JPH037442A - Fault equipment location system - Google Patents

Fault equipment location system

Info

Publication number
JPH037442A
JPH037442A JP1143564A JP14356489A JPH037442A JP H037442 A JPH037442 A JP H037442A JP 1143564 A JP1143564 A JP 1143564A JP 14356489 A JP14356489 A JP 14356489A JP H037442 A JPH037442 A JP H037442A
Authority
JP
Japan
Prior art keywords
channel
minor
faulty
fault
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143564A
Other languages
Japanese (ja)
Inventor
Kiyohiko Baba
馬場 清彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1143564A priority Critical patent/JPH037442A/en
Publication of JPH037442A publication Critical patent/JPH037442A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain location of a faulty equipment accurately by selecting one equipment among plural equipment groups, connecting selected equipments in series, operating them and managing a fault occurrence history while using an equipment connected when a light fault takes place as an element of a matrix. CONSTITUTION:Suppose that a sub channel 3 is faulty, then a light fault must be caused in all paths using the sub channel 3 and a light fault occurrence number F6 reaches a specified number of times or over and it is discriminated as the occurrence of a fault. However, light fault occurrence numbers F1-F5, F7 are dispersed to each channel and input/output devices, then the number does not reach the specified number of times or over, the location of the fault is attained. Moreover, when a path between the channel 2 and the sub channel 3 is faulty, the light fault occurrence numbers F1, F3-F7 do not reach the specified number of times or over, but the light fault occurrence numbers F2 reaches the specified number of times or over. Thus, a faulty equipment is located accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は交換機システムなどにおける軽度障害多発時の
障害装置切り分け方式に関し、特に複数の装置群の中か
らそれぞれ1つの装置が選択され選択された装置が直列
に接続されて動作する場合の障害装置切り分け方式に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a system for isolating faulty devices when a number of minor faults occur in a switching system, etc., and particularly relates to a method for isolating faulty devices when a number of minor faults occur in a switching system or the like. This invention relates to a faulty device isolation method when devices are connected in series and operate.

〔従来の技術〕[Conventional technology]

従来の障害装置切り分け方式においては、軽度障害が発
生した際に、軽度障害のパターンから障害が発生したと
みなす装置群を一意的に決定し、決定された装置群内の
接続装置における一定時間前からその時点までの軽度障
害発生回数を調べ、規定回数以上の軽度障害が発生した
場合その決定された装置が障害であると判定していた。
In the conventional failure device isolation method, when a minor failure occurs, a group of devices that are considered to have failed is uniquely determined based on the pattern of the minor failure, and the connected device within the determined device group is identified a certain period of time ago. The number of times minor failures have occurred since then was checked, and if a minor failure occurred more than a specified number of times, it was determined that the device was at fault.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の障害装置切り分け方式では、多発する軽
度障害のパターンと障害を起こしている装置群を関係付
けることは、ハードウェアの設計者が設計初期に検討し
た結果であり、現実にその決定が妥当であるか否かは、
製品の検査が終了するまで正確にはわからないことがあ
る。一方、実際に障害装置の切り分けを行う機能はハー
ドウェアの開発と平行して開発されるソフトウェアにて
実現されることが一般的であり、ハードウェアの検査が
終了するまでに発見された軽度障害のパターンから障害
が発生したとみなす装置群の変更がハードウェア開発者
からソウトウエア開発者へ報告されるたびに、ソフトウ
ェア開発者は膨大な後戻りの作業を行う。
In the conventional failure device isolation method described above, the relationship between the pattern of frequent minor failures and the group of devices causing the failure is the result of consideration by the hardware designer at the early stage of the design, and it is difficult to make decisions in reality. Whether it is valid or not,
Sometimes we don't know exactly until the product has been tested. On the other hand, the function to actually isolate faulty devices is generally realized in software that is developed in parallel with hardware development, and minor faults discovered before hardware inspection is completed. Every time a hardware developer reports to a software developer a change in a group of devices that is considered to have failed based on the pattern, the software developer must perform a huge amount of backtracking work.

