JPH0374095A - Pulse electromagnet device - Google Patents

Pulse electromagnet device

Info

Publication number
JPH0374095A
JPH0374095A JP21099589A JP21099589A JPH0374095A JP H0374095 A JPH0374095 A JP H0374095A JP 21099589 A JP21099589 A JP 21099589A JP 21099589 A JP21099589 A JP 21099589A JP H0374095 A JPH0374095 A JP H0374095A
Authority
JP
Japan
Prior art keywords
superconductor
magnetic field
pulsed
superconducting state
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21099589A
Other languages
Japanese (ja)
Other versions
JP2862090B2 (en
Inventor
Yasumitsu Tsutsui
康充 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Original Assignee
Research Development Corp of Japan
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Sumitomo Electric Industries Ltd filed Critical Research Development Corp of Japan
Priority to JP21099589A priority Critical patent/JP2862090B2/en
Publication of JPH0374095A publication Critical patent/JPH0374095A/en
Application granted granted Critical
Publication of JP2862090B2 publication Critical patent/JP2862090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To prevent beam instability by forming a beam duct of a part on which a pulse electromagnet is provided, out of a ceramic superconductor or of an insulator, and in the latter case by coating the inside thereof so as to cool it into a superconducting state. CONSTITUTION:A beam duct 1 of a part on which a pulse electromagnet 4 is provided is formed by using a ceramic superconductor so as to obtain a non-superconducting state and high resistivity as well as low critical magnetic field, or by coating (1b) the inside of the beam duct formed out of an insulator with an superconductor and by cooling the superconductor into a superconducting state. When a pulse magnetic field is not applied from the pulse electromagnet, namely, in a driving state of accumulating a charging beam, the superconductor is in a superconducting state, and image current concomitant with the flow of the charging beam flows in the superconductor that is a perfect conductor as a path. Inability of beam is never to be generated thereby.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、シンクロトロン等の粒子加速器に用いられ
る、パルス電流が印加されるパルス電磁石装置に関し、
特にパータベータ電磁石に関する。
The present invention relates to a pulsed electromagnet device to which a pulsed current is applied, which is used in a particle accelerator such as a synchrotron.
Particularly regarding perturbeta electromagnets.

【従来の技術】[Conventional technology]

この種のパルス電磁石としては、磁場の均−度等に優れ
るフェライト等の鉄心を用いた窓枠型の電磁石が多く用
いられるが、フェライト等の鉄心材料は、ガス放出が多
いため超高真空を必要とするビームダクト内に入れるこ
とには問題があり、通常、第3図図示のごとく、ビーム
ダクトlを囲むようにして設けた窓枠型の鉄心2及び、
ビームダクトlの両側部に設けた鉄心2のコイル3より
なるパルス電磁石4が設けられる。この場合、パルス電
磁石4より発したパルス磁場が、ビームダクトlにてう
ず電流として流れ、ビームダクトlを透過しないといっ
たことがないように、パルス電磁石4が設けられる部位
のビームダクトlは、絶縁物であるセラミック等を用い
て構成する必要があるが、ビームダクトl内に荷電ビー
ムが流れることによりビームダクトlに誘起されるイメ
ージ電流が、前記の絶縁物で構成した箇所で流れなくな
り、荷電ビームの不安定性を引き起こす。 そこで、”UV5ORストレージリングの設計”分子科
学研究新著、UV5OR−9誌(1982年12月刊)
、あるいは、“THE RED BOOK”Europ
ean 5ynchrotron Radiation
 Facilyty(1987年!月刊)では、セラミ
ック材で構成したビームダクトl内面に、イメージ電流
の通路として、厚さをパルス磁場の周波数で決まる導体
中の電磁場侵入深さ程度以下とした、金などの薄い導電
性膜1aをコーティングすることが述べられている。
As this type of pulsed electromagnet, window-frame type electromagnets with iron cores such as ferrite, which have excellent magnetic field uniformity, are often used, but iron core materials such as ferrite emit a lot of gas, so they cannot be used in ultra-high vacuums. There is a problem in inserting the core into the required beam duct, and as shown in FIG.
Pulse electromagnets 4 consisting of coils 3 of iron cores 2 are provided on both sides of the beam duct l. In this case, in order to prevent the pulsed magnetic field emitted from the pulsed electromagnet 4 from flowing as an eddy current in the beam duct l and not passing through the beam duct l, the beam duct l is insulated at the portion where the pulsed electromagnet 4 is installed. However, when the charged beam flows in the beam duct l, the image current induced in the beam duct l stops flowing at the point made of the insulating material, and the charged beam Causes beam instability. Therefore, "Design of UV5OR Storage Ring" Molecular Science Research New Book, UV5OR-9 Magazine (December 1982 issue)
, or “THE RED BOOK”Europe
ean 5ynchrotron Radiation
In Facility (1987! Monthly), the inner surface of a beam duct made of ceramic material was made of gold or other material, with a thickness equal to or less than the penetration depth of the electromagnetic field in the conductor determined by the frequency of the pulsed magnetic field, as a path for the image current. Coating with a thin conductive film 1a is mentioned.

