調節剤としては、第3級ドデシルメルカプタ
ン(以下t−DMと略す)が用いられる。これは、重合
中の分子量調節剤としてのライフが長く、少iで精度よ
く、ムーニー粘度をコントロールできるためである。Further, the SBR used in the present invention can be obtained by one-stage polymerization using an emulsion polymerization method using a specific molecular weight regulator. Although methods such as blending a certain amount of low molecular weight components and SBRs with different polymer contents may be considered, in order to achieve the effects of the present invention, n-octyl mercaptan is used as an essential component of the molecular weight regulator. It is essential that Generally, SBR by emulsion polymerization method is widely produced industrially, but
Tertiary dodecyl mercaptan (hereinafter abbreviated as t-DM) is usually used as the molecular weight regulator. This is because it has a long life as a molecular weight regulator during polymerization and can accurately control Mooney viscosity with a small i.
この場合、分子量分布は比較的シャープであり、分子鎖
も直線的である。In this case, the molecular weight distribution is relatively sharp and the molecular chains are also linear.
この通常の重合法によるSBRを、アスファルト改質剤
として適用した場合、アスファルト物性と施工性(作業
性)は二律背反の関係にある。即ち、SBRのムーニー
粘度を大きくすればゴム人りアスファルトの骨材との把
握力(以下「タフネス」という)や骨材への粘着力(以
下「テナシティ」という)、といったアスファルト物性
は向上するが、高温でのアスファルト粘度が高く々り施
工性(作業性)が悪化する。When SBR produced by this ordinary polymerization method is applied as an asphalt modifier, the physical properties of asphalt and workability (workability) are in a trade-off relationship. In other words, if the Mooney viscosity of SBR is increased, the physical properties of asphalt such as the ability of the rubber to grip the asphalt aggregate (hereinafter referred to as "toughness") and the adhesive strength to aggregate (hereinafter referred to as "tenacity") will improve. , The asphalt viscosity is high at high temperatures, which deteriorates the workability.
逆にSBRのムーニー粘度を小さくすれば施工性は改善
されるものの、タフネス、テナシティといったアスファ
ルト物性の改良は不十分である。On the other hand, if the Mooney viscosity of SBR is reduced, workability is improved, but improvements in asphalt physical properties such as toughness and tenacity are insufficient.
一方、本発明のn−オクチルメルカプタンを分子量調節
剤として用い、ある一定量以上の低分子量成分と高分子
量成分を有する極端に分子量分布の広いSBRをアスフ
ァルトに配合した場合、驚くべきことに、施工性の指標
である高温粘度を低く抑えたまま、タフネス・テナシテ
ィといったアスファルト物性を大幅に改善できることが
判った。On the other hand, when the n-octyl mercaptan of the present invention is used as a molecular weight regulator and SBR with an extremely wide molecular weight distribution having a certain amount or more of low molecular weight components and high molecular weight components is blended into asphalt, surprisingly, the construction It was found that asphalt physical properties such as toughness and tenacity can be significantly improved while keeping high-temperature viscosity, which is an index of properties, low.
なお、ある一定量以上の低分子量成分及び高分子量成分
を有する分子量分布の広いSBRを得る方法として極端
に平均分子量(ムーニー粘度)の異なりた高ムーニー粘
度SBRと低ムーニー粘度SBRのブレンド等の方法も
考えられるが、この場合、分子量調節剤としてt−DM
を用いた通常のSBR同士をブレンドしてもアスファル
ト性能と施工性のバランスは、これらSBRの加成性ラ
イン上を移動するだけであり、改良効果はあまり認めら
れなかった。即ち本発明の効果を発現されるためには分
子量調節剤の必須成分としてn−オクチルメルカプタン
を用いることが不可欠である。In addition, as a method of obtaining SBR with a wide molecular weight distribution having a certain amount or more of low molecular weight components and high molecular weight components, there is a method such as blending high Mooney viscosity SBR and low Mooney viscosity SBR that have extremely different average molecular weights (Mooney viscosity). is also considered, but in this case, t-DM as a molecular weight regulator
Even if ordinary SBRs using the above were blended together, the balance between asphalt performance and workability simply moved on the formability line of these SBRs, and little improvement effect was observed. That is, in order to realize the effects of the present invention, it is essential to use n-octyl mercaptan as an essential component of the molecular weight regulator.
