JPH0374210B2 - - Google Patents

Info

Publication number
JPH0374210B2
JPH0374210B2 JP59021378A JP2137884A JPH0374210B2 JP H0374210 B2 JPH0374210 B2 JP H0374210B2 JP 59021378 A JP59021378 A JP 59021378A JP 2137884 A JP2137884 A JP 2137884A JP H0374210 B2 JPH0374210 B2 JP H0374210B2
Authority
JP
Japan
Prior art keywords
general formula
monoalkylamides
represented
group
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59021378A
Other languages
Japanese (ja)
Other versions
JPS60166649A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2137884A priority Critical patent/JPS60166649A/en
Publication of JPS60166649A publication Critical patent/JPS60166649A/en
Publication of JPH0374210B2 publication Critical patent/JPH0374210B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、N−モノアルキルアミド類の製造法
に関する。更に詳しくは、本発明は、一般式 R1CONHR2 () [式中R1はアルキル基、アリール基又はアラル
キル基を示す。R2はアルキル基、アルケニル基
又はアラルキル基を示す。]で表わされるN−モ
ノアルキルアミド類の製造法に関する。 発明の目的及び構成 本発明の目的は、上記一般式()で表わされ
るN−モノアルキルアミド類を選択的に合成し
得、従つて該アミド類を高収率、高純度で製造し
得る方法を提供することにある。 本発明の方法によれば、上記一般式()のN
−モノアルキルアミド類は、アルミナ及びアルカ
リの共存下に一般式 R1CONH2 () [式中R1は前記に同じ。]で表わされるアミド類
と一般式 R2X () [式中Xはハロゲン原子を示す。R2は前記に同
じ。]で表わされるハロゲン化物とを反応させる
ことにより製造される。 本発明において出発原料として用いられる一般
式()のアミド類及び一般式()のハロゲン
化物は、いずれも公知の化合物である。本明細書
においてR1及びR2で示されるアルキル基として
は、例えばメチル、エチル、n−プロピル、イソ
プロピル、n−ブチル、イソブチル、tert−ブチ
ル、n−ペンチル、n−ヘキシル、n−ヘプチ
ル、n−オクチル、n−デシル、n−ドデシル、
n−ヘキサデシル、n−オクタデシル基等が挙げ
られる。R1で示されるアリール基としては、例
えば置換基を有し又は有さないフエニル基、置換
基を有し又は有さないナフチル基等が挙げられ
る。R1及びR2で示されるアラルキル基としては、
芳香環上に置換基を有し又は有さないベンジル
基、フエネチル基、フエニルプロピル基等のフエ
ニルアルキル基、芳香環上に置換基を有し又は有
さないナフチルアルキル基等が挙げられる。R2
で示されるアルケニル基としては、例えばビニ
ル、アリル、2−ブテニル、3−ブテニル、1−
メチルアリル、2−ヘキセニル基等が挙げられ
る。上記における置換基としては、ハロゲン原
子、ニトロ基、アミノ基、アルキル基、アルコキ
シ基等が例示される。またXで示されるハロゲン
原子としては、例えば塩素原子、臭素原子、沃素
原子等が挙げられる。 本発明において一般式()のアミド類と一般
式()のハロゲン化物との使用割合としては、
特に制限がなく広い範囲内から適宜選択すること
ができるが、通常前者に対して後者を少なくとも
等モル程度、好ましくは1.1〜1.5倍モル程度用い
るのがよい。 本発明では、反応系内にアルミナ及びアルカリ
を存在させる。またアルカリとしては、例えば水
酸化カリウム、水酸化ナトリウム、水酸化リチウ
ム等のアルカリ金属水酸化物、水酸化マグネシウ
ム、水酸化カルシウム等のアルカリ土類金属水酸
化物、炭酸カリウム、炭酸ナトリウム等のアルカ
リ金属炭酸塩、炭酸水素カリウム、炭酸水素ナト
リウム等のアルカリ金属重炭酸塩等を挙げること
ができる。本発明においては、上記アルミナ及び
アルカリは、これらを混合物として使用してもよ
いし、アルミナにアルカリを担持させた形態で使
用してもよい。アルミナ及びアルカリの使用量と
しては、特に制限されることなく広い範囲内から
適宜選択することができる。本発明では、原料で
ある一般式()のアミド類1モルに対して、ア
ルミナを通常100〜2000g程度、好ましくは500〜
1500g程度用い、またアルカリを通常1〜20モル
程度、好ましくは3〜5モル程度用いるのがよ
い。 本発明の反応は、一般に適当な溶媒中にて行な
われる。溶媒としては、本発明の反応に悪影響を
及ぼさない限り従来公知のものを広く使用でき、
例えばジオキサン、テトラヒドロフラン、エチル
エーテル等のエーテル類、ベンゼン、トルエン、
キシレン等の芳香族炭化水素類、ヘキサン、シク
ロヘキサン等の飽和炭化水素流等が挙げられる。
これらの中でジオキサン、テトラヒドロフラン及
びベンゼンが特に好ましい。上記反応は、室温下
及び加温下のいずれでも進行するが、通常室温〜
100℃程度にて好適に進行し、一般に3〜12時間
程度にて反応は完結する。 上記反応終了後に、固形分を去し、液から
溶媒を留去することにより、純度97%以上の一般
式()のN−モノアルキルアミド類が収得され
る。未反応の一般式()のアミド類は、アルミ
ナに吸着されているので高回収率で回収でき、再
使用することができる。より一層の純度を所望す
るのであれば、再結晶、カラムクロマトグラフイ
ー等の常法の精製手段を採用すればよい。 実施例 実施例 1 85%水酸化カリウム3.3g(50ミリモル)をア
ルミナ(メルク社、Type60、塩基性、活性度I、
70〜230メツシユ)10gに担持させたもの、2−
フエニルアセトアミド1.35g(10ミリモル)、臭
化エチル1.3g(12ミリモル)及びジオキサン20
mlの混合液を60℃にて8時間激しく撹拌した。こ
の反応液を分析(GLC)したところ、目的とす
るN−エチル−2−フエニルアセトアミドの選択
率は97.5%であつた。固形分を去し、ベンゼン
(30ml×2)で洗浄後溶媒を留去して、N−エチ
ル−2−フエニルアセトアミド1.25g(収率77
%、純度97%)を得た。これをエーテル−ヘキサ
ンより再結晶すると、純度を99%以上にすること
ができた。 実施例 2 85%水酸化カリウム3.3g(50ミリモル)及び
アルミナ(メルク社、Type90、中性、活性度I、
70〜230メツシユ)10gを乳鉢で粉砕したもの、
n−ブタンアミド0.87g(10ミリモル)、臭化ブ
チル1.7g(12ミリモル)及びジオキサンの混合
液を60℃にて8時間激しく撹拌した。この反応液
を分析(GLC)したところ、N−ブチルブタン
アミドの選択率は99.6%であつた。固形分を去
し、ベンゼン(30ml×2)で洗浄後溶媒を留去し
て、N−ブチルブタンアミド1.2g(収率80%、
純度97%)を得た。 下記第1表に示すアミド類()及びハロゲン