【発明が解決しようとする課題】 ところで、前記セラミック材としては一般にアルミナを
焼結したものが用いられ、このようなセラミック材に金
などコーテイング膜を形成した場合、両者の密着性が不
十分となり易く、パルス磁場が繰り返して印加されるう
ちに、前記コーテイング膜がはがれたり、局所的な放電
発生により真空度が低下するなどの問題点が発生し易く
、又、周長の短い小型のシンクロトロンあるいは蓄積リ
ングに用いるバータベータ電磁石では、IMHz程度の
パルス磁場となり、この程度の周波数のパルス磁場を十
分に透過させるには、コーテイング膜の厚さを100人
程度の極めて薄い膜とする必要があるが、セラミックの
ダクトの内面を大面積にわたって均一にコーティングす
ることは極めて困難であった。 この発明は、上述した問題点をなくすためになされたも
のであり、簡単な構成で安定した運転が行えるパルス電
磁石装置を提供することを目的とする。
[Problems to be Solved by the Invention] Incidentally, as the ceramic material, sintered alumina is generally used, and when a coating film such as gold is formed on such a ceramic material, the adhesion between the two becomes insufficient. However, problems such as the coating film peeling off and the degree of vacuum decreasing due to localized discharge occur when a pulsed magnetic field is repeatedly applied, and small synchrotrons with short circumferences Alternatively, in the case of a barta-beta electromagnet used in a storage ring, the pulsed magnetic field is approximately IMHz, and in order to sufficiently transmit the pulsed magnetic field of this frequency, the coating film needs to be extremely thin, about 100 mm thick. However, it has been extremely difficult to uniformly coat the inner surface of a ceramic duct over a large area. The present invention has been made to eliminate the above-mentioned problems, and an object of the present invention is to provide a pulsed electromagnet device that has a simple configuration and can operate stably.

【課題を解決するための手段】[Means to solve the problem]

第1の発明になるパルス電磁石装置は、シンクロトロン
等の粒子加速器に用いるパルス電磁石装置であって、 少なくともパルス電磁石が設けられた部位のビームダク
トを、非超電導状態で高抵抗率となりかつ臨界磁場値の
低い、セラミック系超電導体で構成するか、もしくは絶
縁物で構成したビームダクトの内面を前記超電導体でコ
ーティングし、該超電導体を超電導状態に冷却すること
を特徴とする。 第2の発明になるパルス電磁石装置は、シンクロトロン
等の粒子加速器に用いるパルス電磁石装置であって、 少なくともパルス電磁石が設けられた部位のビームダク
トを、非超電導状態で高抵抗率となるセラミック系超電
導体で構成するか、もしくは絶縁物で構成したビームダ
クトの内面を前記超電導体でコーティングし、前記超電
導体に一定の電流を流し、前記超電導体の臨界磁場値を
低い値にコントロールしておくことを特徴とする。
A pulsed electromagnet device according to the first invention is a pulsed electromagnet device used in a particle accelerator such as a synchrotron, and the beam duct at least in a portion where the pulsed electromagnet is provided has a high resistivity in a non-superconducting state and a critical magnetic field. The method is characterized in that the inner surface of a beam duct made of a ceramic superconductor having a low value or an insulating material is coated with the superconductor, and the superconductor is cooled to a superconducting state. The pulsed electromagnet device according to the second invention is a pulsed electromagnet device used in a particle accelerator such as a synchrotron, and the beam duct at least in the part where the pulsed electromagnet is installed is made of a ceramic material that has high resistivity in a non-superconducting state. The inner surface of a beam duct made of a superconductor or an insulator is coated with the superconductor, a constant current is passed through the superconductor, and the critical magnetic field value of the superconductor is controlled to a low value. It is characterized by

【作用】[Effect]

第1の発明になるパルス電磁石装置では、ビームダクト
として、または絶縁物で構成したビームダクトへのコー
テイング膜として設けられたセラミック系超電導体は、
適宜な冷媒にて冷却されているので、パルス電磁石より
のパルス磁場が印加されていないとき、つまり、荷電ビ
ームを蓄積している運転状態では、前記超電導体は超電
導状態となっており、荷電ビームの流れに伴い生じるイ
メージ電流は、完全導体となっている超電導体を通路と
して流れるので、ビームの不安定性を引き起こすことは
ない。 一方、ビームダクトへの荷電ビームの入射時であって、
パルス電磁石よりパルス磁場を発しているときは、発し
たパルス磁場により、超電導体の臨界磁場を超えたとき
のみ、超電導状態が破れ超電導体は常電導状態となり、
抵抗率が高くなるために、前記パルス磁場が、超電導体
にてうず電流となるのが防止され、パルス磁場はビーム
ダクトを透過する。尚、パルス磁場を印加したときは、
前記イメージ電流の通路が遮断されることになるが、こ
の時間は短く、粒子の周回数では数周から数十層程度に
相当する程度であるので、ビーム不安定性の要因となる
ことはない。 第2の発明になるパルス電磁石装置では、超電導体に一
定の電流を流し、前記超電導体の臨界磁場を低い値に設
定しておくことにより、粒子入射時においては、パルス
電磁石にわずかなパルス電流を通電するだけで、超電導
体は臨界磁場を超えて常電導状態となる。
In the pulsed electromagnet device according to the first invention, the ceramic superconductor provided as a beam duct or as a coating film on a beam duct made of an insulator is
Since the superconductor is cooled with an appropriate refrigerant, when no pulsed magnetic field from the pulsed electromagnet is applied, that is, in an operating state in which charged beams are accumulated, the superconductor is in a superconducting state, and the charged beam is The image current generated by this flow does not cause beam instability because it flows through the superconductor, which is a perfect conductor. On the other hand, when the charged beam is incident on the beam duct,
When a pulsed magnetic field is emitted from a pulsed electromagnet, the superconducting state is broken only when the emitted pulsed magnetic field exceeds the critical magnetic field of the superconductor, and the superconductor becomes a normal conducting state.
The increased resistivity prevents the pulsed magnetic field from forming eddy currents in the superconductor and allows the pulsed magnetic field to pass through the beam duct. Furthermore, when applying a pulsed magnetic field,
Although the path of the image current is cut off, this time is short and corresponds to several to several dozen layers in terms of the number of turns of the particle, so it does not become a cause of beam instability. In the pulsed electromagnet device of the second invention, a constant current is passed through a superconductor and the critical magnetic field of the superconductor is set to a low value, so that when a particle is incident, a slight pulsed current is applied to the pulsed electromagnet. Just by applying electricity, the superconductor exceeds the critical magnetic field and becomes normally conductive.

【実施例】【Example】

第1図に第1の発明になるパルス電磁石装置の一実施例
を示している。尚、第3図の従来例と同一の部分には同
一の符号を付している。 鉄心2及びコイル3よりなるパルス電磁石4が設けられ
る部位のビームダクト1は、セラミック材で構成され、
このセラミック材の内面には、非超電導状態で高抵抗率
でかつ臨界磁場値の低いセラミック系の超電導体による
、コーテイング膜1bが形成される。このコーティング
*tbにおいては後で述べるようにうず電流が生じにく
いので、従来装置のようにコーテイング膜を極端な薄く
する必要はなく、よって、そのコーティング作業が容易
であり、ビームダクトlを超電導体のみで構成すること
もできる。 前記コーティング膜tbを超電導状態に冷却するために
、パルス電磁石4を含め冷却容器であるクライオスタッ
ト5内に収容され、パルス電磁石4全体が浸かるように
クライオスタット5に冷媒6が充填される。 以下に上記構成のパルス電磁石装置の動作を述べる。 セラミック系超電導体にてなるコーティング膜lbは、
冷媒6にて臨界温度以下に冷却されているので、パルス
電磁石4よりのパルス磁場が印加されていないとき、つ
まり、荷電ビームを蓄積している運転状態では、前記コ
ーティングI[1bは超電導状態となっており、荷電ビ
ームの流れに伴い生じるイメージ電流は、このコーティ
ング@tbを通じて流れるので、ビームの不安定性を引
き起こすことはない。 一方、ビームダクト1への荷電ビームの入射時であって
、パルス電磁石4よりパルス磁場を発しているときは、
発したパルス磁場により、コーティング膜tbにおいて
、超電導体の臨界磁場を超えたときのみ、超電導状態が
破れコーティング1llbは常電導状態となり抵抗率が
高くなる。その結果、前記パルス磁場がコーティング膜
tbにて生じさせろうず電流は小さく、パルス電磁石4
よりのパルス磁場は、コーティング1b膜を含むビーム
ダクト1を透過し、荷電ビームに作用する。 又、上述
したように、パルス磁場の印加時間は短いため、イメー
ジ電流の通路が遮断されてもビーム不安定性の要因とな
ることはない。 次に第2の発明になるパルス電磁石装置を第2図を用い
て説明する。 ここでは、超電導体であるコーテイング膜1bに超電導
体通電リードlcにより常時一定の電流を流し、前記コ
ーテイング膜1bの臨界磁場の値を低くコントロールし
ながら超電導状態に保っておき、荷電ビームの流れに伴
うイメージ電流は、このコーティング1ilbに流れる
ようにする。 一方、粒子入射時においては、パルス電磁石4にわずか
なパルス電流を通電するだけで、コーテイング膜」bは
、臨界磁場を超えて常電導状態となり、高抵抗率となる
ので、コーティング、111bでのうず電流の発生が防
止され、パルス電磁石4よりのパルス磁場はビームダク
ト1を透過する。 【発明の効果] 以上説明したように、この発明は、所定のパルス磁場を
印加したときのみ、コーテイング膜を常伝導状態の高抵
抗率状態としてうず電流の発生防止によりパルス磁場の
透過を可能とし、それ以外ではコーテイング膜を超電導
状態に保ち完全導体としてイメージ電流を流せるように
したのでビーム不安定が起きることはない。しかも、従
来のパルス電磁石用ダクトのような技術的困難さや使用
時のトラブルも少なく、容易に製作でき、安定した運転
を期待できる。 又、超電導体の磁場と抵抗率との相関を考慮して適当な
材料を選ぶことにより、透過するパルス磁場の波形を変
形できるので、電気回路では作成困難なパルス磁場波形
をビームに印加できるようになり、例えば、急峻な立ち
下がりのパルス磁場を必要とする小型蓄積リングのパー
タベータ電磁石として適用可能となる。 又、第2の発明のごとく、ダクトの超電導体に一定の電
流を流しておく方法であれば、この電流値の選定により
、超電導特性の異なった超電導導体を用いたダクトでも
同様なパルス磁場透過特性を得ることができ、超電導体
の選定が容易となる。
FIG. 1 shows an embodiment of a pulsed electromagnet device according to the first invention. Note that the same parts as in the conventional example shown in FIG. 3 are given the same reference numerals. The beam duct 1 in the part where the pulse electromagnet 4 consisting of the iron core 2 and the coil 3 is provided is made of a ceramic material,
On the inner surface of this ceramic material, a coating film 1b is formed of a ceramic superconductor having high resistivity and a low critical magnetic field value in a non-superconducting state. As will be described later, this coating *tb does not easily generate eddy currents, so there is no need to make the coating film extremely thin as in conventional equipment, and the coating process is easy. It can also be composed of only In order to cool the coating film tb to a superconducting state, the pulsed electromagnet 4 is housed in a cryostat 5, which is a cooling container, and the cryostat 5 is filled with a coolant 6 so that the pulsed electromagnet 4 is entirely submerged. The operation of the pulsed electromagnet device having the above configuration will be described below. The coating film lb made of ceramic superconductor is
Since it is cooled to below the critical temperature by the coolant 6, when the pulsed magnetic field from the pulsed electromagnet 4 is not applied, that is, in the operating state in which charged beams are accumulated, the coating I[1b is in a superconducting state. Since the image current generated by the flow of the charged beam flows through this coating @tb, it does not cause beam instability. On the other hand, when the charged beam is incident on the beam duct 1 and the pulsed electromagnet 4 is emitting a pulsed magnetic field,
Only when the generated pulsed magnetic field exceeds the critical magnetic field of the superconductor in the coating film tb, the superconducting state is broken and the coating 1llb enters a normal conductive state and has a high resistivity. As a result, the wax current generated by the pulsed magnetic field in the coating film tb is small, and the pulsed electromagnet 4
The pulsed magnetic field passes through the beam duct 1 containing the coating 1b membrane and acts on the charged beam. Furthermore, as described above, since the application time of the pulsed magnetic field is short, even if the path of the image current is interrupted, it will not cause beam instability. Next, a pulsed electromagnet device according to a second invention will be explained using FIG. 2. Here, a constant current is constantly passed through the coating film 1b, which is a superconductor, using a superconductor conductive lead lc, and the value of the critical magnetic field of the coating film 1b is controlled to be low to keep it in a superconducting state. The accompanying image current is allowed to flow through this coating 1ilb. On the other hand, when particles are incident, by simply passing a small pulse current through the pulsed electromagnet 4, the coating film "b" becomes a normal conduction state exceeding the critical magnetic field and has a high resistivity. The generation of eddy currents is prevented, and the pulsed magnetic field from the pulsed electromagnet 4 is transmitted through the beam duct 1. [Effects of the Invention] As explained above, the present invention allows the pulsed magnetic field to pass through by preventing the generation of eddy current by setting the coating film in a normal conduction state with high resistivity only when a predetermined pulsed magnetic field is applied. Otherwise, beam instability does not occur because the coating film is kept in a superconducting state and the image current can flow as a perfect conductor. Furthermore, there are fewer technical difficulties and troubles during use than with conventional pulsed electromagnet ducts, and it can be easily manufactured and stable operation can be expected. In addition, by selecting an appropriate material in consideration of the correlation between the magnetic field and resistivity of the superconductor, it is possible to change the waveform of the transmitted pulsed magnetic field, making it possible to apply a pulsed magnetic field waveform to the beam that is difficult to create with electric circuits. For example, it can be applied as a perturbator electromagnet for a small storage ring that requires a steeply falling pulsed magnetic field. Furthermore, if a method is used in which a constant current is passed through the superconductor of the duct as in the second invention, by selecting this current value, the same pulsed magnetic field can be transmitted through the duct using superconductors with different superconducting properties. characteristics can be obtained, making it easy to select a superconductor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明になるパルス電磁石装置の一実施例
を示す断面図、第2図は第2の発明になるパルス電磁石
装置の一実施例を示す断面図、第3図は、従来のパルス
電磁石装置の断面図である。 1・・・ビームダクト、1b・・・コーテイング膜、1
c・・・超電導体通電リード、2・・・鉄心、3・・・
コイル、4・・・パルス電磁石、5・・・クライオスタ
ット、6・・・冷媒。
FIG. 1 is a sectional view showing an embodiment of a pulsed electromagnet device according to the first invention, FIG. 2 is a sectional view showing an embodiment of a pulsed electromagnet device according to the second invention, and FIG. FIG. 2 is a cross-sectional view of the pulsed electromagnet device of FIG. 1... Beam duct, 1b... Coating film, 1
c...Superconductor current-carrying lead, 2...Iron core, 3...
Coil, 4... Pulse electromagnet, 5... Cryostat, 6... Refrigerant.

Claims (2)

【特許請求の範囲】[Claims] (1)シンクロトロン等の粒子加速器に用いるパルス電
磁石装置であって、 少なくともパルス電磁石が設けられた部位のビームダク
トを、非超電導状態で高抵抗率となりかつ臨界磁場値の
低い、セラミック系超電導体で構成するか、もしくは絶
縁物で構成したビームダクトの内面を前記超電導体でコ
ーティングし、該超電導体を超電導状態に冷却すること
を特徴とするパルス電磁石装置。
(1) A pulsed electromagnet device used in a particle accelerator such as a synchrotron, in which the beam duct at least in the part where the pulsed electromagnet is installed is made of a ceramic superconductor that has high resistivity in a non-superconducting state and has a low critical magnetic field value. or an insulating material, the inner surface of a beam duct is coated with the superconductor, and the superconductor is cooled to a superconducting state.
(2)シンクロトロン等の粒子加速器に用いるパルス電
磁石装置であって、 少なくともパルス電磁石が設けられた部位のビームダク
トを、非超電導状態で高抵抗率となるセラミック系超電
導体で構成するか、もしくは絶縁物で構成したビームダ
クトの内面を前記超電導体でコーティングし、前記超電
導体に一定の電流を流し、前記超電導体の臨界磁場値を
低い値にコントロールしておくことを特徴とするパルス
電磁石装置。
(2) In a pulsed electromagnet device used in a particle accelerator such as a synchrotron, at least the beam duct in the part where the pulsed electromagnet is installed is made of a ceramic superconductor that has high resistivity in a non-superconducting state, or A pulsed electromagnet device characterized in that the inner surface of a beam duct made of an insulating material is coated with the superconductor, a constant current is passed through the superconductor, and a critical magnetic field value of the superconductor is controlled to a low value. .
JP21099589A 1989-08-15 1989-08-15 Pulse electromagnet device Expired - Fee Related JP2862090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21099589A JP2862090B2 (en) 1989-08-15 1989-08-15 Pulse electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21099589A JP2862090B2 (en) 1989-08-15 1989-08-15 Pulse electromagnet device

Publications (2)

Publication Number Publication Date
JPH0374095A true JPH0374095A (en) 1991-03-28
JP2862090B2 JP2862090B2 (en) 1999-02-24

Family

ID=16598585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21099589A Expired - Fee Related JP2862090B2 (en) 1989-08-15 1989-08-15 Pulse electromagnet device

Country Status (1)

Country Link
JP (1) JP2862090B2 (en)

Also Published As

Publication number Publication date
JP2862090B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
Anders et al. Macroparticle‐free thin films produced by an efficient vacuum arc deposition technique
US3119707A (en) Method for the deposition of thin films by electron deposition
Schmüser Superconductivity in high energy particle accelerators
US5011820A (en) Superconducting current accumulator with pulsed output
Van Beelen et al. Flux pumps and superconducting solenoids
JPH0374095A (en) Pulse electromagnet device
US4824540A (en) Method and apparatus for magnetron sputtering
US3193734A (en) Superconducting flux concentrator
Lehr et al. Magnetic‐field effects on vacuum insulator flashover
JPS58199862A (en) Magnetron type sputtering device
Dahm et al. Electro-produced slow positrons
JP3150507B2 (en) Superconducting magnet device
JP4056112B2 (en) Magnetron sputtering equipment
JPH03123005A (en) Superconducting magnet device
US3616404A (en) Computer information storage device and method for making the same
JPH02502416A (en) high current switch
Mazarakis et al. SMILE: A Self Magnetically Insulated Transmission Line Adder for the 8-Stage RADLAC II Accelerator
JP3764276B2 (en) Magnetron sputtering method and apparatus
JPS63223173A (en) Method and apparatus for forming sputtered film
US11357094B2 (en) Deflection electromagnet device
JPH0480357A (en) Sputtering system and its target electrode
JPH0660107U (en) Electromagnet impregnation structure
JPH04176174A (en) Permanet current switch
JPS61272372A (en) Sputtering device
JPH11111499A (en) High freequency accelerating cavity and magnetron sputtering used for manufacturing the cavity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees