JPH037445B2 - - Google Patents

Info

Publication number
JPH037445B2
JPH037445B2 JP57013802A JP1380282A JPH037445B2 JP H037445 B2 JPH037445 B2 JP H037445B2 JP 57013802 A JP57013802 A JP 57013802A JP 1380282 A JP1380282 A JP 1380282A JP H037445 B2 JPH037445 B2 JP H037445B2
Authority
JP
Japan
Prior art keywords
rolling
rolling mill
signal
reaction force
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57013802A
Other languages
Japanese (ja)
Other versions
JPS58132309A (en
Inventor
Fumio Yoshida
Yoshikazu Kodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57013802A priority Critical patent/JPS58132309A/en
Publication of JPS58132309A publication Critical patent/JPS58132309A/en
Publication of JPH037445B2 publication Critical patent/JPH037445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Description

【発明の詳細な説明】 この発明は圧延材を圧延する圧延機において、
圧延機(ミル)の剛性の大きさを表わすミル定数
を、圧延材が変形する硬さを表わす塑性係数とを
推定する装置に関するものである。
[Detailed Description of the Invention] This invention provides a rolling mill for rolling a rolled material.
The present invention relates to a device for estimating the mill constant, which represents the rigidity of a rolling mill, and the plasticity coefficient, which represents the hardness with which a rolled material deforms.

一般的な圧延機の動作を第1図および第2図を
用いて示すと、第1図において1は圧延機の上作
業ロール、2は同じ圧延機の下作業ロール、3は
圧延材である。圧延材3が圧延機で圧延される前
の板厚をH、圧延さた後の板厚をh、圧延される
際に生じる圧延反力をF、圧延反力Fが零のとき
の上作業ロール1と下作業ロール2との間の間隙
をSとすると、各H,h,FおよびSの関係は第
2図の通り示される。第2図において、曲線Aは
上作業ロール1と下作業ロール2との間隙が圧延
反力の増大とともに大きくなることを示し、曲線
Aの傾きMをミル定数と称する。曲線Bは圧延材
3の板厚が圧延反力の増大とともに薄くなること
を示し、曲線Bの傾きQを塑性係数と称する。第
2図は、ロール間隙Sと圧延前の板厚Hが与えら
れたとき、圧延反力Fと圧延後の板厚hが曲線A
と曲線Bとの交点(釣り合い点)で決まることを
示す。ミル定数Mと塑性係数Qは前記の様に、圧
延材3の圧延後の板厚hに影響するもので、圧延
後の板厚hの精度を向上させるためにはミル定数
Mと塑性係数Qの大きさが精度良く把握される必
要があり、また公知の自動板厚制御(AGC)等
においても精度の高い自動板厚制御を行なうため
には、ミル定数Mと塑性係数Qが精度良く把握さ
れる必要があることは公知の事実である。
The operation of a general rolling mill is shown in Figures 1 and 2. In Figure 1, 1 is the upper work roll of the rolling mill, 2 is the lower work roll of the same rolling mill, and 3 is the rolled material. . The thickness of the rolled material 3 before it is rolled in the rolling mill is H, the thickness after rolling is h, the rolling reaction force generated when it is rolled is F, and the top work when the rolling reaction force F is zero. Assuming that the gap between the roll 1 and the lower work roll 2 is S, the relationships between H, h, F and S are shown in FIG. In FIG. 2, a curve A shows that the gap between the upper work roll 1 and the lower work roll 2 increases as the rolling reaction force increases, and the slope M of the curve A is called the Mill constant. Curve B indicates that the thickness of the rolled material 3 decreases as the rolling reaction force increases, and the slope Q of curve B is referred to as the plasticity coefficient. Figure 2 shows that when the roll gap S and the plate thickness H before rolling are given, the rolling reaction force F and the plate thickness h after rolling are curved A.
This shows that it is determined by the intersection (balance point) of and curve B. As mentioned above, the mill constant M and the plasticity coefficient Q affect the plate thickness h of the rolled material 3 after rolling, and in order to improve the accuracy of the plate thickness h after rolling, the mill constant M and the plasticity coefficient Q are It is necessary to accurately grasp the size of the mill constant M and the plasticity coefficient Q in order to perform highly accurate automatic plate thickness control in the well-known automatic plate thickness control (AGC) etc. It is a well-known fact that it is necessary to

しかもミル定数Mと塑性係数Qは、圧延機の各
ロール直径や、圧延材の板厚、圧延時の圧延反
力、圧延材が圧延される際の板温度等、各種圧延
状態によつて変化し、実際の圧延状態におけるミ
ル定数Mと塑性係数Qを精度良く把握する必要が
あるが、従来は圧延状態におけるミル定数Mと塑
性係数Qを同時に推定できる装置はなかつた。
Moreover, the mill constant M and the plasticity coefficient Q change depending on various rolling conditions such as the diameter of each roll of the rolling mill, the thickness of the rolled material, the rolling reaction force during rolling, and the plate temperature when the rolled material is rolled. However, it is necessary to accurately grasp the mill constant M and plasticity coefficient Q in the actual rolling state, but conventionally there has been no device that can simultaneously estimate the mill constant M and plasticity coefficient Q in the rolling state.