このようにn−オクチルメルカプタンを用いたSBRが
通常のt−DMを用いたSBRと異なる挙動を示す理由
は定かではないが、分子量調節剤であるメルカプタンの
反応性の差に起因するものと考えられる。Although it is not clear why SBR using n-octyl mercaptan behaves differently from SBR using normal t-DM, it is thought to be due to the difference in reactivity of mercaptan, which is a molecular weight regulator. It will be done.
とのn−オクチルメルカプタンの添加量は、モノーr
−/ 00重量部に対しO,OSb2.0重量部の範囲
が好ましい。0.03重量部未満だと、添加効果が少々
く、また低分子量成分も一定量以下となりアスファルト
施工性が悪化する。またS、O重量部を超えた場合低分
子量成分が増えすぎアスファルト性能バランスが偏寄す
る。添加方法は一括添加、分割添加、連続添加のいずれ
でもよい。また分子量分布が上記範囲内であればt−D
M等、他の分子量調節剤を併用してもかまわない。The amount of n-octyl mercaptan added is mono r
-/00 parts by weight is preferably in the range of 2.0 parts by weight of O, OSb. If it is less than 0.03 parts by weight, the effect of addition will be little, and the amount of low molecular weight components will also be below a certain level, resulting in poor asphalt workability. Furthermore, if the amount exceeds the weight parts of S and O, the amount of low molecular weight components increases too much and the asphalt performance balance becomes unbalanced. The addition method may be batch addition, divided addition, or continuous addition. Also, if the molecular weight distribution is within the above range, t-D
Other molecular weight regulators such as M may be used in combination.
また1本発明に用いるSBRは、ある−走風上の低分子
量成分と高分子量成分を含有することによって効果が発
現される。具体的には、分子量かび。、!; X /
0’以下の成分を/S重量に以上、かつ、k、OX /
0”以上の成分を30重量に以上含有することが必要
である。低分子量成分として!、& X / 0’以上
の成分がXS重量に未満の場合には、ゴム含有アスファ
ルトの高温粘度が上昇し、施工性(作業性)が悪化する
。また高分子量成分としてに、OX / 05以上の成
分が、30重量%未満の場合には、タフネス・テナシテ
ィ等のアスファルト物性の改質効果が十分でない。Further, the SBR used in the present invention exhibits its effects by containing a certain low molecular weight component and a high molecular weight component. Specifically, molecular weight mold. ,! ;X/
0' or less component /S weight or more, and k, OX /
It is necessary to contain at least 30 weight of a component with a weight of 0'' or more.As a low molecular weight component!, & However, the workability (workability) deteriorates.Also, if the amount of high molecular weight components with OX/05 or higher is less than 30% by weight, the effect of modifying asphalt physical properties such as toughness and tenacity will not be sufficient. .
すなわち、低分子量成分、高分子量成分の両成分をある
一定量以上含有してこそ、本発明の効果が十分に発現さ
れる。この範囲を満たしておればn−オクチルメルカプ
タンを用いて重合したSBRに通常のt−DMのみを用
いて重合したSBRをブレンド使用してもかまわないが
、その比率は効果を発現するためにり0重量%未満でな
げればならない。That is, the effect of the present invention can be fully exhibited only when a certain amount or more of both the low molecular weight component and the high molecular weight component are contained. As long as this range is met, SBR polymerized using n-octyl mercaptan may be blended with SBR polymerized using normal t-DM alone, but the ratio must be adjusted to achieve the desired effect. Must be less than 0% by weight.
また、本発明に用いるSBRは結合スチレン量が/θ〜
3s重量にであることが必要であり、10重量に未満で
はアスファルトへの混合時にゲル化しやすく、また3!
重量%を超えるとゴム弾性が低下する。In addition, the SBR used in the present invention has a bound styrene content of /θ~
It is necessary that the weight is less than 3s, and if it is less than 10%, it tends to gel when mixed with asphalt, and 3s!
If the amount exceeds % by weight, rubber elasticity decreases.