また、実際の障害は、設計者が予想したものより複雑な
様相を呈して、一つの軽度障害のパターンから障害の発
生した装置群を一意的に決定すること自体が不可能であ
ることが発生するため、障害の発生装置群の切り分けが
正確に行われないことがある。すなわち、別な装置群で
発生する障害が同一の軽度障害パターンを引き起こすこ
とがある。
Furthermore, actual failures tend to be more complex than what designers expected, and it has become impossible to uniquely determine the group of equipment in which a failure has occurred based on a single pattern of minor failures. Therefore, it may not be possible to accurately isolate the group of devices that are causing the failure. That is, failures occurring in different device groups may cause the same minor failure pattern.

さらに、直列に接続された装置群の障害を正確に切り分
けしようとすると、それらの装置群の間に障害検出のた
めのロジックを挿入する必要があり、総合的にはシステ
ムを大規模化させる。
Furthermore, in order to accurately isolate a fault in a group of devices connected in series, it is necessary to insert logic for fault detection between the groups of devices, which increases the overall scale of the system.

本発明は装置ごとの軽度障害発生回数の代わりに、直列
に接続された装置および装置とは独立なことを示す識別
子を配列の要素として軽度障害発生回数を管理すること
により、上述の問題を全て解消することを目的とする。
The present invention solves all of the above-mentioned problems by managing the number of times a minor failure occurs by using array elements of serially connected devices and an identifier indicating that the device is independent, instead of the number of times a minor failure occurs for each device. The purpose is to eliminate the problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の障害装置切り分け方式は複数の装置群の中から
それぞれ1つの装置を選択し選択した装置を直列に接続
して動作させ、軽度障害が発生したとき、接続していた
装置を配列の要素として障害発生履歴を管理する構成で
ある。
The faulty device isolation method of the present invention selects one device from each of a plurality of device groups, connects the selected devices in series and operates them, and when a minor failure occurs, the connected devices are replaced as elements of the array. This configuration manages the history of failure occurrences.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例において軽度障害発生回数の
管理方法を説明するための図であり、Xは装置A1を使
用時の軽度障害発生回数を管理する配列、Yは装置Am
を使用時の軽度障害発生回数を管理する配列、およびZ
は装置Ai (i=1〜m)とは無関係と考えられる軽
度障害発生回数を管理する配列である。また、A、B、
Rは直列に接続される複数の装置群である。軽度障害発
生回数を管理する配列は直列に接続される装置群A(A
 1 、 A 2−・・Am ) 、装置群B(Bl、
B2.、。
FIG. 1 is a diagram for explaining a method for managing the number of occurrences of minor failures in an embodiment of the present invention, where X is an array for managing the number of times minor failures occur when device A1 is used, and Y is an array for managing the number of times minor failures occur when device A1 is used.
An array that manages the number of minor failures when using
is an array that manages the number of occurrences of minor failures that are considered to be unrelated to device Ai (i=1 to m). Also, A, B,
R is a group of devices connected in series. The array that manages the number of mild failure occurrences consists of a group of devices connected in series A (A
1, A2-...Am), device group B (Bl,
B2. ,.

Bn)、装置群R(R1,R2−・−Rr)に対して(
m+1)x (n+1)X (r+1)の配列の要素を
持っており、次元数は直列に接続される装置群の数であ
る。
Bn), for the device group R (R1, R2-...-Rr) (
It has elements of an array of m+1)x (n+1)x (r+1), and the number of dimensions is the number of devices connected in series.

第2図は本発明の一実施例におけるシステム遺戒を示し
、システム全体は中央処理装置10によって制御される
。また、通信は中央処理装置10が管理可能なメモリ装
置11とチャネル1,2、サブ・チャネル3,4.5を
通して入出力装置6.7.8.9の配下の回線17.1
8,19゜20の間で行われる。1つのチャネルは任意
のサブ・チャネルの使用が可能であり、1つのサブ・チ
ャネルは任意の入出力装置の使用が可能である。チャネ
ル−サブ・チャネル−入出力装置間の経路は一般には任
意の経路の選択が可能である。
FIG. 2 shows a system configuration in one embodiment of the present invention, and the entire system is controlled by a central processing unit 10. As shown in FIG. Also, communication is carried out through the memory device 11 that can be managed by the central processing unit 10, channels 1 and 2, and sub-channels 3 and 4.5, and the line 17.1 under the input/output device 6.7.8.9.
It is carried out between 8,19°20. One channel can use any sub-channel, and one sub-channel can use any input/output device. Generally, any route can be selected as the route between the channel, sub-channel, and input/output device.

