JPH037408B2 - - Google Patents

Info

Publication number
JPH037408B2
JPH037408B2 JP58051688A JP5168883A JPH037408B2 JP H037408 B2 JPH037408 B2 JP H037408B2 JP 58051688 A JP58051688 A JP 58051688A JP 5168883 A JP5168883 A JP 5168883A JP H037408 B2 JPH037408 B2 JP H037408B2
Authority
JP
Japan
Prior art keywords
oil
test
sludge
density
overefficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58051688A
Other languages
Japanese (ja)
Other versions
JPS59179124A (en
Inventor
Takashi Namiki
Mamoru Sasaki
Akira Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUCHA SEISAKUSHO KK
Original Assignee
TSUCHA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUCHA SEISAKUSHO KK filed Critical TSUCHA SEISAKUSHO KK
Priority to JP58051688A priority Critical patent/JPS59179124A/en
Publication of JPS59179124A publication Critical patent/JPS59179124A/en
Publication of JPH037408B2 publication Critical patent/JPH037408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は車両用のオイルフイルタ主として積
層型のオイルフイルタにおける材の改良に関す
る。 車両用エンジンの高速化に伴い、エンジン部品
の精度が向上し、これを潤滑するオイルを処理す
るためのフイルタも過精度の高いものが要求さ
れている。 その車両用エンジンのためのオイルフイルタと
して、紙をプリーツ加工して菊花状に組立て、
オイルを外側から内側に通して紙表面によつて
スラツジを捕捉するいわゆる表面過方式のも
の、および紙の破材、新聞紙や雑誌又は綿くず
等にウツドチツプを混ぜた材層にオイルを通し
てスラツジを捕捉するものが広く知られている
が、これらは紙や材層の形状的、構造的な面
から過精度を向上させることが難しく、そのた
め最近では、第1図のようにエンジンサイドのア
ダプタAにカバープレート2を介して取付けられ
る円筒状容器1の内部に、平板状の材3を多数
積層し、上下端に施したエンドプレート4a,4
bと共に鋼線5で緊締した過エレメントEを収
容した積層タイプのオイルフイルタが好適なもの
として用いられている。 そして、このフイルタのエレメントには、帯状
の紙から第2図イのように二つの扇形部分3a
と帯状部分3bとで十字の二葉状をなすように材
料取りし、中心部には6角形の窓孔3cを設ける
と共に扇形部分3aの両側重ね代部および帯状部
分3bに窓孔3cから外方に向う線状の細みぞ3
dを形成した材3、または同図ロのように三つ
の扇形部分3aを等間隔に三つ葉状をなすように
材料取りし、中心部には同様の窓孔3cを設ける
と共に扇形部分3aの両側重ね代部に同様の細み
ぞ3dを形成した材が通常用いられ、このよう
な材3が60゜ずつ角度をずらさせて積層され、
二葉状のものにあつては4枚目ごとに、三つ葉状
のものにあつては三枚目ごとに同一位相になり、
同一位相になつて重なり合う上下の扇形部分3a
によつて同図ハのように扇形状の空所6が形成さ
れている。 使用に際しては、アダプターAの入口通路A1
から容器1中に入つたオイルは過エレメントE
の周りから上記空所6に流入し、点線矢印のよう
に当初は中心部の材壁を通過しつつ中心の窓孔
3cに流出する。 そして、時間が経つにつれ空所6の材の表面
にスラツジが付着してケーキ層が形成され、この
ケーキ層が生成されてくるとオイルはケーキ層お
よび空所両側の材内に浸透しつつ細みぞ3dに
向うようになり、オイル中に存在する微細なスラ
ツジがケーキ層および材3によつて捕捉され、
オイルが浄化される仕組になつている。 ところで、材の性能はその密度により著しく
変化する。すなわち、材の密度が高い場合(気
孔が小さい場合)には、材の内部組織にスラツ
ジが詰まりケーキ層を形成しないうちに材の圧
力損失が増し、著しい流量低下を招き、過作用
が行われなくなり過効率が低下してしまう。 一方、材の密度が低い場合(気孔率が大きい
場合)には、スラツジが材の表面および内部を
通り抜け易くなつてケーキ層の生成が悪くなり、
この場合も同じく過効率を著しく低下させてし
まう。 本発明はこのような観点から開発されたもの
で、長期に使用しても目詰まりすることなく過
効率の低下しない積層タイプのオイルフイルタに
適した材を提供するものであり、紙からなつ
て平板状をなし密度が0.36g/cm3〜0.42g/cm3
厚さが0.7mm〜1.3mmで気孔径が16μm〜30μmとし
た構成を特徴とする。 本発明は上記の構成をとることにより、スラツ
ジによる材内部での目詰まりが防止され、実車
試験結果より材の寿命が従来一般の材に比べ
て約2倍長くなり、しかも材表面にスラツジに
よるケーキ層の生成が良好に行われ、過効率を
2倍も向上させることができる。 上記のように材の密度はその性能に重要な影
響を及ぼすが、密度が0.36g/cm3以下だと抵抗が
少なくスラツジが通り易くなつてケーキ層が生成
されず、また、0.42g/cm3以上だけ逆に抵抗が大
きくなつてエレメントの寿命が短くなつてしま
う。 厚さは細みぞ加工に影響を与えるものであり、
厚さが0.7mm以下だとケーキ層過を促進すべき
細みぞのみぞ付け加工が困難になると共に材成
形のための打抜工数が殖えてしまい、また1.3mm
以上だと積層枚数が少なくなり、エレメント全体
の過面積が減少し性能の低下をもたらす。 更に気孔径は材密度と密接な関係にあり、
16μm以下だとオイルの流れが悪くスラツジによ
る詰まりが生じエレメントの寿命が短くなり、ま
た30μm以上だと逆にオイルの通りが良くなるが
スラツジも共に通過してしまい過機能を果さな
くなる。 次に表1のように、帯状の紙から前記のよう
に材料取りした本発明に係る材を他の同様の
材との比較において、その過効率ならびにオイ
ルの通過流量に関し行つたベンチテストならびに
実車テストの結果について述べる。
The present invention relates to improvements in materials used in oil filters for vehicles, mainly laminated oil filters. As the speed of vehicle engines increases, the precision of engine parts improves, and filters for processing the oil that lubricates these parts are also required to have high precision. As an oil filter for the vehicle engine, paper is pleated and assembled into a chrysanthemum shape.
The so-called surface filtration method, in which oil is passed from the outside to the inside and sludge is captured by the paper surface, and the sludge is captured by passing oil through a layer of wood chips mixed with paper scraps, newspapers, magazines, cotton waste, etc. However, it is difficult to improve overaccuracy due to the shape and structure of the paper and material layers, so recently, as shown in Figure 1, it is difficult to improve the accuracy of the adapter A on the engine side. Inside the cylindrical container 1 attached via the cover plate 2, a large number of flat plate-like materials 3 are laminated, and end plates 4a, 4 are provided at the upper and lower ends.
A laminated type oil filter containing an over-element E tightened with a steel wire 5 along with the oil filter b is preferably used. The element of this filter is made of two fan-shaped parts 3a from a strip of paper as shown in Fig. 2A.