ムーニー粘度はアスファルト物性及び施工性面よりML
I+4100 ’Cで!o〜/4I−□ノ範囲テなげれ
ばならない。Mooney viscosity is ML based on asphalt physical properties and workability.
At I+4100'C! The range of o~/4I-□ must be lowered.
本発明のSBRはラテックス状態、固型ゴムとしてアス
ファルトに添加することができるが、通常はラテックス
状態で添加される。アスファルトに対するSBRの添加
量は、使用するアスファルトの種類、及び交通量などに
応じてアスファル)/17(7重量部に対し、本発明の
SBRを固型分で/〜io重量部の範囲である。特に重
交通道路舗装などのように高度の耐流動性、耐摩耗性、
耐ひび割れ性が要求される場合には3〜70重量部、添
加することが好ましい。もちろん樹脂等その他の改質剤
を併用してもかまわない。The SBR of the present invention can be added to asphalt in the form of latex or solid rubber, but is usually added in latex form. The amount of SBR added to asphalt varies depending on the type of asphalt used and the amount of traffic, etc., and ranges from / to io parts by weight of the SBR of the present invention in solid content relative to asphalt)/17 (7 parts by weight). .High flow resistance, wear resistance, especially for heavy traffic road pavement, etc.
When cracking resistance is required, it is preferable to add 3 to 70 parts by weight. Of course, other modifiers such as resins may be used in combination.
アスファルト舗装組成物は上記アスファルト組成物に砕
石、砂及び石粉の骨材を混合して得られるが、通常の製
造方法、例えばアスファルトプラント□キサー内に、ア
スファルト、骨材と同時にSBRラテックスを混練する
プラントミックス法、或いは予めアスファルトにSBR
を配合したものに骨材を混合するプレミックス法、等に
よって製造される。The asphalt pavement composition is obtained by mixing aggregates of crushed stone, sand, and stone powder with the above asphalt composition, but it can be produced by a normal manufacturing method, for example, by kneading SBR latex at the same time as asphalt and aggregates in an asphalt plant kisser. Plant mix method or SBR on asphalt in advance
It is manufactured by a premix method, etc., in which aggregate is mixed with a mixture of
骨材の砕石、砂及び石粉の粒径、配合割合は舗装目的に
より常法に従って適宜選定でき、アスファルト組成物の
使用量は、舗装組成中物の3部ヂ重量%程度が一般的で
あり、×/105.!f〜7J重量%が最も一般的であ
る。The particle size and blending ratio of crushed stone, sand, and stone powder as aggregates can be appropriately selected according to the purpose of paving according to conventional methods, and the amount of asphalt composition used is generally about 3 parts by weight of the paving composition. ×/105. ! f~7J wt% is most common.
(実施例) 以下、実施例により、本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.
〔1部結合材としての評価
(実施例゛ゾ〜ダ、比較例1−ダ)
(実施例−/)
第7表に示した基本的な重合処方に従って容量1001
0重合反応器にり7部の/、3−ブタジェンと29部の
スチレン及び分子量調節剤としてへ6部のn−オクチル
メルカプタンを添加し、温度&、j−’Cの条件下で乳
化重合を開始した。[Evaluation as a 1-part binder (Examples ゛Z-DA, Comparative Example 1-DA) (Example-/) Capacity 1001 according to the basic polymerization recipe shown in Table 7
7 parts of /3-butadiene, 29 parts of styrene and 6 parts of n-octyl mercaptan as a molecular weight regulator were added to a polymerization reactor, and emulsion polymerization was carried out under the conditions of temperature &,j-'C. It started.
転化率がsr%に達した時点でO,OS部のジエチルヒ
ドロキシルアミンを添加して反応を停止させた。次いで
常法に従って未反応モノマーを回収すると共に濃縮して
、固型分濃度go%のSBRラテックスを得た。When the conversion rate reached sr%, diethylhydroxylamine in the O and OS parts was added to stop the reaction. Next, unreacted monomers were collected and concentrated according to a conventional method to obtain SBR latex with a solid content concentration of go%.
このラテックスをストレードアスフアルI・(針入度6
Q−50、昭和シェル石油株式会社)に140〜170
部の温度で混合し、固型分換算で3Xのゴムを含んだゴ
ム入りアスファルトを得た。Strain this latex asphalt I (penetration level 6).