化物()を用い、上記実施例2と同様にして目
的とするN−モノアルキルアミド類()を得
た。第1表に反応温度、目的物の選択率(%)
(反応液のGLC分析による)及び目的物の収率
(%)を示す。尚第1表で得られる目的化合物の
純度は、いずれも純度97%以上であつた。第1表
中Phはフエニル基を意味する。
TECHNICAL FIELD The present invention relates to a method for producing N-monoalkylamides. More specifically, the present invention provides a compound having the general formula R 1 CONHR 2 () [wherein R 1 represents an alkyl group, an aryl group, or an aralkyl group]. R 2 represents an alkyl group, an alkenyl group or an aralkyl group. ] The present invention relates to a method for producing N-monoalkylamides represented by the following. Object and Structure of the Invention An object of the present invention is a method capable of selectively synthesizing N-monoalkylamides represented by the above general formula () and thus producing the amides in high yield and high purity. Our goal is to provide the following. According to the method of the present invention, N of the above general formula ()
- Monoalkylamides are prepared by the general formula R 1 CONH 2 () in the coexistence of alumina and an alkali, where R 1 is the same as above. ] Amides represented by the general formula R 2 X ( ) [wherein X represents a halogen atom. R 2 is the same as above. ] It is produced by reacting with a halide represented by: Amides of general formula () and halides of general formula () used as starting materials in the present invention are both known compounds. In this specification, examples of the alkyl group represented by R 1 and R 2 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, n-dodecyl,
Examples include n-hexadecyl and n-octadecyl groups. Examples of the aryl group represented by R 1 include a phenyl group with or without a substituent, a naphthyl group with or without a substituent, and the like. As the aralkyl group represented by R 1 and R 2 ,
Examples include phenylalkyl groups such as benzyl, phenethyl, and phenylpropyl groups with or without a substituent on the aromatic ring, and naphthylalkyl groups with or without a substituent on the aromatic ring. . R2
Examples of the alkenyl group represented by include vinyl, allyl, 2-butenyl, 3-butenyl, 1-
Examples include methylallyl and 2-hexenyl group. Examples of the above substituents include halogen atoms, nitro groups, amino groups, alkyl groups, and alkoxy groups. Examples of the halogen atom represented by X include chlorine atom, bromine atom, and iodine atom. In the present invention, the ratio of the amides of general formula () to the halides of general formula () is as follows:
Although there are no particular limitations and they can be appropriately selected from within a wide range, it is generally advisable to use at least an equimolar amount of the latter to the former, preferably about 1.1 to 1.5 times the molar amount. In the present invention, alumina and alkali are present in the reaction system. Examples of alkalis include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, and lithium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; and alkalis such as potassium carbonate and sodium carbonate. Examples include metal carbonates, alkali metal bicarbonates such as potassium hydrogen carbonate, and sodium hydrogen carbonate. In the present invention, the above-mentioned alumina and alkali may be used as a mixture or in the form of alumina supporting an alkali. The amounts of alumina and alkali to be used are not particularly limited and can be appropriately selected from a wide range. In the present invention, alumina is usually added in an amount of about 100 to 2000 g, preferably 500 to 2000 g, per mole of the amide of the general formula () as a raw material.