中央処理装置10が通信を行うための装置を選択すると
、交叉装置12または13と交叉装置14゜15または
16とを固定する。これにより、直列に接続されたシス
テムが構成される。
When the central processing unit 10 selects a device for communication, the crossover device 12 or 13 and the crossover device 14, 15, or 16 are fixed. This creates a series-connected system.

このシステムにおいて、チャネル、サブ・チャネル、入
出力装置をそれぞれ装置群とした時の軽度障害管理方法
について第3図を参照して説明する。第2図のチャネル
2−サブ・チャネル3−入出力装置9の経路選択がなさ
れたとする。この経路上で軽度障害が発生した場合、 (1)チャネル2、サブ・チャネル3、入出力装置9に
対応した軽度障害発生回数F1 (2)チャネル2、サブ・チャネル3に対応した軽度障
害発生回数F2 (3)チャネル2、入出力装置9に対応した軽度障害発
生回数F3 (4)チャネル2に対応した軽度障害発生回数4 (5)サブ・チャネル3、入出力装置9に対応した軽度
障害発生回数F5 (6)サブ・チャネル3に対応した軽度障害発生回数F
6 (7)入出力装置9に対応した軽度障害発生回数7 を更新し、障害が発生したか否かの判定のため参照する
0例えば、サブ・チャネル3が障害を起こしていれば、
サブ・チャネル3を使用したすべての経路で軽度障害が
発生するはずであり、軽度障害発生回数F6が規定回数
以上になって障害発生と判定されるが、軽度障害発生回
数F1〜F5゜F7は各チャネル、入出力装置に分散さ
れるため。
In this system, a mild fault management method when channels, sub-channels, and input/output devices are each grouped into device groups will be described with reference to FIG. Assume that the route selection of channel 2 - sub channel 3 - input/output device 9 in FIG. 2 has been made. If a minor failure occurs on this route, (1) Number of minor failure occurrences F1 corresponding to channel 2, sub-channel 3, and input/output device 9 (2) Minor failure occurrence corresponding to channel 2, sub-channel 3 Number of times F2 (3) Number of minor failures corresponding to channel 2, input/output device 9 F3 (4) Number of minor failures corresponding to channel 2 4 (5) Minor failures corresponding to sub channel 3, input/output device 9 Number of occurrences F5 (6) Number of minor fault occurrences F corresponding to sub-channel 3
6 (7) Update the number of minor failure occurrences 7 corresponding to the input/output device 9 and refer to it to determine whether a failure has occurred.For example, if sub-channel 3 has caused a failure,
Minor failures should occur on all routes using sub-channel 3, and it is determined that a failure has occurred when the number of minor failure occurrences F6 exceeds the specified number of times, but the number of minor failure occurrences F1 to F5゜F7 is Because each channel is distributed across input and output devices.

に規定回数以上とならないことで切り分けが可能である
。また、チャネル2とサブ・チャネル3との間が障害の
場合は軽度障害発生回数Fl、F3〜F7は規定回数以
上とならないが軽度障害発生回数F2は規定回数以上と
なって障害装置の切り分けが正確に行える。
It is possible to classify the problem by not exceeding a specified number of times. In addition, if there is a failure between channel 2 and sub-channel 3, the number of minor failure occurrences Fl and F3 to F7 will not exceed the specified number, but the number of minor failure occurrences F2 will exceed the specified number and it will be possible to isolate the faulty device. Can be done accurately.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、複数の装置群の中
からそれぞれ1つの装置が選択されて、選択された装置
が直列に接続される構成のシステムに対して、接続され
た装置および装置とは独立な識別子を配列の要素とした
軽度障害発生回数を観測することにより、障害装置の切
り分けを正確に行える。
As described above, according to the present invention, one device is selected from a plurality of device groups, and the connected devices and devices are By observing the number of times a minor failure occurs using an identifier independent of the array as an element, the faulty device can be accurately isolated.

第1図、第2図および第3図は本発明の一実施例を説明
するための図である。
FIG. 1, FIG. 2, and FIG. 3 are diagrams for explaining one embodiment of the present invention.

1.2・・・チャネル、3,4.5・・・サブ・チャネ
ル、6,7.8.9・・・入出力装置、10・・・中央
処理装置、11・・・メモリ、12.13,14,15
゜16・・・交叉装置、17,18,19.20・・・
回線、F1〜F7・・・軽度障害発生回数。
1.2... Channel, 3, 4.5... Sub channel, 6, 7.8.9... Input/output device, 10... Central processing unit, 11... Memory, 12. 13, 14, 15
゜16... Crossing device, 17, 18, 19.20...
Line, F1 to F7...Number of minor failures.

Claims (1)

【特許請求の範囲】[Claims]  複数の装置群の中からそれぞれ1つの装置を選択し選
択した装置を直列に接続して動作させ、軽度障害が発生
したとき、接続していた装置を配列の要素として障害発
生履歴を管理することを特徴とする障害装置切り分け方
式。
Select one device from a group of devices, connect the selected devices in series, operate them, and when a minor failure occurs, manage the history of failure occurrences using the connected devices as elements of the array. A faulty device isolation method featuring:
JP1143564A 1989-06-05 1989-06-05 Fault equipment location system Pending JPH037442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143564A JPH037442A (en) 1989-06-05 1989-06-05 Fault equipment location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143564A JPH037442A (en) 1989-06-05 1989-06-05 Fault equipment location system

Publications (1)

Publication Number Publication Date
JPH037442A true JPH037442A (en) 1991-01-14

Family

ID=15341683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143564A Pending JPH037442A (en) 1989-06-05 1989-06-05 Fault equipment location system

Country Status (1)

Country Link
JP (1) JPH037442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005086A (en) * 2001-06-20 2003-01-08 Olympus Optical Co Ltd Microscopic apparatus
US8973453B2 (en) 2010-01-18 2015-03-10 Smc Kabushiki Kaisha Feed screw mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005086A (en) * 2001-06-20 2003-01-08 Olympus Optical Co Ltd Microscopic apparatus
US8973453B2 (en) 2010-01-18 2015-03-10 Smc Kabushiki Kaisha Feed screw mechanism

Similar Documents

Publication Publication Date Title
US5881048A (en) Method and apparatus for determining maximum network failure spans forrestoration
US5276440A (en) Network device information exchange
US4112488A (en) Fault-tolerant network with node branching
US6874108B1 (en) Fault tolerant operation of reconfigurable devices utilizing an adjustable system clock
US4601028A (en) Method of and apparatus for checking datapath failure in a communication muldem
US7487416B2 (en) Self test device and self test method for reconfigurable device mounted board
Arci et al. Availability models for protection techniques in WDM networks
JPH0793624B2 (en) Device and method for isolating and analyzing faults in link coupling systems
US6966020B1 (en) Identifying faulty programmable interconnect resources of field programmable gate arrays
US4881229A (en) Test circuit arrangement for a communication network and test method using same
JPH037442A (en) Fault equipment location system
US6295274B1 (en) Redundancy structure in a digital switch
US7508920B1 (en) Scheduling of automated tests in a telecommunication system
US6373825B1 (en) Telecommunication network and state propagation method
CN109088766A (en) A kind of interconnection network faults detection and localization method based on pairing test
KR100277137B1 (en) Electrical and data communication device
US5042038A (en) Data path checking system
US7583605B2 (en) Method and system of evaluating survivability of ATM switches over SONET networks
Jajszczyk et al. Fault diagnosis of digital switching networks
CN114019880A (en) Intelligent wiring switching system based on program control
Yu et al. Diagnosing single faults for interconnects in SRAM based FPGAs
JPWO2002063890A1 (en) Cross connect device
US6581018B1 (en) Multiplexer select line exclusivity check method and apparatus
MORIGUCHI et al. Diagnosis of Computer Systems by Stochastic Petri Nets Part< cd02d35. gif>(Application)
Feng et al. Adaptive algorithms for maximal diagnosis of wiring interconnects