この発明は上記のような点にかんがみてなされ
たもので、圧延状態におけるミル定数Mと塑性係
数Qを同時に精度良く推定できるミル定数および
塑性係数の推定装置を提供することを目的として
いる。
The present invention has been made in view of the above points, and an object of the present invention is to provide a mill constant and plasticity coefficient estimating device that can simultaneously and accurately estimate the mill constant M and plasticity coefficient Q in a rolling state.

以下、この発明の一実施例を図について説明す
る。第3図において、4a,4b,4cは圧延材
3を連続して圧延する圧延機、3a,3b,3c
は各々圧延機4a,4b,4cの後方すなわち下
流側に存在する圧延材部分、3dは圧延機4aの
前方すなわち上流側に存在する圧延材部分、5は
圧延機4cの後方に設置された板厚測定器で、圧
延材3の圧延後の基準板厚(図示なし)からの変
動厚を信号6として出力するもの、7は圧延機4
aの前方に設置された板厚測定器で、圧延材3の
圧延前の基準板厚(図示なし)からの変動厚を信
号8として出力するもの、9a,9b,9c,9
dは各々圧延材部分3a,3b,3c,3dの圧
延材移動速度を測定し圧延材移動速度信号10
a,10b,10c,10dを出力する圧延材移
動速度測定器11a,11b,11cは、各々圧
延機4a,4b,4cに生じる圧延反力を検出す
る圧延反力検出器、12a,12b,12cは
各々圧延反力検出器11a,11b,11cが出
力する圧延反力信号の各基準圧延反力信号(図示
なし)からの変動を演算し圧延反力変動信号13
a,13b,13cとして出力するもの、14
a,14b,14cは信号の記憶・転送装置で、
各々圧延反力変動信号14a,14b,14cを
所定のタイミング毎に取り込み、記憶し、更に圧
延部分3a,3b,3cの移動速度信号10a,
10b,10cを用いて圧延材の移動に合わせて
前記記憶信号を装置内で転送し、記憶信号に相当
する圧延材部位が後方の圧延機に到着した時点で
信号15a,15b,15cとして出力するもの
である。すなわち装置14aは任意の圧延材部位
が圧延機4aで圧延された際に生じた圧延反力変
動信号13aを、その圧延材部位が圧延機4aか
ら圧延機4bの間を移動するにつれて装置14a
内で転送し、相当圧延材部位が圧延機4bに到着
した時点で、信号15aとして出力し、装置14
bは圧延機4bおよび4c間で同様の動作を行な
い、装置14cは圧延機4cおよび板厚測定器5
の間で同様の動作を行なうものである。16a,
16b,16cは各々圧延機4a,4b,4cの
上下作業ロール間隙を検出する装置、17a,1
7b,17cは各装置16a,16b,16cが
出力したロール間隙信号の各基準ロール間隙信号
(図示なし)からの変動を演算しロール間隙変動
信号18a,18b,18cとして出力するも
の、19a,19b,19cは各々前記記憶・転
送装置14a,14b,14cと同様にロール間
隙変動信号18a,18b,18cを圧延材の移
動に合わせて圧延機4aおよび4b間、4bおよ
び4c間、4cおよび板厚測定器5の間を各々記
憶・転送し、転送後の信号20a,20b,20
cを出力するものである。21aは圧延反力変動
信号13aとロール間隙変動信号18aと後記の
ミル定数推定値Maとにより下記(1)式にて圧延機
4a直下の出側板厚変動を演算し出側板厚変動信
号22aを出力するもの、21bおよび21cも
各々圧延機4bおよび4cについて同様の動作を
するものである。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 3, 4a, 4b, 4c are rolling mills that continuously roll the rolled material 3;
3d is a rolled material portion located in front of or upstream of the rolling mill 4a, and 5 is a plate installed at the rear of the rolling mill 4c. A thickness measuring device that outputs the varying thickness of the rolled material 3 from the standard thickness (not shown) after rolling as a signal 6, 7 is the rolling machine 4
A plate thickness measuring device installed in front of a, which outputs the variable thickness of the rolled material 3 from the standard plate thickness (not shown) before rolling as a signal 8, 9a, 9b, 9c, 9
d measures the rolling material movement speed of each of the rolled material portions 3a, 3b, 3c, and 3d, and generates a rolling material movement speed signal 10.
The rolling material movement speed measuring devices 11a, 11b, 11c that output signals a, 10b, 10c, and 10d are rolling reaction force detectors 12a, 12b, and 12c that detect rolling reaction forces generated in the rolling mills 4a, 4b, and 4c, respectively. calculates the variation of the rolling reaction force signals outputted by the rolling reaction force detectors 11a, 11b, and 11c from each reference rolling reaction force signal (not shown) to obtain the rolling reaction force fluctuation signal 13.
What is output as a, 13b, 13c, 14
a, 14b, and 14c are signal storage/transfer devices;
The rolling reaction force fluctuation signals 14a, 14b, 14c are captured and stored at predetermined timings, and the moving speed signals 10a,
10b and 10c are used to transfer the stored signal within the device as the rolled material moves, and when the rolled material portion corresponding to the stored signal arrives at the rear rolling mill, it is output as signals 15a, 15b, and 15c. It is something. That is, the device 14a transmits the rolling reaction force fluctuation signal 13a generated when an arbitrary rolled material portion is rolled by the rolling mill 4a, as the rolled material portion moves between the rolling mill 4a and the rolling mill 4b.
When the corresponding part of the rolled material reaches the rolling mill 4b, it is output as a signal 15a and sent to the device 14.
b performs the same operation between rolling mills 4b and 4c, and device 14c operates between rolling mill 4c and plate thickness measuring device 5.
The same operation is performed between the two. 16a,
16b, 16c are devices for detecting gaps between upper and lower work rolls of rolling mills 4a, 4b, 4c, respectively; 17a, 1;
7b, 17c calculate the variation of the roll gap signal outputted by each device 16a, 16b, 16c from each standard roll gap signal (not shown) and output it as roll gap variation signal 18a, 18b, 18c, 19a, 19b , 19c, similarly to the storage/transfer devices 14a, 14b, 14c, transmit the roll gap fluctuation signals 18a, 18b, 18c in accordance with the movement of the rolled material to determine between the rolling mills 4a and 4b, between 4b and 4c, between 4c and the plate thickness. The signals 20a, 20b, 20 are stored and transferred between the measuring devices 5 and
It outputs c. 21a calculates the outlet side plate thickness variation directly below the rolling mill 4a using the following equation (1) using the rolling reaction force variation signal 13a, the roll gap variation signal 18a, and the estimated mill constant value Ma described later, and generates the outlet side plate thickness variation signal 22a. The outputs 21b and 21c operate similarly to the rolling mills 4b and 4c, respectively.