It is preferable to use about 1,500 g of alkali, and usually about 1 to 20 moles, preferably about 3 to 5 moles of alkali. The reactions of the invention are generally carried out in a suitable solvent. As the solvent, a wide variety of conventionally known solvents can be used as long as they do not adversely affect the reaction of the present invention.
For example, dioxane, tetrahydrofuran, ethers such as ethyl ether, benzene, toluene,
Examples include aromatic hydrocarbons such as xylene, saturated hydrocarbon streams such as hexane, cyclohexane, and the like.
Among these, dioxane, tetrahydrofuran and benzene are particularly preferred. The above reaction proceeds both at room temperature and under heating, but usually from room temperature to
The reaction proceeds suitably at about 100°C and is generally completed in about 3 to 12 hours. After the completion of the above reaction, the solid content is removed and the solvent is distilled off from the liquid to obtain the N-monoalkylamides of the general formula () with a purity of 97% or more. Since the unreacted amides of general formula () are adsorbed on alumina, they can be recovered with a high recovery rate and reused. If higher purity is desired, conventional purification methods such as recrystallization and column chromatography may be used. Examples Example 1 3.3 g (50 mmol) of 85% potassium hydroxide was added to alumina (Merck & Co., Type 60, basic, activity I,
70-230 mesh) supported on 10g, 2-
Phenylacetamide 1.35 g (10 mmol), ethyl bromide 1.3 g (12 mmol) and dioxane 20
ml of the mixture was vigorously stirred at 60°C for 8 hours. When this reaction solution was analyzed (GLC), the selectivity of the target N-ethyl-2-phenylacetamide was 97.5%. After removing the solid content and washing with benzene (30 ml x 2), the solvent was distilled off to give 1.25 g of N-ethyl-2-phenylacetamide (yield 77
%, purity 97%). When this was recrystallized from ether-hexane, the purity could be increased to over 99%. Example 2 3.3 g (50 mmol) of 85% potassium hydroxide and alumina (Merck & Co., Type 90, neutral, activity I,
70-230 mesh) 10g crushed in a mortar,
A mixture of 0.87 g (10 mmol) of n-butanamide, 1.7 g (12 mmol) of butyl bromide, and dioxane was vigorously stirred at 60° C. for 8 hours. When this reaction solution was analyzed (GLC), the selectivity for N-butylbutanamide was 99.6%. After removing the solid content and washing with benzene (30 ml x 2), the solvent was distilled off to obtain 1.2 g of N-butylbutanamide (yield: 80%,
purity of 97%) was obtained. Using the amides () and halides () shown in Table 1 below, the desired N-monoalkylamides () were obtained in the same manner as in Example 2 above. Table 1 shows the reaction temperature and target product selectivity (%).
(Based on GLC analysis of the reaction solution) and the yield (%) of the target product are shown. The purity of the target compounds obtained in Table 1 was all 97% or higher. In Table 1, Ph means a phenyl group.

【表】 発明の効果 本発明の方法によれば、目的とする一般式
()のN−モノアルキルアミド類を選択的に合
成し得、それ故該アミド類を簡便な操作により高
収率、高純度で製造し得る。従つて本発明の方法
は、一般式()のN−モノアルキルアミド類の
工業的製造法として極めて有効である。
[Table] Effects of the Invention According to the method of the present invention, the desired N-monoalkylamides of the general formula () can be selectively synthesized, and therefore, the amides can be synthesized in high yields and with simple operations. Can be produced with high purity. Therefore, the method of the present invention is extremely effective as an industrial method for producing N-monoalkylamides of general formula ().

Claims (1)

【特許請求の範囲】 1 アルミナ及びアルカリの共存下に一般式 R1CONH2 [式中R1はアルキル基、アリール基又はアラル
キル基を示す。」 で表わされるアミド類と一般式 R2X [式中R2はアルキル基、アルケニル基又はアラ
ルキル基を示す。Xはハロゲン原子を示す。] で表わされるハロゲン化物とを反応させて一般式 R1CONHR2 [式中R1及びR2は前記に同じ。] で表わされるN−モノアルキルアミド類を得るこ
とを特徴とするN−モノアルキルアミド類の製造
法。
[Claims] 1. In the coexistence of alumina and an alkali, a compound of the general formula R 1 CONH 2 [wherein R 1 represents an alkyl group, an aryl group, or an aralkyl group]. Amides represented by the general formula R 2 X [wherein R 2 represents an alkyl group, an alkenyl group or an aralkyl group]. X represents a halogen atom. ] by reacting with a halide represented by the general formula R 1 CONHR 2 [wherein R 1 and R 2 are the same as above. ] A method for producing N-monoalkylamides, which comprises obtaining N-monoalkylamides represented by the following.
JP2137884A 1984-02-07 1984-02-07 Preparation of n-monoalkylamide Granted JPS60166649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2137884A JPS60166649A (en) 1984-02-07 1984-02-07 Preparation of n-monoalkylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2137884A JPS60166649A (en) 1984-02-07 1984-02-07 Preparation of n-monoalkylamide

Publications (2)

Publication Number Publication Date
JPS60166649A JPS60166649A (en) 1985-08-29
JPH0374210B2 true JPH0374210B2 (en) 1991-11-26

Family

ID=12053426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2137884A Granted JPS60166649A (en) 1984-02-07 1984-02-07 Preparation of n-monoalkylamide

Country Status (1)

Country Link
JP (1) JPS60166649A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180983A (en) * 2012-03-01 2013-09-12 Tokyo Univ Of Agriculture & Technology Method of manufacturing n-substituted amide compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920259A (en) * 1982-07-22 1984-02-01 Mitsui Toatsu Chem Inc Preparation of n-substituted amide compound
JPS5920258A (en) * 1982-07-22 1984-02-01 Mitsui Toatsu Chem Inc Preparation of n-substituted alkoxycarboxylic acid amide compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920259A (en) * 1982-07-22 1984-02-01 Mitsui Toatsu Chem Inc Preparation of n-substituted amide compound
JPS5920258A (en) * 1982-07-22 1984-02-01 Mitsui Toatsu Chem Inc Preparation of n-substituted alkoxycarboxylic acid amide compound

Also Published As

Publication number Publication date
JPS60166649A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
JPH0374210B2 (en)
US6441231B1 (en) Optically active quarternary ammonium salt with axial chirality, method for producing thereof, and application thereof for asymmetric synthesis of α-amino acid
CN112480034B (en) Novel selenocyano reagent and preparation method and application thereof
JPH06184069A (en) Production of alpha-hydroxy-beta-aminocarboxylic acid
JP2527319B2 (en) Method for producing 7-bromo-β-carboline derivative
US5869694A (en) Process for preparing 4-hydroxy-2-pyrrolidone
JP2002518364A (en) Symmetric and asymmetric disubstitution of carboxamides using organic titanates and Grignard reagents
JPH05163224A (en) Production of amino group-containing compound
US4898946A (en) Process for the preparation of N-allyl-piperidine derivatives
KR20000017600A (en) Process for substituted hydrazides using carboxylic acids
JP3505991B2 (en) Process for producing 4,5-disubstituted anthranilamide
Okawara et al. Convenient Syntheses of Piperazine-2, 5-diones and Lactams from Halocarboxamides Using Phase Transfer Catalysts
JP2659587B2 (en) 4-aziridinyl pyrimidine derivatives and their production
US4399289A (en) 2-Diphenylmethyleneamino-3-indolylpropionitrile and alkyl esters of 2-diphenylmethylene-amino-3-indolylpropionic acid
JPS5944303B2 (en) Production method of α-ketoacids
JP3864482B2 (en) Method for producing optically active indole derivative
JP2997763B2 (en) Method for producing tertiary amines
EP0244143A2 (en) Substituted dioxanones and dioxinones
JP3644811B2 (en) Method for producing 4'-methyl-2-cyanobiphenyl
JP2006248952A (en) Method for producing ketone
JP2000271485A (en) Bisalkoxy carbonylation catalyst for olefins and production of succinic ester derivative
JPH06734B2 (en) Method for producing acyl cyanide
JPH05286932A (en) Production of indoles
JPS5944304B2 (en) Method for producing α-ketoamides
US4782187A (en) Process for the preparation of 4,4'-stilbenedialdehydes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term