A hexagonal window hole 3c is provided in the center, and a hexagonal window hole 3c is provided in the center, and a hexagonal window hole 3c is provided in the overlapped portions on both sides of the fan-shaped portion 3a and in the strip portion 3b from the window hole 3c outward. Linear thin groove facing toward 3
d, or as shown in Figure B, three fan-shaped parts 3a are taken at equal intervals to form a trefoil shape, and a similar window hole 3c is provided in the center, and both sides of the fan-shaped parts 3a are cut out. A material with similar narrow grooves 3d formed in the overlapped portion is usually used, and such materials 3 are stacked with the angle shifted by 60 degrees,
For bilobed ones, every fourth leaf is in the same phase, and for trilobed ones, every third leaf is in the same phase.
Upper and lower fan-shaped portions 3a that are in the same phase and overlap
As a result, a fan-shaped space 6 is formed as shown in FIG. In use, inlet passage A 1 of adapter A
The oil that entered container 1 from
It flows into the space 6 from around the , and flows out into the window hole 3c at the center while initially passing through the material wall at the center as indicated by the dotted line arrow. As time passes, sludge adheres to the surface of the material in the cavity 6 and a cake layer is formed, and as this cake layer is formed, the oil penetrates into the cake layer and the material on both sides of the cavity and becomes fine. The fine sludge present in the oil is captured by the cake layer and the material 3, and
The system is designed to purify the oil. By the way, the performance of a material changes significantly depending on its density. In other words, if the density of the material is high (the pores are small), the internal structure of the material will be clogged with sludge, and before a cake layer is formed, the pressure loss of the material will increase, resulting in a significant drop in flow rate and overworking. As a result, overefficiency decreases. On the other hand, if the density of the material is low (porosity is high), sludge will easily pass through the surface and inside of the material, making it difficult to form a cake layer.
In this case as well, the overefficiency is significantly reduced. The present invention was developed from this point of view, and aims to provide a material suitable for a laminated type oil filter that does not become clogged or reduce overefficiency even after long-term use. It has a flat plate shape and a density of 0.36g/cm 3 to 0.42g/cm 3 ,
It is characterized by a structure with a thickness of 0.7 mm to 1.3 mm and a pore diameter of 16 μm to 30 μm. By adopting the above-mentioned structure, the present invention prevents clogging inside the material due to sludge, and the life of the material is approximately twice as long as that of conventional general materials according to actual vehicle test results. The cake layer is produced well and the overefficiency can be improved by as much as two times. As mentioned above, the density of the material has an important effect on its performance, but if the density is less than 0.36 g/ cm3 , the resistance will be low and sludge will pass through easily, preventing the formation of a cake layer; 3 or higher, the resistance increases and the life of the element becomes shorter. Thickness affects narrow groove processing,
If the thickness is less than 0.7 mm, it will be difficult to groove the narrow grooves that should promote cake layering, and the number of punching steps for forming the material will increase;
If it is more than that, the number of laminated layers will decrease, and the excess area of the entire element will decrease, resulting in a decrease in performance. Furthermore, pore diameter is closely related to material density,
If it is less than 16 μm, oil will not flow well and clogging with sludge will occur, shortening the life of the element. If it is more than 30 μm, oil will flow better, but sludge will also pass through it, making it unable to function properly. Next, as shown in Table 1, in comparison with other similar materials, the material according to the present invention, which was obtained from a strip of paper as described above, was subjected to a bench test and an actual vehicle in terms of its overefficiency and oil flow rate. We will discuss the results of the test.