Q-50, Showa Shell Sekiyu Co., Ltd.) 140-170
A rubber-containing asphalt containing 3X rubber in terms of solid content was obtained.
このゴム入りアスファルトについて以下の項目について
試験を行なった。評価結果を第2表に示す。This rubber-containing asphalt was tested for the following items. The evaluation results are shown in Table 2.
((イ)針入度 JISKコ330に準拠し測定を行なった。((a) Penetration Measurements were made in accordance with JISK 330.
但し、温度ユgo℃、荷重100?、荷重作用時間はS
秒間とした。However, the temperature is 0°C and the load is 100? , the load action time is S
Seconds.
(ロ)軟化点 J IS K 2!J/に準拠した。(b) Softening point J IS K 2! Compliant with J/.
(ハ) タフネス及びテナシティ
ベンノン法により測定した。但し、温度=S℃、引張り
速度よθθ閣/分、引張り量somとした。(c) Toughness and tenacity were measured by the benone method. However, the temperature was S°C, the pulling speed was θθ min/min, and the pulling amount was som.
に) 60部粘度
JAA−OO/(JAA:日本アスファルト協会試験法
)に従い、減圧毛細管粘度計により測定した。) 60 parts viscosity Measured using a reduced pressure capillary viscometer according to JAA-OO/(JAA: Japan Asphalt Association Test Method).
(ホ) ibo℃、/ 70部粘度
ASTM DJ&A9によりBROOKFIELD型粘
度計を用いて測定した。(E) ibo°C, /70 parts Viscosity Measured using a BROOKFIELD type viscometer according to ASTM DJ&A9.
なお、第4表中、ゴムラテックスの性状に関する試験方
法は以下の通りである。In Table 4, the test methods regarding the properties of rubber latex are as follows.
(a) 結合スチレン量 JIS K63!;りに準拠し測定した。(a) Amount of bound styrene JIS K63! ; Measured according to the following.
(b) ムーニー粘度(MLl +4.100℃)ゴ
ムラテックスからゴム成分を回収し、該ゴムをJISK
b3g3に準拠し、測定した。(b) Mooney viscosity (MLl +4.100°C) The rubber component is recovered from the rubber latex, and the rubber is
Measured according to b3g3.
(c) 分子量 既述のとおり。(c) Molecular weight As already mentioned.
(実施例−コ)
n−オクチルメルカプタン添加量を0.2部とした以外
は実施例−7に準じた。(Example-7) The procedure of Example-7 was followed except that the amount of n-octyl mercaptan added was 0.2 parts.
(実施例−3)
分子量調節剤を0.3部部のれ一オクチルメルカプタン
と0.06部の第3級ドデシルメルカプタン(t−DM
)の併用とした以外は実施例−7に準じた。(Example 3) Molecular weight modifiers were mixed with 0.3 parts of mono-octyl mercaptan and 0.06 parts of tertiary dodecyl mercaptan (t-DM).
) was used in combination with Example 7.
(実施例−4り
分子量調節剤としてOoり0部のn−オクチルメルカプ
タンを用い実施例−7に準じて重合したSBRラテック
ス(ムーニー粘度ML1+49 ff )と、01aO
部のt−ドデシルメルカプタンを用いて重合したSBR
;ラテックス(ムーニー粘度ML1+4 !r O)と
をl:/ブレンド(ラテックスブレンド)したラテック
ス(ムーニー粘度M LX +473)を用いた以外は
、実施例−/に準じた。(Example 4) SBR latex (Mooney viscosity ML1+49 ff) polymerized according to Example 7 using 0 parts of n-octyl mercaptan as a molecular weight regulator, and 01aO
SBR polymerized using t-dodecyl mercaptan
The procedure of Example 1 was followed except that a latex (Mooney viscosity MLX +473) obtained by blending (latex blend) with latex (Mooney viscosity ML1+4 !r O) was used.
(比較例−/)
分子量調節剤を0.2 g !r部のt−ドデシルメル
カプタンとした以外は実施例−7に準じた。(Comparative example -/) 0.2 g of molecular weight regulator! The procedure of Example 7 was followed except that t-dodecylmercaptan was used in the r part.