△h=△F/Ma+△S ここで△h:出側板厚変動 △F:圧延反力変動 △S:ロール間隙変動 ……(1) 23は前記記憶・転送装置14aと同様に圧延
材移動速度信号10dを用い、圧延材部分3dの
移動に合わせ圧延材3の圧延前の変動厚信号8を
板厚測定器7と圧延機4aの間を記憶・転送し、
転送後の信号24を出力するものである。25c
は転送後の圧延反力変動信号15cと転送後のロ
ール間隙変動信号20cと圧延後の圧延材変動厚
信号6とにより下記方式にて圧延機4cのミル定
数を推定し推定値Mcを出力するもの、25bは
同様に圧延反力変動信号15bおよび13cとロ
ール間隙変動信号20bと圧延機4cの出側板厚
変動信号22cとを用いて圧延機4bのミル定数
と圧延機4cでの圧延材の塑性係数を推定し各推
定値Mb,Qcを出力するもの、25aは25bと
同様にして圧延機4aのミル定数推定値Maと圧
延機4bでの圧延材の塑性係数推定値Qbを出力
するもの、25dは転送後の圧延前の圧延材変動
厚信号24と圧延反力変動信号13aと圧延機4
aの出側板厚変動信号22aとを用いて圧延機4
aでの圧延材の塑性係数の推定値Qaを出力する
ものである。
△h=△F/Ma+△S Here, △h: Variation in plate thickness on exit side △F: Variation in rolling reaction force △S: Variation in roll gap... (1) 23 moves the rolled material in the same way as the storage/transfer device 14a. Using the speed signal 10d, the variable thickness signal 8 of the rolled material 3 before rolling is stored and transferred between the plate thickness measuring device 7 and the rolling mill 4a in accordance with the movement of the rolled material portion 3d,
It outputs the signal 24 after transfer. 25c
estimates the mill constant of the rolling mill 4c using the following method based on the transferred rolling reaction force variation signal 15c, the transferred roll gap variation signal 20c, and the rolled material variation signal 6 after rolling, and outputs the estimated value Mc. Similarly, 25b calculates the mill constant of the rolling mill 4b and the value of the rolled material in the rolling mill 4c using the rolling reaction force variation signals 15b and 13c, the roll gap variation signal 20b, and the exit plate thickness variation signal 22c of the rolling mill 4c. 25a is the one that estimates the plasticity coefficient and outputs each estimated value Mb, Qc, and 25a is the one that outputs the estimated mill constant Ma of the rolling mill 4a and the estimated value Qb of the plasticity coefficient of the rolled material in the rolling mill 4b in the same way as 25b. , 25d are the rolled material variation thickness signal 24 before rolling after transfer, the rolling reaction force variation signal 13a, and the rolling mill 4.
The rolling mill 4 uses the output side plate thickness variation signal 22a of
The estimated value Qa of the plasticity coefficient of the rolled material at point a is output.

以下に推定装置25a,25b,25c,25
dにおける推定方式の一例を示す。
The estimation devices 25a, 25b, 25c, 25 are as follows.
An example of an estimation method in d is shown.

ここで、△hi:第i圧延機の出側板厚変動(信
号22に相当) △Fi:第i圧延機の圧延反力変動(信号13に
相当) △Si:第i圧延機のロール間隙変動(信号18
に相当) △Hi:第i圧延機の入側板厚変動 Mi:第i圧延機のミル定数 Qi:第i圧延機での圧延材塑性係数 △Fi′:△Fiを転送後のもの(信号15に相当) △Si′:△Siを転送後のもの(信号20に相当) △hx:圧延後の圧延材変動厚(信号6に相当) △Ho:圧延前の圧延材変動厚(信号8に相当) △Ho′:△Hoを転送後のもの(信号24に相
当) まず基本式として △Hi=△Fi/Mi+△Si ……(2) △Fi=Qi(△Hi−△hi) ……(3) が成立し、また △Hi=△h′(i−1) ……(4) であるため各圧延機4a,4b,4cについて下
式が成立する。
Here, △hi: Variation in exit plate thickness of the i-th rolling mill (corresponding to signal 22) △Fi: Rolling reaction force variation in the i-th rolling mill (corresponding to signal 13) △Si: Roll gap variation in the i-th rolling mill (Signal 18
) △Hi: Variation in plate thickness at the entrance of the i-th rolling mill Mi: Mill constant of the i-th rolling mill Qi: Plasticity coefficient of the rolled material at the i-th rolling mill △Fi′: After transferring △Fi (signal 15 ) △Si': After transferring △Si (corresponds to signal 20) △hx: Variable thickness of rolled material after rolling (corresponds to signal 6) △Ho: Variable thickness of rolled material before rolling (corresponds to signal 8) (equivalent) △Ho′: After transferring △Ho (equivalent to signal 24) First, as a basic formula: △Hi=△Fi/Mi+△Si ……(2) △Fi=Qi (△Hi−△hi) …… (3) holds, and since △Hi=△h'(i-1)...(4), the following formula holds true for each rolling mill 4a, 4b, and 4c.

△hx=△h′c=△F′c/Mc+△S′c ……(5) △Fc/Qc=△Hc−△hc =△h′b−△hc =△F′b/Mb+△S′b−△hc ……(6) 同様に △Fb/Qb=△F′a/Ma+△S′a−△hb ……(7) △Fa/Qa=△H′o−△ha ……(8) 前記(5)、(6)、(7)、(8)式は各々変形して行列形成
で書くと、 (−△F′c)・(1/Mc)=(△S′c−△hx) ……(9) (△Fc、−△F′b)・(1/QC 1Mb) =(△S′b−△hc) ……(10) (△Fb、−△F′a)・(1/QC 1Ma) =(△S′a−△hb) ……(11) (△Fa)・(1/Qa)=(△H′o−△ha) ……(12) ここで例えば(10)式において説明すると、所定の
タイミング毎に、信号量△Fc、△Fb′、△Sb′、
△hcを同時に採集し、それをn回採集したとす
れば、下記(13)式が成立する。
△hx=△h′c=△F′c/Mc+△S′c ……(5) △Fc/Qc=△Hc−△hc =△h′b−△hc =△F′b/Mb+△S ′b−△hc ……(6) Similarly, △Fb/Qb=△F′a/Ma+△S′a−△hb ……(7) △Fa/Qa=△H′o−△ha ……( 8) Equations (5), (6), (7), and (8) above are transformed and written in matrix formation, (−△F′c)・(1/Mc)=(△S′c− △hx) ……(9) (△Fc, −△F′b)・( 1/QC 1Mb ) = (△S′b−△hc) ……(10) (△Fb, −△F′a)・( 1/QC 1Ma ) = (△S′a−△hb) ……(11) (△Fa)・(1/Qa)=(△H′o−△ha) ……(12) Here, for example To explain in equation (10), the signal amounts △Fc, △Fb′, △Sb′,
If Δhc is collected at the same time and collected n times, the following formula (13) holds true.

上記(13)式をもとに1/Qcおよび1/Mbの
最も精度の良い推定値が下記(14)〜(16)式で
求められることは公知である。
It is well known that the most accurate estimated values of 1/Qc and 1/Mb can be obtained from the following equations (14) to (16) based on the above equation (13).

ここで 〓T・=△Fc1、△Fc2…、△Fcn −△Fb′1、−△Fb′2…、−△Fb′n ……(16) ここで△Sb′は信号20b、△hcは信号22
c、△Fcは信号13c、△Fb′は信号15bに
各々対応し、前記(14)〜(16)式の演算を装置
25bにて行なうものである。
here 〓T・=△Fc 1 , △Fc 2 ..., △Fcn −△Fb′ 1 , −△Fb′ 2 ..., −△Fb′n ... (16) Here, △Sb′ is the signal 20b, and △hc is signal 22
c and ΔFc correspond to the signal 13c, and ΔFb' corresponds to the signal 15b, respectively, and the calculations of equations (14) to (16) are performed by the device 25b.

前記(9)、(11)、(12)式についても同様にして、各々
(1/Mc)、(1/Qb、1/Ma)、(1/Qa)の
推定を求めることができる。なお前記(13)〜
(16)式においては、n次の行列マトリツクスと
して推定値(1/Qc、1/Mb)を求める方式を
示したが、行列の遂次計算法等を用いることによ
り行列マトリツクスの次数をn次まで増大させず
に計算する方式も可能であるが、ここでは省略す
る。
Estimates of (1/Mc), (1/Qb, 1/Ma), and (1/Qa) can be obtained in the same manner for the above equations (9), (11), and (12), respectively. Note that (13) above
In Equation (16), we have shown a method to obtain the estimated value (1/Qc, 1/Mb) as an n-order matrix, but by using a matrix sequential calculation method, we can change the order of the matrix to n-th order. Although it is also possible to calculate without increasing the number, this method is omitted here.

以上の方式により、推定装置25a,25b,
25c,25dにおいて各々Ma,Qb,Mb,
Qc,Mc,Qaと全ての圧延機のミル定数Mおよ
び全ての圧延機における圧延材の塑性係数Qを推
定することができる。
By the above method, the estimation devices 25a, 25b,
At 25c and 25d, Ma, Qb, Mb,
Qc, Mc, Qa, the mill constant M of all rolling mills, and the plasticity coefficient Q of the rolled material in all rolling mills can be estimated.

なお、前記実施例では圧延前の圧延材変動厚の
測定のために板厚測定器7を設けたものを示した
が、連続圧延機4a〜4cより前方に設けられた
別の圧延機(図示なし)において間接的に圧延材
変動厚(圧延機直下の出側板厚変動)を測定する
ものでもよい。
In the above embodiment, the plate thickness measuring device 7 was installed to measure the fluctuating thickness of the rolled material before rolling. It may also be possible to indirectly measure the variation in the thickness of the rolled material (the variation in the thickness of the exit side directly under the rolling mill) in the case where there is no such method.

また、板厚測定器7または相当のものが設置さ
れない場合には、圧延機4aでの圧延材の塑性係
数Qaは推定できないが、全てのミル定数Ma,
Mb,Mcおよび他の塑性係数Qb,Qcは推定可能
であり、十分な効果を奏する。
In addition, if the plate thickness measuring device 7 or equivalent is not installed, the plasticity coefficient Qa of the rolled material in the rolling mill 4a cannot be estimated, but all the mill constants Ma,
Mb, Mc and other plasticity coefficients Qb, Qc can be estimated and have sufficient effects.

また、各圧延機4a〜4cの前方または後方の
圧延材移動速度測定のために圧延材移動速度測定
器9a〜9dを設けたものを示したが、圧延材の
移動速度測定は各圧延機の作業ロールに作業ロー
ルの回転速度を検出する装置を設け、その検出信
号と各圧延機に対する圧延材速度の先進率または
後進率を用いて各圧延機の出側または入側の圧延
材移動速度を間接的に測定するものでも良い。
In addition, although the rolling material moving speed measurement device 9a to 9d is shown to measure the moving speed of the rolled material in front or behind each rolling mill 4a to 4c, the measuring device 9a to 9d is installed to measure the moving speed of the rolled material in each rolling mill. The work roll is equipped with a device that detects the rotational speed of the work roll, and the detection signal and the advancing rate or backward rate of the rolling material speed for each rolling mill are used to determine the rolling material moving speed on the exit side or entry side of each rolling mill. It may also be measured indirectly.

また、装置21a,21b,21cにおいて、
前記(1)式により各圧延機直下の出側板厚変動(△
h)を演算するに際し、ミル定数Mとして装置2
5a,25b,25cで推定したミル定数推定値
Ma,Mb,Mcを用いるものを示したが、ミル定
数として推定値ではなく別途設定された設定値等
を用いてもよい。
Moreover, in the devices 21a, 21b, 21c,
According to the above formula (1), the thickness variation (△
h), device 2 is used as the Mill constant M.
Estimated Mill constant values estimated by 5a, 25b, 25c
Although Ma, Mb, and Mc are shown as being used, separately set values may be used instead of estimated values as the Mill constants.

また、前記実施例では圧延機が3台のものにつ
いて示したが圧延機が1台のみ、または2台、ま
たは4台以上のものであつても同様に実施でき
る。
Furthermore, although the above embodiments have been shown using three rolling mills, the same method can be applied even if there is only one rolling mill, two rolling mills, or four or more rolling mills.

また、前記実施例では圧延材の厚み(板厚)方
向に関する場合について説明したが、圧延材の幅
(板幅)方向に関する場合であつてもよく、前記
実施例と同様の効果を奏する。
Furthermore, in the embodiment described above, the case is related to the thickness (plate thickness) direction of the rolled material, but the case may be related to the width (plate width) direction of the rolled material, and the same effects as in the embodiment described above can be obtained.

以上のようにこの発明によれば従来は実施でき
なかつた圧延材の圧延状態における各圧延機のミ
ル定数と各圧延機での圧延材の塑性係数を精度よ
く推定することができ、圧延後の圧延材の板厚ま
たは板幅の精度を向上することができ、また自動
板厚制御または自動板幅制御等の制御精度を向上
することができる等効果がある。
As described above, according to the present invention, it is possible to accurately estimate the mill constant of each rolling mill and the plasticity coefficient of the rolled material in each rolling mill in the rolling state of the rolled material, which has not been possible in the past. It is possible to improve the accuracy of the plate thickness or width of the rolled material, and it is also possible to improve the accuracy of control such as automatic plate thickness control or automatic plate width control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は圧延機の動作を説明する
説明図、第3図はこの発明の一実施例による圧延
機のミル定数と圧延材の塑性係数を推定する装置
を示す構成図である。 図において、1は上作業ロール、2は下作業ロ
ール、3,3a,3b,3c,3dは圧延材また
は圧延材部分、4a,4b,4cは圧延機、5,
7は板厚測定器、6,8は変動厚信号、9a,9
b,9c,9dは圧延材移動速度測定器、10
a,10b,10c,10dは圧延材移動速度信
号、11a,11b,11cは圧延反力検出器、
12a,12b,12cは圧延反力変動演算装
置、13a,13b,13cは圧延反力変動信
号、14a,14b,14c,19a,19b,
19c,23は記憶・転送装置、15a,15
b,15cは転送後の圧延反力変動信号、16
a,16b,16cはロール間隙検出器、17
a,17b,17cはロール間隙変動演算装置、
18a,18b,18cはロール間隙変動信号、
20a,20b,20cは転送後のロール間隙変
動信号、21a,21b,21cは出側板厚変動
演算装置、22a,22b,22cは出側板厚変
動信号、24は転送後の変動厚信号、25a,2
5b,25c,25dは推定装置、なお、図中、
同一符号は同一または相当部分を示す。
1 and 2 are explanatory diagrams explaining the operation of a rolling mill, and FIG. 3 is a configuration diagram showing a device for estimating the mill constant of a rolling mill and the plasticity coefficient of a rolled material according to an embodiment of the present invention. . In the figure, 1 is an upper work roll, 2 is a lower work roll, 3, 3a, 3b, 3c, 3d are rolled materials or rolled material parts, 4a, 4b, 4c are rolling machines, 5,
7 is a plate thickness measuring device, 6 and 8 are variable thickness signals, 9a, 9
b, 9c, 9d are rolling material movement speed measuring devices, 10
a, 10b, 10c, 10d are rolling material movement speed signals, 11a, 11b, 11c are rolling reaction force detectors,
12a, 12b, 12c are rolling reaction force fluctuation calculation devices; 13a, 13b, 13c are rolling reaction force fluctuation signals; 14a, 14b, 14c, 19a, 19b,
19c, 23 are storage/transfer devices, 15a, 15
b, 15c are rolling reaction force fluctuation signals after transfer, 16
a, 16b, 16c are roll gap detectors, 17
a, 17b, 17c are roll gap variation calculation devices;
18a, 18b, 18c are roll gap fluctuation signals;
20a, 20b, 20c are roll gap variation signals after transfer, 21a, 21b, 21c are outlet side plate thickness variation calculation devices, 22a, 22b, 22c are outlet side plate thickness variation signals, 24 are variation thickness signals after transfer, 25a, 2
5b, 25c, 25d are estimation devices; in the figure,
The same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 圧延材を連続した2台以上の圧延機で圧延す
るようにしたものにおいて、 第i番目圧延機の圧延反力の変動を検出しその
変動信号を出力する装置と、第i番目圧延機のロ
ール間隙の変動を検出しその変動信号を出力する
装置と、前記圧延反力変動信号およびロール間隙
変動信号を記憶し圧延材の相当する被検出部分が
第(i+1)番目圧延機の位置に到着したタイミ
ングで前記記憶した圧延反力変動信号およびロー
ル間隙変動信号を出力する記憶装置と、第(i+
1)番目圧延機の圧延反力の変動を検出しその変
動信号を出力する装置と、第(i+1)番目圧延
機直下の出側板厚の変動を演算しその圧延機直下
板厚変動信号を出力する装置と、前記記憶装置が
出力した圧延反力変動信号およびロール間隙変動
信号と第(i+1)番目圧延機の圧延反力変動信
号と第(i+1)番目圧延機直下出側板厚変動信
号とを用いて第i番目圧延機のミル定数と第(i
+1)番目圧延機における圧延材の塑性係数とを
推定する装置とを備えた圧延機ミル定数と圧延材
塑性係数の推定装置。 2 圧延材を連続した2台以上の圧延機で幅方向
に圧延するようにしたものにおいて、 第i番目圧延機の圧延反力の変動を検出しその
変動信号を出力する装置と、第i番目圧延機のロ
ール間隙の変動を検出しその変動信号を出力する
装置と、前記圧延反力変動信号およびロール間隙
変動信号を記憶し圧延材の相当する被検出部分が
第(i+1)番目圧延機の位置に到着したタイミ
ングで前記記憶した圧延反力変動信号およびロー
ル間隙変動信号を出力する記憶装置と、第(i+
1)番目圧延機の圧延反力の変動を検出しその変
動信号を出力する装置と、第(i+1)番目圧延
機直下の出側板幅の変動を演算しその圧延機直下
板幅変動信号を出力する装置と、前記記憶装置が
出力した圧延反力変動信号およびロール間隙変動
信号と第(i+1)番目圧延機の圧延反力変動信
号と第(i+1)番目圧延機直下出側板幅変動信
号とを用いて第i番目圧延機のミル定数と第(i
+1)番目圧延機における圧延材の塑性係数とを
推定する装置とを備えた圧延機ミル定数と圧延材
塑性係数の推定装置。
[Scope of Claims] 1. In a device in which a rolled material is rolled by two or more consecutive rolling mills, a device for detecting fluctuations in rolling reaction force of the i-th rolling mill and outputting a signal of the fluctuation; A device that detects a variation in the roll gap of the i-th rolling mill and outputs the variation signal, and a device that stores the rolling reaction force variation signal and the roll gap variation signal, and detects the corresponding detected portion of the rolled material at the (i+1)th rolling mill. a storage device that outputs the stored rolling reaction force fluctuation signal and roll gap fluctuation signal at the timing of arrival at the location of the rolling mill;
1) A device that detects fluctuations in the rolling reaction force of the th rolling mill and outputs a fluctuation signal thereof, and a device that calculates fluctuations in the thickness of the exit side directly under the (i+1)th rolling mill and outputs a fluctuation signal of the thickness of the sheet directly under the rolling mill. a rolling reaction force variation signal, a roll gap variation signal, a rolling reaction force variation signal of the (i+1)th rolling mill, and a plate thickness variation signal on the outlet side immediately below the (i+1)th rolling mill outputted by the storage device; The mill constant of the i-th rolling mill and the (i-th
+1) A device for estimating a rolling mill constant and a plasticity coefficient of a rolled material, including a device for estimating a plasticity coefficient of a rolled material in a rolling mill. 2. In a device in which a rolled material is rolled in the width direction by two or more consecutive rolling mills, a device for detecting fluctuations in the rolling reaction force of the i-th rolling mill and outputting a signal of the fluctuation; A device that detects fluctuations in the roll gap of a rolling mill and outputs a fluctuation signal thereof, and a device that stores the rolling reaction force fluctuation signal and roll gap fluctuation signal and detects the corresponding detected portion of the rolled material of the (i+1)th rolling mill. a storage device that outputs the stored rolling reaction force fluctuation signal and roll gap fluctuation signal at the timing of arrival at the position;
1) A device that detects fluctuations in the rolling reaction force of the th rolling mill and outputs a fluctuation signal thereof, and a device that calculates fluctuations in the width of the exit side strip directly below the (i+1)th rolling mill and outputs a fluctuation signal of the width of the strip directly below the rolling mill. a rolling reaction force variation signal, a roll gap variation signal, a rolling reaction force variation signal of the (i+1)th rolling mill, and an exit side plate width variation signal immediately below the (i+1)th rolling mill outputted by the storage device; The mill constant of the i-th rolling mill and the (i-th
+1) A device for estimating a rolling mill constant and a plasticity coefficient of a rolled material, including a device for estimating a plasticity coefficient of a rolled material in a rolling mill.
JP57013802A 1982-01-28 1982-01-28 Estimating device of mill constant of rolling mill and plasticity coefficient of rolled material Granted JPS58132309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57013802A JPS58132309A (en) 1982-01-28 1982-01-28 Estimating device of mill constant of rolling mill and plasticity coefficient of rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013802A JPS58132309A (en) 1982-01-28 1982-01-28 Estimating device of mill constant of rolling mill and plasticity coefficient of rolled material

Publications (2)

Publication Number Publication Date
JPS58132309A JPS58132309A (en) 1983-08-06
JPH037445B2 true JPH037445B2 (en) 1991-02-01

Family

ID=11843383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013802A Granted JPS58132309A (en) 1982-01-28 1982-01-28 Estimating device of mill constant of rolling mill and plasticity coefficient of rolled material

Country Status (1)

Country Link
JP (1) JPS58132309A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127209A (en) * 1974-08-29 1976-03-06 Mitsubishi Metal Corp
JPS5148743A (en) * 1974-10-24 1976-04-27 Sumitomo Metal Ind
JPS5333097A (en) * 1976-09-08 1978-03-28 Hochiki Co Warning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127209A (en) * 1974-08-29 1976-03-06 Mitsubishi Metal Corp
JPS5148743A (en) * 1974-10-24 1976-04-27 Sumitomo Metal Ind
JPS5333097A (en) * 1976-09-08 1978-03-28 Hochiki Co Warning device

Also Published As

Publication number Publication date
JPS58132309A (en) 1983-08-06

Similar Documents

Publication Publication Date Title
KR890000118B1 (en) Rolling mill control system
JPH037445B2 (en)
JP2536970B2 (en) Plate thickness measurement method
JPS6150047B2 (en)
JPH0569021A (en) Method and device for controlling rolling mill
JPS631124B2 (en)
JPS62124011A (en) Automatic plate thickness control device
JPH07164031A (en) Device for estimating and controlling warp caused by rolling
JPH0714527B2 (en) Automatic thickness control device
JPS638846B2 (en)
JPH05104123A (en) Hot continuous rolling method
JP2728269B2 (en) Method of measuring flat shape of metal plate during rolling
JPH09178460A (en) Method of measuring elongation percentage of steel strip on refining rolling line
JPH029885B2 (en)
JPH0671616B2 (en) Plate thickness control device for rolling mill
JPH04344812A (en) Method for estimating rolling characteristic value
JPH0929316A (en) Setup method in hot finish rolling
JPH06258033A (en) Plate thickness detecting method on inlet and outlet side of mill
EP0151675B1 (en) Method of automatically controlling the rate of reduction in a rolling mill
JP2716866B2 (en) Mass flow controller for tandem rolling mill
JP2021058923A (en) Estimation method and calculation device of material property in cold rolling, control method and control device, manufacturing method and manufacturing facility of cold rolled plate
JPH0847706A (en) Estimating method and learning method of forward slip in continuous rolling mill
JPH10244304A (en) Continuous rolling method
JPH0647127B2 (en) A learning method for strip thickness control in hot finish rolling
JPS6236765B2 (en)