【表】 ベンチテストはJIS規格(JISD1611−1976:自
動車用オイルフイルタ性能試験方法)にしたがつ
た。 すなわち、 a フイルタ入口圧力 3.0Kgf/cm2 b コンタミナント SOFTC−ZA c コンタミナント添加量 0.9g/時間 コンタミナントの添加量はエンジン台上試験
の実績値から0.9g/時間とした。 d 試験油 APICD級 試験油は実際にエンジンに使用されるAPI
(アメリカ石油協会)が区分しているCD級(高
回転、高負荷用のデイーゼルエンジン用の潤滑
油)を採用した。その理由はCD級オイルは清
浄分散剤の含有量が最も多く、コンタミナント
に含まれる凝集したカーボン及び酸化第2鉄を
分散させ微粒子化するため、一般に過効率が
低下し、荷酷な試験となり、材の良し悪しの
判定に適切だからである。 e 試験油の油量 5.5 f 試験油の油温 80゜C 第3図イ,ロは上記ベンチテストの結果をグラ
フで表わしたものであり、これによれば、試料A
は密度が高いため試験を開始してから10時間足ら
ずで、材内部にスラツジが詰まり、材中を試
験油が流れることができず、材表面にケーキ層
を生成せず材の寿命が著しく短くなつている。
一方、試料Cは密度が小さいため、時間の経過に
対するオイル流量の減少の度合がゆるやかで、そ
れだけ材を通過するスラツジの量が多く、ケー
キ層の生成が遅く、フイルタの寿命は長い反面、
過効率が低下している。 これらに対し、試料B2は試験開始から20時間
までの間は、オイル流量の減少の仕方が急激であ
るが、それ以後は流量はほぼ一定となり、材表
面にケーキ層が充分に形成され、過効率が高
く、材の密度、厚さおよび気孔径が過に適合
していることを示している。 また、試料B1と試料B3とは試料B2とほぼ同様
の傾向を示しているが、試料B1は試料B2より
過効率は高いが材の寿命が短く、一方、試料
B3は試料B2より過効率は若干低い反面材の
寿命が長い。 これらの事項を勘案して、材の密度の下限は
0.36g/cm3、上限を0.42g/cm3に、厚さの下限は
0.7mm、上限は1.3mmならびに気孔径の下限は16μ
m、上限は30μmに選定した。 また、上記試料A、B、Cの実際の使用に対す
る評価としての実車テスト(この評価は走行距離
に応じてのエンジンオイル中に含まれるスラツジ
(ナフサ不溶解分)の割合で判断)の結果は4図
のグラフのとおりであり試料B2が試料A、Cに
比べ、ナフサ不溶解分の割合が低くスラツジを充
分に捕捉していることが理解できる。 以上のようにこの発明によれば、材の目詰ま
りを起こすことなくケーキ層の形成が良好に行わ
れ、材の寿命が長くしかも過効率を著しく向
上させることができる。
[Table] The bench test was conducted in accordance with the JIS standard (JISD1611-1976: Automotive oil filter performance test method). That is, a) Filter inlet pressure 3.0 Kgf/cm 2 b Contaminant SOFTC-ZA c Contaminant addition amount 0.9 g/hour The amount of contaminant added was set to 0.9 g/hour based on the actual value of the engine bench test. d Test oil APICD grade The test oil is the API actually used in engines.
The lubricant is classified as CD class (lubricating oil for high-speed, high-load diesel engines) by the American Petroleum Institute (American Petroleum Institute). The reason for this is that CD grade oil has the highest content of detergent and dispersant, which disperses the aggregated carbon and ferric oxide contained in the contaminants and makes them fine particles, which generally lowers the overefficiency and makes the test more demanding. This is because it is appropriate for determining the quality of the material. e Amount of test oil 5.5 f Oil temperature of test oil 80°C Figure 3 A and B are graphical representations of the results of the above bench test, and according to these, sample A
Due to the high density of the material, within 10 hours after starting the test, the inside of the material became clogged with sludge, making it impossible for the test oil to flow through the material, resulting in no cake layer being formed on the surface of the material, significantly shortening the life of the material. It's summery.
On the other hand, since sample C has a low density, the oil flow rate decreases slowly over time, and the amount of sludge that passes through the material is large, the formation of a cake layer is slow, and the filter life is long.
Overefficiency is decreasing. On the other hand, for sample B 2 , the oil flow rate decreased rapidly for 20 hours from the start of the test, but after that, the flow rate became almost constant and a cake layer was sufficiently formed on the material surface. The overefficiency is high, indicating that the density, thickness, and pore size of the material are overmatched. In addition, Sample B 1 and Sample B 3 show almost the same trends as Sample B 2 , but Sample B 1 has a higher overefficiency than Sample B 2 but has a shorter material life;
Although the overefficiency of B 3 is slightly lower than that of sample B 2 , the life of the material is longer. Considering these matters, the lower limit of the density of the material is
0.36g/cm 3 , upper limit is 0.42g/cm 3 , lower limit of thickness is
0.7mm, upper limit is 1.3mm and lower limit of pore size is 16μ
m, and the upper limit was selected to be 30 μm. In addition, the results of an actual vehicle test as an evaluation of the actual use of the above samples A, B, and C (this evaluation is determined by the ratio of sludge (naphtha insoluble matter) contained in the engine oil depending on the mileage) are as follows. As shown in the graph of Figure 4, it can be seen that Sample B 2 has a lower proportion of naphtha insolubles than Samples A and C and can sufficiently trap sludge. As described above, according to the present invention, a cake layer can be formed satisfactorily without causing clogging of the material, the life of the material can be extended, and overefficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は積層型オイルフイルタの断面図。第2
図イ,ロは一般に使用されている材の平面図。
同図ハは積層状態を示す斜視図。第3図イは試料
についての過効率の試験結果を示すグラフ。同
図ロは同じくオイルの流量の試験結果を示すグラ
フ。第4図は実車テストの結果を示すグラフ。 図中、1……容器、2……カバープレート、3
……材、3a……扇形部分、3b……帯状部
分、3c……窓孔、3d……細みぞ、4a,4b
……エンドプレート、A……アダプター。
FIG. 1 is a sectional view of a laminated oil filter. Second
Figures A and B are plan views of commonly used materials.
Figure C is a perspective view showing a stacked state. Figure 3A is a graph showing the test results of overefficiency for samples. Figure B is a graph showing the test results for the oil flow rate. Figure 4 is a graph showing the results of the actual vehicle test. In the figure, 1...container, 2...cover plate, 3
...Material, 3a...Fan-shaped part, 3b...Band-shaped part, 3c...Window hole, 3d...Narrow groove, 4a, 4b
...End plate, A...Adapter.

Claims (1)

【特許請求の範囲】[Claims] 1 紙からなつて平板状をなし、重ね代部に中
心の窓孔から外方に向う細みぞを備え、所要の角
度をずらせて多数積層される材において、密度
を0.36g/cm3〜0.42g/cm3、厚さを0.7mm〜1.3mm、
そして気孔径を16ミクロンメートル〜30ミクロン
メートルの諸元を有することを特徴とするオイル
フイルタにおける材。
1 A material that is made of paper and has a flat plate shape, has a thin groove extending outward from a central window hole in the overlapped portion, and is laminated in large numbers at different angles, with a density of 0.36 g/cm 3 to 0.42 g/cm 3 , thickness 0.7mm to 1.3mm,
and a material for an oil filter characterized by having a pore diameter of 16 micrometers to 30 micrometers.
JP58051688A 1983-03-29 1983-03-29 Filter material for oil filter Granted JPS59179124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58051688A JPS59179124A (en) 1983-03-29 1983-03-29 Filter material for oil filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58051688A JPS59179124A (en) 1983-03-29 1983-03-29 Filter material for oil filter

Publications (2)

Publication Number Publication Date
JPS59179124A JPS59179124A (en) 1984-10-11
JPH037408B2 true JPH037408B2 (en) 1991-02-01

Family

ID=12893829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58051688A Granted JPS59179124A (en) 1983-03-29 1983-03-29 Filter material for oil filter

Country Status (1)

Country Link
JP (1) JPS59179124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879568B1 (en) * 2013-10-07 2018-07-20 나카모토팍쿠스가부시키가이샤 Laminated material for paper containers and paper container using it
CN109107291A (en) * 2017-06-23 2019-01-01 上海凯森环保科技有限公司 A kind of metal 3D printing fume purifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879568B1 (en) * 2013-10-07 2018-07-20 나카모토팍쿠스가부시키가이샤 Laminated material for paper containers and paper container using it
CN109107291A (en) * 2017-06-23 2019-01-01 上海凯森环保科技有限公司 A kind of metal 3D printing fume purifier

Also Published As

Publication number Publication date
JPS59179124A (en) 1984-10-11

Similar Documents

Publication Publication Date Title
US4976858A (en) Multi-layer filter medium
US10883401B2 (en) Exhaust gas purification filter
DE112019004048T5 (en) Column-shaped honeycomb structure, exhaust gas purification device, exhaust system and method for manufacturing the honeycomb structure
US20190170098A1 (en) Filter Medium and Filter Element Having a Filter Medium
DE2926533C2 (en) Method for producing a porous filter layer
JPH037408B2 (en)
JPH0549825A (en) Filtering material
DE112020001644T5 (en) Exhaust gas cleaning filter
DE102005019464A1 (en) Soot filter for diesel engine exhaust system, has filter walls with catalytically-coated wavy surfaces made by extrusion to specified dimensions and geometric profile
US3125515A (en) Filter
JPS61268317A (en) Filter material
RU2200615C2 (en) Aerosol filter and filtering material
JP2000153116A (en) Filter material, lubricant filter and fuel filter using the same
JP6737543B2 (en) How to reduce the output noise of the flow sensor
Jaroszczyk et al. Recent advances in engine air cleaners design and evaluation
JPS61268321A (en) Filter material
JPS6225203Y2 (en)
EP0350213B1 (en) Paper filter element
SU1606153A1 (en) Filter element
JPS6034329Y2 (en) filter body
DE102022200176A1 (en) HONEYCOMB FILTER
SU1503864A1 (en) Filtering element
DE102020001630A1 (en) Method for producing a honeycomb structure
SU578984A1 (en) Liquid purification method
JPH08332316A (en) Full-flow type oil filter element for internal combustion engine