(比較例−2)
分子量調節剤を0.;t 0部のt−ドデシルメルカプ
タンとした以外は実施例−7に準じた。(Comparative Example-2) Molecular weight regulator was added to 0. The procedure of Example 7 was followed except that 0 part of t-dodecyl mercaptan was used.
(比較例−3)
分子量調節剤をQ。otr部のt−ドデシルメルカプタ
ンとした以外は実施例−/に準じた。(Comparative Example-3) Molecular weight regulator was Q. The same procedure as in Example 1 was followed except that the otr portion was replaced with t-dodecylmercaptan.
(比較例−4り
比較例−二と比較例−3で用いたSBRラテックク(各
々、ムーニー粘度ML1+4 !r O及び/!/)
を/:lにラテックスブレンドしたSBRラテックス(
ムーニー粘度MLl+97 )を用いた以外は実施例−
/に準じた。(Comparative Example-4) SBR latex used in Comparative Example-2 and Comparative Example-3 (Mooney viscosity ML1+4 !r O and /!/, respectively)
/:L latex blended SBR latex (
Example- except that Mooney viscosity MLl+97) was used.
According to /.
〔2〕混合物としての評価
(実施例S〜り、比較例S〜り)
(実施例−3)
実施例−/で得たゴム入りアスファルト5重量部と第3
表に示した骨材(S号砕石、6号砕石、り号砕石、粗砂
、細砂1石粉の混合物)93重量部とを170〜×/1
050℃の温度で混合して密粒度アスファルトコントリ
ート混合物を得た。この混合物を/り0℃で両面釜7S
回ずつ締固め、アスファルト舗装要綱に準拠してマーシ
ャル安定度試験を行なりた。評価結果を第ダ表に示す。[2] Evaluation as a mixture (Example S ~ 1, Comparative Example S ~ 2) (Example 3) 5 parts by weight of the rubber-containing asphalt obtained in Example 1 and 3
93 parts by weight of the aggregate shown in the table (a mixture of No. S crushed stone, No. 6 crushed stone, No. 3 crushed stone, coarse sand, and fine sand and 1 stone powder) and 170~×/1
A dense asphalt concrete mixture was obtained by mixing at a temperature of 0.050°C. Pour this mixture into a double-sided pot for 7S at 0℃.
It was compacted several times and subjected to Marshall stability tests in accordance with the asphalt pavement guidelines. The evaluation results are shown in Table D.
(実施例−6)
ゴム入りアスファルトとして実権例−2で得たアスファ
ルト組成物を用いた以外は実施例−3に準じた。(Example 6) The procedure of Example 3 was followed except that the asphalt composition obtained in Practical Example 2 was used as the rubber-containing asphalt.
(実施例−7)
ゴム入りアスファルトとして実施例−qで得たアスファ
ルト組成物を用いた以外は実施例−3に準じた。(Example 7) Example 3 was followed except that the asphalt composition obtained in Example q was used as the rubber-containing asphalt.
(比較例−よ)
ゴム入りアスファルトとして比較例−二で得たアスファ
ルト組成物を用いた以外は実施例−3に準じた。(Comparative Example-Y) The procedure of Example-3 was followed except that the asphalt composition obtained in Comparative Example-2 was used as the rubber-containing asphalt.
(比較例−6)
ゴム入りアスファルトとして比較例−3で得たアスファ
ルト組成物を用いた以外は実権例−よに準じた。(Comparative Example 6) The same procedure as in Actual Example 6 was conducted except that the asphalt composition obtained in Comparative Example 3 was used as the rubber-containing asphalt.
(比較例−7)
ストレートアスファルト(針入度60〜ざθ、昭和シェ
ル石油株式会社製)!r重量部と第3表に示した骨材(
S号砕石、6号砕石、7号砕石、粗砂、細砂、石粉の混
合物)95重量部とを130〜ibo℃の温度で混合し
て、密粒度アスファルトコンクリート混合物を得た。(Comparative Example-7) Straight asphalt (penetration 60 to θ, manufactured by Showa Shell Sekiyu Co., Ltd.)! r parts by weight and the aggregate shown in Table 3 (
A mixture of No. S crushed stone, No. 6 crushed stone, No. 7 crushed stone, coarse sand, fine sand, and stone powder) was mixed at a temperature of 130 to ibo° C. to obtain a dense-grained asphalt concrete mixture.
この混合物を/ダ3℃で両面7!回ずつ締固め、アスフ
ァルト舗装要綱に準拠してマーシャル安定度試験を行な
った。評価結果は第←表に示した。Pour this mixture on both sides at 3°C! It was compacted once at a time and a Marshall stability test was conducted in accordance with the asphalt pavement guidelines. The evaluation results are shown in Table ←.
*)スティフネスとは安定度をフロー値で割った値(S
/F )であり、建設省で行われたアスファルト舗装の
塑性流動に関する全国的調査結果1)によるとわだち堀
れに比較的相関するものとして示されている。*) Stiffness is the value obtained by dividing the stability by the flow value (S
/F), and according to the results of a nationwide survey on plastic flow in asphalt pavement conducted by the Ministry of Construction1), it is shown to be relatively correlated with rutting.
1)第3.2回建設省研究会報告、(財)土木研究セン
ター p−77〜231I。1) Report of the 3.2nd Ministry of Construction Study Group, Civil Engineering Research Center, p-77-231I.
7979年lθ月
(発明の効果)
以上のように本発明のゴムラテックスを配合したアスフ
ァルト組成物は、タフネス、テナシティといったアスフ
ァルト性能が大きく優れる一方、施工性(作業性)の指
標である高温粘度を低く抑えられることから、従来、二
律背反であったアスファルト性能〜作業性バランスを大
幅に改良していることが判る。また舗装用混合物のマー
シャル安定度及びスティフネメも高く、実際に舗装施工
した場合、作業性が良好であり、また耐わだち堀れ性、
耐摩耗性の優れた道路が得られる。lθ, 7979 (Effects of the Invention) As described above, the asphalt composition blended with the rubber latex of the present invention has greatly superior asphalt properties such as toughness and tenacity, while exhibiting low high-temperature viscosity, which is an indicator of workability. Since it can be kept low, it can be seen that the balance between asphalt performance and workability, which has traditionally been a trade-off, has been significantly improved. In addition, the marshall stability and stiffness of the pavement mixture are high, and when actually used in pavement construction, workability is good, and rut resistance and
A road with excellent wear resistance can be obtained.
第1図は実施例及び比較例で用いたSBRラテックスの
代表的な分子量分布である。分子量調節剤としてれ一オ
クチルメルカプタンを用いた本発明SBRラテックスの
分子量分布は1−ドデシルメルカプタンを用いている通
常のSBRラテックスに比べ、極端にブロードであるこ
とが判る。
第2図及び第3図は、アスファルト性能の指標の一つで
あるタフネス及びテナシティと施工性(作業性)の指標
であるアスファルト高温粘度(ito℃)とをプロット
したグラフである。FIG. 1 shows a typical molecular weight distribution of SBR latex used in Examples and Comparative Examples. It can be seen that the molecular weight distribution of the SBR latex of the present invention using 1-octyl mercaptan as a molecular weight regulator is extremely broader than that of a conventional SBR latex using 1-dodecyl mercaptan. FIGS. 2 and 3 are graphs plotting toughness and tenacity, which are indicators of asphalt performance, and asphalt high temperature viscosity (ito°C), which is an indicator of workability (workability).
Claims (2)
0重量部を分子量調節剤の必須成分として乳化重合した
スチレン−ブタジエン共重合体を、少なくとも30重量
に以上含有し、 (ロ)分子量が4.5×10^4以下の成分を15重量
%以上、かつ、分子量が、5.0×/10^5以上の成
分を30重量に以上含有する。 結合スチレン量が10〜35重量%、ムーニー粘度(M
L_1_+_4、/00℃)が50〜140の範囲のス
チレン−ブタジエン共重合体を、アスファルト100重
量部に対し、1〜10重量部配合したことを特徴とする
アスファルト組成物。(1) (a) n-octyl mercaptan 0.05-5.
Contains at least 30 parts by weight of emulsion-polymerized styrene-butadiene copolymer with 0 parts by weight as an essential component of the molecular weight modifier, and (b) 15% by weight or more of a component with a molecular weight of 4.5 x 10^4 or less. , and contains 30 or more components by weight with a molecular weight of 5.0×/10^5 or more. The amount of bound styrene is 10 to 35% by weight, the Mooney viscosity (M
An asphalt composition characterized in that 1 to 10 parts by weight of a styrene-butadiene copolymer having a L_1_+_4, /00°C) of 50 to 140 is blended to 100 parts by weight of asphalt.
と骨材とを混合したことを特徴とするアスファルト舗装
組成物。(2) An asphalt pavement composition characterized by mixing the asphalt composition according to claim 1 with aggregate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20944889A JP2734666B2 (en) | 1989-08-11 | 1989-08-11 | Asphalt composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20944889A JP2734666B2 (en) | 1989-08-11 | 1989-08-11 | Asphalt composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0374464A true JPH0374464A (en) | 1991-03-29 |
JP2734666B2 JP2734666B2 (en) | 1998-04-02 |
Family
ID=16573035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20944889A Expired - Fee Related JP2734666B2 (en) | 1989-08-11 | 1989-08-11 | Asphalt composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2734666B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1035010C (en) * | 1991-08-31 | 1997-05-28 | 交通部重庆公路科学研究所 | Process for preparing rubber and pitch parent substance |
US8765847B2 (en) | 2012-11-12 | 2014-07-01 | Exxonmobil Research And Engineering Company | Asphalt compositions with cracking resistance additives |
EP2069432B1 (en) * | 2006-08-10 | 2016-02-10 | Synthomer Deutschland GmbH | Latex with reduced odour |
-
1989
- 1989-08-11 JP JP20944889A patent/JP2734666B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1035010C (en) * | 1991-08-31 | 1997-05-28 | 交通部重庆公路科学研究所 | Process for preparing rubber and pitch parent substance |
EP2069432B1 (en) * | 2006-08-10 | 2016-02-10 | Synthomer Deutschland GmbH | Latex with reduced odour |
US8765847B2 (en) | 2012-11-12 | 2014-07-01 | Exxonmobil Research And Engineering Company | Asphalt compositions with cracking resistance additives |
Also Published As
Publication number | Publication date |
---|---|
JP2734666B2 (en) | 1998-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1737914B1 (en) | A polymer modified bitumen composition to be used in asphalt binders or roofing compositions | |
US4818367A (en) | Asphalt, copolymer and elastomer composition | |
US7439286B2 (en) | Modified asphalt compositions | |
US5371121A (en) | Bitumen compositions containing bitumen, polymer and sulfur | |
US5795929A (en) | Polymer enhanced asphalt emulsion | |
CN103347912B (en) | Alternation triblock copolymer | |
US20050101702A1 (en) | Modified asphalt compositions | |
MX2007011890A (en) | Blends of styrene butadiene copolymers with ethylene acrylate copolymers and ethylene based wax for asphalt modification. | |
US3669918A (en) | Bituminous compositions containing high molecular weight ethylene/propylene copolymer | |
JPH0525396A (en) | Asphalt composition for pavement | |
US20100256265A1 (en) | Sulfur Extended Polymer for use in Asphalt Binder and Road Maintenance | |
EP1586606A1 (en) | An asphalt binder based on polymer modified bitumen, hot mix asphalts made thereof, and pavements made therefrom | |
DE69011307T2 (en) | Modified asphalt. | |
GB2164344A (en) | Bituminous compositions and preparation thereof | |
KR101019827B1 (en) | Binder composition for color asphalt having improved mechanical property, anti-aging property, and crack resistance, and method for preparing the same | |
USH876H (en) | Bitumen composition | |
US20050032941A1 (en) | Liquid asphalt modifier | |
JPH0374464A (en) | Asphalt composition | |
US7205344B2 (en) | Crosslinker for modified asphalt | |
EP0726294A1 (en) | Asphalt cement modification | |
EP1639045A2 (en) | Asphalt-epoxy resin compositions | |
JPH10168323A (en) | Modified asphalt and its production | |
JPS5840349A (en) | Bituminous substance-containing composition | |
CA1321276C (en) | Asphalt composition | |
JPS63205360A (en) | Modified asphalt composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |